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Abstract: Clean technological machining operations can improve traditional methods’ environmental,
economic, and technical viability, resulting in sustainability, compatibility, and human-centered
machining. This, this work focuses on sustainable machining of Al-Mg-Zr alloy with minimum
quantity lubricant (MQL)-assisted machining using a polycrystalline diamond (PCD) tool. The effect
of various process parameters on the surface roughness and cutting temperature were analyzed.
The Taguchi L25 orthogonal array-based experimental design has been utilized. Experiments have
been carried out in the MQL environment, and pressure was maintained at 8 bar. The multiple
responses were optimized using desirability function analysis (DFA). Analysis of variance (ANOVA)
shows that cutting speed and depth of cut are the most prominent factors for surface roughness
and cutting temperature. Therefore, the DFA suggested that, to attain reasonable response values, a
lower to moderate value of depth of cut, cutting speed and feed rate are appreciable. An artificial
neural network (ANN) model with four different learning algorithms was used to predict the surface
roughness and temperature. Apart from this, to address the sustainability aspect, life cycle assessment
(LCA) of MQL-assisted and dry machining has been carried out. Energy consumption, CO2 emissions,
and processing time have been determined for MQL-assisted and dry machining. The results showed
that MQL-machining required a very nominal amount of cutting fluid, which produced a smaller
carbon footprint. Moreover, very little energy consumption is required in MQL-machining to achieve
high material removal and very low tool change.

Keywords: Al-Mg-Zr alloy; minimum quantity lubricant; PCD; optimization; life cycle assessment
(LCA); sustainability; energy consumption; CO2 emission and carbon foot prints

1. Introduction

Alloys have wide applications, such as for use as turbine and furnace components,
and in the aerospace and petroleum industries [1]. Aluminum-based alloys have been
most widely used in automotive industries due to their excellent formability [2]. There is a
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growing trend in Al-based alloy-based metal matrix composites (MMCs) in automotive
applications, particularly for engine block manufacturing [3]. The Al/Mg base alloy,
combining corrosion resistance with appreciable strength and ductility, is of interest in light-
weight structural applications in the transportation industry [4]. Machining of MMC-based
composites is challenging compared to conventional steels, so they are often identified
as difficult-to-cut materials [5,6]. Some strategies, such as the design of cutting tools,
incorporating an appropriate cutting environment, and tool change, are needed to make
machining operations more convenient. Sustainable manufacturing is the only solution
for developing products via environmentally-friendly, non-polluting, energy-efficient,
and economical machining processes to ensure socio-economic wellbeing, safety, and
health [7]. According to the Environmental Protection Association (EPA), the use of
new cooling/lubrication techniques, such as dry-cutting, MQL, cryogenic cooling, and
hybrid cooling techniques in machining, has been acknowledged as a cleaner sustainable
machining production approach. Further works from the literature are collected in the
following sections.

A number of inserts have been developed to machine hard-to-machine materials.
Polycrystalline diamond (PCD) was found to be suitable for machining hardened metals
and super-alloys under higher cutting speed conditions [8,9]. To strengthen the efficacy
of the PCD tool, an investigation was conducted on Al alloy-based MMC with 20 wt.%
of SiC particles, using WC, PCBN, and PCD tools, resulting in PCD providing the best
performance as a cutting insert [10]. Furthermore, considering that the hardness of PCD
is higher than that of SiC, the efficiency of different tool materials was analyzed while
machining Al-based SiC alloy and it was concluded that PCD was superior to the PCBN
tool, a coated ceramic tool, and cemented carbide instruments [11].

The PCD inserts with particle SiC and B4C-reinforced MMCs have also been examined
for short fibrous Al2O3. Based on the wear rates and morphology of worn surfaces, abrasion
by dislodged diamond grains and microcracking caused the wear of PCD. [12]. PCD and
chemical vapor deposition (CVD) diamond-coated tools were investigated for tool life, and
the initial flank wear on both the tools was generated by abrasion [13]. Chip–tool interface
temperature is another important parameter associated with many machining operations.
Inherently, high steel production machining offers a high temperature in the cutting area,
which leads to substantial deviations and premature failure of cutting tools [14]. High
cuts that negatively influence the lifespan of the tool, dimensional precision, and product
surface integrity unavoidably characterize high-speed workmanship. However, a high-
pressure oil jet can lower the cutting temperature and extend the lifetime of tools to the
same extent as the chip–tool interface [15,16].

Rabiei [17] focused on the importance of cutting fluids to facilitate certain benefits
during machining, such as improved tool life and a good surface finish. In some appli-
cations, between dry machining and flood cooling, an ideal lubrication solution can be
found in the form of MQL, which is a viable solution to address the drawbacks of dry and
flood-cooling processes [18,19]. Abhang and Hameedullah investigated the effectiveness
of the MQL technique depending on the level of the process parameters and the work ma-
terial, resulting in a reduction of chip-tool interface temperature as high as 30% compared
to conventional cooling [20]. The studied effect of MQL on surface roughness in CNC
turning determined that a minimal quantity of lubrication could significantly reduce the
resultant output when compared with the traditional flood-cooling method [21]. Karim
et al. investigated the effect of MQL in turning Al alloy composite using the Taguchi–PCA
approach and determined the issue of the beneficial impact of MQL over the conventional
cooling method [22,23]. MQL integrated into the turning of AISI 4140 steel could improve
the cutting temperature and surface integrity. Adding special additives to the coolant and
lubricant systems may also enhance the base fluid’s tribological properties by minimizing
machining forces and decreasing chip–tool interface temperature [24,25].

While focusing on improving tool life, cutting force, and surface roughness, Lin
explored the use of Taguchi analysis during the turning of S45C steel bar using P20 tungsten
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carbide. They found that the Taguchi method was a multiple performance optimization
solver [26]. In an attempt to predict response parameters, Temel et al. [27] concluded
that ANN is an effective method for predicting output variable with a minimum error
for identifying mechanical and physical characteristics of Al2024-B4C MMC. Bachy and
Franke [28] used ANN and RSM to develop laser process mathematical models, and
resulted in generating the lowest errors using an artificial neural network, which justified
ANN’s high precision response concerning surface methodology. Various researcher
reported the use of artificial intelligence in the processing of Al-alloys [29–31]. Reddy
compared RSM and ANFIS predicted surface roughness values, and the ANFIS results
were superior to those of RSM [32]. A fuzzy model was developed using three different sets
of process parameters and it was concluded that the ANFIS-based hybrid model was best
suited to accurately predict surface roughness, with a MAPE value of 0.113542% compared
to the developed ANN model [33].

Energy consumption evaluation is an integral part of life cycle assessment (LCA) and
sustainability. Energy consumption varies with the machining stages and depends on the
utilization of instruments assisting the machining [34,35]. The utilization of cooling and
lubrication systems raised the power produced by the machine [36]. However, an analysis
of electric energy usage is not sufficient to determine the sustainability of the machining
process. Therefore, consumed resources’ incarnated energy has been introduced into
research in recent years [37,38]. Carbon (CO2) emission and carbon footprint analysis is also
a key indicator of LCA and sustainability. Ic et al. [39] optimized the processing parameters
of a machine to turn Al-7075 alloy to minimize the emission of CO2 and to produce a
low surface roughness. It was reported that the proper selection of coolant reduced the
generation of CO2 emissions and was better for the environment. CO2 emissions have
been found to be approximately zero in the MQL and cryogenically assisted machining
process. Production costs are also essential for LCA and sustainability. The production
costs of machined components were computed using Taylor’s cost method. The model
comprised tool cost, machine cost, and tool change cost, but this model does not include a
coolant effect on the production costs [40]. Jamil et al. proposed a cost model for dry, MQL,
and LN2-assisted cooling of machining of Ti-alloy, and it was found that the production
cost was reduced significantly [41].

The necessity for environmentally friendly machining has always been the motivat-
ing factor regarding cutting-fluid-usage reduction techniques. MQL is amongst the most
promising machining strategies, allowing for a 90% reduction in cutting fluid consumption,
although it also preserves surface quality and tool life. The prominence of MQL in machin-
ing necessitates an analysis of MQL progress. During machining operations, flood cooling
is a popular method for extracting heat from the cutting field; however, it has negative
consequences, such as it can cause respiratory illnesses among employees, environmental
issues, and cutting fluid processing and disposal. As a result, environmentally sustainable
lubrication solutions must be implemented to address flood lubrication issues. The MQL
strategy can also help with machining issues like chip pressure welding to the cutting edge,
which is the main reason for tool failure. Additionally, MQL improves the surface quality
of machined parts. However, MQL is mainly concerned with reducing friction, rather than
removing as much heat as possible by regulating heat generation at its source.

A detailed literature survey has revealed that there is a complete dearth of literature
on life cycle assessment (LCA) and sustainability analyses of MQL-assisted machining of
Al-Mg-Zr alloy. The sustainability aspect of the machining area requires a great deal of
attention and needs to be comprehended in a structured manner in comparative studies.
Unfortunately, most academics and manufacturing industries are still focused only on
traditional methods. However, insincere efforts have been made in understanding the
effects of environmental, economic, and technological analyses of MQL-assisted machining
of Al-Mg-Zr Alloy. The present study has created another endeavor, to fill the gap due
to the already-stated theoretical research gaps. The current research on MQL-assisted
machining of Al-Mg-Zr alloy using a PCD tool has created the following objectives:
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• To determine the influence of cutting parameters on sustainable responses, viz. surface
roughness and cutting temperature using ANOVA and the main effect of plots using
the PCD tool;

• To achieve optimal cutting parameters with the Taguchi method and multi-objective
optimization with desirability function analysis (DFA);

• To model cutting parameters with ANN and ANFIS;
• To analyze life cycle and sustainability aspects of MQL-assisted machining of Al-Mg-

Zr alloy.

To understand the extent of sustainability analysis on MQL-assisted machining
of Al-Mg-Zr alloy, the present study was based on a fundamental analysis of three
research questions:

Q1: Do cutting parameters significantly affect sustainable responses or not?
Q2: Do the cutting parameters differ from optimal settings?
Q3: Does a statistically significant interrelationship between parameters contribute to
“sustainable machining”?

The rest of the paper is organized as follows: Section 2 details the materials and
methods utilized for modeling and optimization, workpiece material, equipment and the
instruments used as well as the design of the experiments. Section 3 describes the analysis
of results using ANOVA, optimization with the Taguchi method, and multi-objective
optimization with DFA, ANN, and ANFIS modeling. Section 4 displays a comparative
analysis, including ANN and ANFIS results and life cycle and sustainability analysis,
followed by conclusions, limitations, and the future scope of research, in Section 5.

2. Materials and Methods
2.1. Workpiece Material and Dimensions

Aluminum, magnesium, and zirconium were used in this work. A stir casting process
with an RPM of 600 was used to prepare the alloy. EDX analysis was carried out to
obtain the developed alloy composition, as shown in Table 1 and Figure 1. A cylindrical-
shaped alloy was prepared for turning operations, with a length of 305 mm and a diameter
of 70 mm.

Table 1. Composition of the developed Al/Mg/Zr alloy.

Element Weight % Atomic %

Mg 34.81 51.67
O 11.34 12.63
Al 52.18 34.47
Zr 1.67 1.22

2.2. Cutting Inserts

An SNMG 120408 polycrystalline diamond (PCD) cutting insert with a nose radius
of 0.8 mm under minimum quantity lubricant (MQL) cutting conditions was used in the
turning process using a center lathe.

2.3. Equipment and Instruments

The roughness was measured using an optical surface profilometer. Each measure-
ment was repeated three time to reduce the error and the mean arithmetic average value
was collected.

During the experiments, a thermocouple was used to monitor the cutting temperature.
In addition, a digital multi-meter was used to record the electromotive force (emf) in
millivolts, with one end of the multi-meter attached to the workpiece and the other end to
the tool. The thermocouple calibration maintained the temperature measuring accuracy
using comparison techniques. The calibration procedure was achieved according to the
ASTM E220 standard test method by trained lab technicians [42].
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2.4. Experimental Setup and Design of Experimentation

Experiments were performed according to Taguchi’s methodology [43]. The cutting
parameters, such as cutting speed (Vc), feed rate (S0), and cutting depth (t), using five
different levels, were considered. The experiments were conducted to decide the cutting
parameter levels along with the tool manufacturing suggestions and the machine tool
capacity using an L-25 OA array. The optimization was performed using desirability
function analysis, as reported in previous research [44]. The cutting parameters and the
allocation of the different levels are shown in Table 1. The standard L25 OA as per the
cutting parameters levels is shown in Table 2. Each experiment was repeated three times as
designed, and the average values of the responses for surface roughness (Ra) and cutting
temperature cutting (θ) are shown in Table 3. Figure 2 presents the experimental setup and
the method used for the study. The pressure was kept at 8 bar, and the flow rate during
machining was kept constant at 120 mL/h.

2.5. ANFIS and ANN Based Predictive Modelling

The adaptive fuzzy inference system (ANFIS)-based network is a hybrid architecture
comprising neural and fuzzy logic systems. An information-based technique is used in
a neural network stage to provide function-approximation problems [33]. First, a fuzzy
inference method with an initial fuzzy model is established, taking into account the fuzzy
rules extracted from the input–output data. Then, the neural network is used to fine-tune
the built-up original fuzzy model’s rules in the next step.

A Sugeno (output is linear or constant) type ANFIS model is used in the present work.
The experiment takes three input parameters (depth of cut, cutting speed, and feed rate)
and two output parameters (surface roughness and cutting temperature) into consideration.
The ANFIS model is constructed using a Gaussian membership function (Gaussmf) with
three membership functions for all input parameters and a linear membership function for
the output parameter. The hybrid approach is used to maximize parameter performance.

ANN is a common prediction tool that helps to calculate various outputs from different
parameters. ANN has three interconnected layers, and core features of the artificial neural
network are its learning ability and the various learning algorithms [33]. To get a minimal
variance between the experimental values and the output values, it is essential to decide
the best learning algorithm and the optimum number of neurons.
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Table 2. Experimental input parameters and resultant responses.

Variable 1 Variable 2 Variable 3 Response 1 Response 2

Run t: Depth of Cut
(mm)

Vc: Cutting
Speed

(m/min)

S0: Feed Rate
(mm/rev.)

Ra: Surface
Roughness (µm)

θ: Cutting
Temperature

(◦C)

1 0.25 86 0.1 0.508 135.79
2 0.25 112 0.12 0.625 152.24
3 0.25 138 0.14 0.784 173.45
4 0.25 143 0.16 0.815 177.53
5 0.25 178 0.18 1.030 206.09
6 0.45 86 0.12 0.49 134.66
7 0.45 112 0.14 0.735 165.50
8 0.45 138 0.16 0.894 186.77
9 0.45 143 0.18 0.925 190.85

10 0.45 178 0.1 1.140 219.41
11 0.65 86 0.14 0.728 162.43
12 0.65 112 0.16 0.845 178.88
13 0.65 138 0.18 1.004 200.09
14 0.65 143 0.1 1.035 204.17
15 0.65 178 0.12 1.250 232.73
16 0.85 86 0.16 0.795 170.98
17 0.85 112 0.18 0.955 192.20
18 0.85 138 0.1 1.114 213.41
19 0.85 143 0.12 1.145 217.49
20 0.85 178 0.14 1.360 246.05
21 1.25 86 0.18 1.015 197.62
22 1.25 112 0.1 1.175 218.84
23 1.25 138 0.12 1.334 240.05
24 1.25 143 0.14 1.365 244.13
25 1.25 178 0.16 1.580 272.69

Table 3. Cutting parameters and different levels.

Variables Units Level 1 Level 2 Level 3 Level 4 Level 5

Depth of cut (t) mm 0.25 0.45 0.65 0.85 1.25
Cutting speed (Vc) m/min 86 112 138 143 178

Feed rate (S0) mm/rev. 0.1 0.12 0.14 0.16 0.18
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2.6. Data Collection for Sustainability Analysis

PPC-3 power meter load controls were utilized to calculate energy consumption
during different phases of machine tooling. In order to obtain the electrical energy con-
sumption in various process stages (functional states of the machine tool), the estimated
power was compounded by a known time frame. In the measurement of the lubrication
capacity, a smart meter was used. The intelligent meter consisted of Raspberry Pi-3 and
a Smart-Pi, keyboard and mouse, an HDMI adapter and a micro SD card. In addition,
the proposed uniform approach calculates carbon emissions, as reported in a previous
study [45].

3. Results and Discussion
3.1. Effect of Process Paramters on Surface Roughness and Cutting Temprature

An SN ratio shows the influence of each input variable parameter on each regulated
parameter level, and the parameter has an impact on the surface roughness and cutting
temperature. Since a higher SN is closer to a higher quality, a bigger SN ratio is better. Both
Tables 4 and 5 demonstrate that cuts at speeds ranked 1, followed by cutting depth rank 2,
had the least impact on the results and the feed rate, as the cutting parameter affected
the surface roughness most effectively and the cuts in the temperature quality were in
accordance with the SN ratio.

Table 4. Response table for SN ratios (surface roughness).

Level Depth of Cut Cutting Speed Feed Rate

1 0.7528 0.7074 0.9948
2 0.8372 0.8671 0.9692
3 0.9728 1.0268 0.9948
4 1.0743 1.0575 0.9863
5 1.2943 1.2724 0.9863

Delta 0.5415 0.5650 0.0256
Rank 2 1 3

Note: Smaller is better.

Table 5. Response table for SN ratios (cutting temperature).

Level Depth of Cut Cutting Speed Feed Rate

1 −44.47 −44.01 −45.81
2 −44.97 −45.11 −45.59
3 −45.77 −46.09 −45.79
4 −46.30 −46.26 −45.77
5 −47.36 −47.40 −45.90

Delta 2.89 3.39 0.32
Rank 2 1 3

Note: Smaller is better.

Figures 3–6 correspondingly show the principal effect parts for the mean and SN
ratios of surface roughness and cutting temperature. It is usually preferable to increase the
value of the SN ratio; hence, the ideal cutting conditions can be attained when the SN ratios
are highest in all three entry parameters. The primary SN ratio effect plot (Figures 3 and 5)
shows that a low roughness and cutting temperature reached at a 0.25-mm cutting depth,
86-m/min cutting speed and a feed-rate of 0.12 mm/rev. Figures 4 and 6 show that the
ideal value at a cut-through depth of 0.25 mm, 86 m/min cutting speed and 0.12 mm/rev
feed rate was seen for reduced surface roughness and cutting temperature. In order to
get the optimum assessment of both surface roughness and cutting temperature, it was
proposed that a lower cutting depth, lower cutting speed and low-to-moderate feed rate
need to be used.
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3.2. Analysis of Variance (ANOVA)

In this study, ANOVA was performed for the response of surface roughness and
cutting temperature. The sum of the squares (SS), the degrees of freedom (df), the mean
square (MS), the F-value, and the p-value for all input variables are shown in Tables 6 and 7
for the MQL-aided cutting conditions. p-values below 0.05 indicate that the terms of the
model are noteworthy for both responses. Moreover, it is easily understood from the
analyses that the cutting speed and the depth of the cut are the most prominent factors,
which is aligned with the results of the S/N ratio analysis. Thus, both the method factors
can give an assertion about selecting the dominant factor affecting the process.

Table 6. Analysis of variance for surface roughness.

Source SS df MS F-Value p-Value Contribution

Model 1.80 3 0.5995 1152.52 <0.0001 significant
t 0.8956 1 0.8956 1721.90 <0.0001 49.48%

Vc 0.9028 1 0.9028 1735.65 <0.0001 49.87%

S0
7.688×
10−9 1 7.688 ×

10−9 0.0000 0.9970

Residual 0.0109 21 0.0005
Cor. Total 1.81 24

Table 7. Analysis of variance for cutting temperature.

Source SS df MS F-value p-Value Contribution

Model 29,087.40 3 9695.80 1462.35 <0.0001 significant
t 13,136.15 1 13,136.15 1981.23 <0.0001 44.94%

Vc 15,951.25 1 15,951.25 2405.82 <0.0001 54.57%
S0 0.0005 1 0.0005 0.0001 0.9932

Residual 139.24 21 6.63
Cor. Total 29,226.64 24

3.3. Optimization Using Desirability Function Analysis (DFA)

Multi-response optimization aims to determine the independent variable conditions
that lead to optimal or nearly optimal values for the response variables. In this desirability
function analysis, minimizing surface roughness and cutting force was the prime objective.
Factor ranges defined for the basic optimization are shown in Table 8. A summary of
the optimization to fulfil the essential purpose of minimizing the response parameter is
demonstrated in Table 9 and Figure 7.

Table 8. Goals and factor range for optimization of surface roughness and cutting temperature.

Factor Goal
Limit Weight

Importance
Low High Low High

t is in range 0.25 1.25 1 1 3
Vc minimize 86 178 1 1 3
S0 is in range 0.1 0.18 1 1 3
Ra minimize 0.49 1.58042 1 1 4
θ is in range 134.66 272.698 1 1 4
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Table 9. Summary of the values obtained from optimization.

No. t Vc S0 Ra θ Desirability

1 0.305 86.000 0.180 0.496 134.660 0.997 Selected
2 0.264 89.307 0.180 0.494 134.660 0.983
3 0.396 86.000 0.180 0.546 140.719 0.970
4 0.414 86.000 0.180 0.555 141.906 0.965
5 0.445 86.000 0.100 0.573 143.992 0.956
6 0.504 86.596 0.100 0.609 148.422 0.933
7 0.573 89.931 0.100 0.667 155.706 0.887
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3.4. Proposed ANN Model

Various learning algorithms, such as LM, CGP, SCG and BFG, are used to determine
the most appropriate learning algorithm for predicting surface roughness and cutting
temperature. The number of hidden layers were modified to 9, 12, 15, and 20 to achieve the
best possible proximity to the experimental results. For an increasing number of hidden
layers, the response parameter values were calculated using the correlation coefficient (R2)
comprising all four types of learning algorithms. Of all the algorithms, the LM algorithm
was best suited for the training data of the surface roughness and cutting temperature.
At the same time, SCG was the most suitable algorithm for testing data collection. When
testing with cutting temperature experimental data collection, barring the best network
structure for checking the cutting temperature data, i.e., 3-15-2, the best network structure
for the remainder of the data set was 3-9-2, as shown in Figure 8. The proposed ANN
structure showed that it has three neurons (depth of cut, cutting speed, and feed rate) in the
input layer, nine neurons in the hidden layer, and two neurons in the output layer (surface
roughness and cutting temperature). In Table 10, the statistical values of the learning
algorithm responses are given.
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Table 10. Statistical data of the response parameters using different learning algorithms.

Learning
Algorithm

No. of
Neurons Training Data Testing Data

R2 R2

Ra θ Ra θ

LM 9 0.99732 0.99847 0.99643 0.9964
LM 12 0.99612 0.99727 0.9915 0.9927
LM 15 0.99103 0.99218 0.9574 0.9584
LM 20 0.98431 0.98546 0.96487 0.96597
LM 24 0.96356 0.96471 0.97672 0.97773

CGP 9 0.99242 0.99357 0.9943 0.9973
CGP 12 0.99185 0.9928 0.9915 0.9927
CGP 15 0.99151 0.99266 0.99388 0.9948
CGP 20 0.99136 0.99251 0.99467 0.9956
CGP 24 0.99145 0.99260 0.99521 0.9964
SCG 9 0.99137 0.99252 0.99488 0.9974
SCG 12 0.99156 0.99271 0.9944 0.9967
SCG 15 0.99199 0.9929 0.99464 0.9976
SCG 20 0.99161 0.99271 0.99352 0.9975
SCG 24 0.99182 0.99286 0.99351 0.99658
BFG 9 0.99208 0.99328 0.99638 0.9973
BFG 12 0.99215 0.99415 0.99631 0.9971
BFG 15 0.99187 0.99297 0.99563 0.9966
BFG 20 0.99171 0.99276 0.99532 0.9962
BFG 24 0.99181 0.9928 0.99373 0.9947

In this study, 25 experimental data points were arranged for training and testing
purposes. Thus, 72% of the data was used for training purposes, while 28% of the data was
used for testing purposes; 18 datasets were used for training, and the remaining 7 datasets
were used for testing.

3.5. ANFIS Based Predictive Modeling

The hybrid technique is used to examine the test dataset by loading it from the
workspace into ANFIS. For all input parameters and linear type membership functions
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for output membership functions, FIS was formed using the Gaussian mission function
Gaussmf and was shown in Figure 9. The hybrid technique was chosen as the 0 percent
error tolerance and 100 epoch optimization approach was used until there was a minimum
error in a correct result. Membership function and rules generated by FIS for both the
outputs are shown in Figures 10 and 11. The corresponding errors obtained for the surface
roughness and the cutting temperature in the hybrid method were 1.107% and 1.172%,
respectively, using the rule viewer, as shown in Figure 11. With this changing of the inputs,
the resultant output values for the developed hybrid-type ANFIS model was generated.
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3.6. Three-Dimensional Surface Plots

To understand the interaction effects of the input variables on the response factor,
3D surface plots were plotted based on a developed ANFIS-based model, as portrayed in
Figure 12. From the surface views, it was found that a three-dimensional curve represented
the mapping from any of the two input parameters to the output parameter. The Z-axis
represents surface roughness and the cutting temperature, while the X and Y axes represent
two input parameters. All the input parameters could be changed to see how they affected
the output parameter. The surface plot displays the effect of the feed rate on Ra and
θ is negligible compared to the impact of the cutting speed and the depth of cut. This
demonstrates that the increase in cutting speed and depth of cut leads to the rise of Ra and
θ. However, in the case of cutting speed, sudden blips are also noticeable for the output
parameters. Conversely, when large values of cutting speed were used, the effect became
important. Therefore, it can be concluded that cutting speed exhibited the maximum
influence on the response variable (Table 5).
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4. Comparative Analysis
4.1. Comparison of Experimental Data with ANN and ANFIS Predicted Model

Mean absolute percentage error is used to measure the error of the process and was
defined as Equation (1). MAPE calculation for the predicted values is shown in Table 11.

MAPE =
APE

Pj
(1)

where APE = tj−oj
tj × 100; t is the target value, o is the output value, and P is the number

of samples.
The errors between the experimental and predicted values of Ra and θ are 3.95%

and 3.45% when using a model based on ANN. Subsequently, the hybrid prediction
model based on ANFIS was used to detect the deflection of the expected values from
the experimental values to verify the percentage of process errors. MAPE was 1.072%
and 1.172% for surface roughness and cutting temperature when predicting using the
ANFIS model. It could be concluded that the hybrid method predicted the resulting
output much more accurately since the amount of deviation was minimal compared to
the predicted values of ANN. Nonetheless, ANN could also reasonably predict this value.
Figures 13 and 14 show the disparity between the measured and predicted responses
of Ra and Fz, which indicates the model’s efficacy, as the predicted values for various
combinations were closer to those of the experimentally reported readings.

4.2. Life Cycle Assessment and Sustainability Analysis

In the present research study, the empirical models for calculating production time,
energy efficiency, specific cutting energy, and carbon emission were developed using a
bottom-up approach, as presented in previous research [43]. Here, LCA and sustainability
performance analysis, as per the design of the experiment, was presented in terms of
production time, energy efficiency, specific cutting energy, and carbon emission. Figure 15
shows the LCA and sustainability performance outputs for dry and MQL-assisted machin-
ing of Al-based materials using the PCD tool.
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Table 11. MAPE calculation using ANN- and ANFIS-based predictive models.

Run Exp. Result ANN Predicted Result ANFIS Predicted Result

Ra θ Ra θ Ra θ

(µm) (◦C) (µm) (◦C) (µm) (◦C)

1 0.508 135.79 0.49 132.34 0.508 133
2 0.625 152.24 0.611 151.34 0.625 152
3 0.784 173.45 0.654 170.89 0.735 173
4 0.815 177.53 0.8 174.23 0.816 175
5 1.030 206.09 1.025 197.66 1.03 206
6 0.49 134.66 0.523 133.62 0.49 135
7 0.735 165.50 0.687 156.26 0.735 162
8 0.894 186.77 0.882 181.88 0.872 184
9 0.925 190.85 0.911 188.22 0.926 187

10 1.140 219.41 1.09 211.9 1.14 217
11 0.728 162.43 0.644 151.44 0.728 154
12 0.845 178.88 0.836 169.13 0.845 175
13 1.004 200.09 0.956 195.1 0.96 200
14 1.035 204.17 1.043 200.76 1.04 202
15 1.250 232.73 1.2 225.43 1.25 227
16 0.795 170.98 0.77 166.98 0.796 171
17 0.955 192.20 0.946 183.32 0.955 192
18 1.114 213.41 1.034 206.66 1.11 213
19 1.145 217.49 1.126 209 1.15 217
20 1.360 246.05 1.33 237.44 1.36 246
21 1.015 197.62 0.936 188.74 1.004 195
22 1.175 218.84 1.12 211.76 1.155 214
23 1.334 240.05 1.304 222.13 1.33 240
24 1.365 244.13 1.311 237.56 1.34 244
25 1.580 272.69 1.56 264 1.58 273

MAPE 3.95 3.45 1.072 1.172
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Every operation required a determined time to operate the machining process, called
the “actual time” (Tam). Therefore, the total processing time included the idle time, air
cutting time, cutting time, tool change time, and cooling/lubrication time, as calculated in
Equations (2) and (3).

Processing time (Tc) = ti + ta + tc + ttc + t col
lub

(2)

The idle time is the sum of stand-by time, material handling, and setup time.

Idle time (ti) = tsb + th + tsu (3)

The total processing time for each experimental run after calculation is shown in
Figure 15a. It can be seen that MQL-assisted machining takes less time for cutting job
operation in comparison to dry-machining. The minimum process time was determined
at the optimized setting and was 195 s. This was due to the tool having a longer tool life,
which reduced the tool change time. In addition, the MQL cutting fluid helped to reduce
the cutting temperature, dissipate heat from the machining zone, and improve the tool’s
efficiency and life. Similar observations have been made in previous research work [4,46].

The machining energy efficiency (η) was also considered an attribute for LCA and
sustainability and is computed as shown in Equations (4)–(6).

Machining energy e f f iciency (η) =
Machining Energy (Em)

Total Energy Consumed (ET)
(4)

where power consumption can be calculated by various stages of the machine tool, as
shown in Equation (5).

Machine Power (Pm) = Pit + Pat + Pct + Ptct + P col
lub

t (5)
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Energy consumption is expressed in Equation (6):

Energy consumption (Em)

=
∫ ti

0 Pitdt +
∫ ta

0 Pat dt +
∫ tc

0 Pctdt +
∫ ttc

0 Ptctdt

+
∫ t col

lub
0 P col

lub
tdt

(6)

Figure 15b shows the machine energy efficiency in terms of the experimental run for
dry and MQL-assisted machining. It can be seen that the machine energy efficiency varies
in the range of 20–34%. Thus, the reduction in energy consumption and the reduction of
waste energy in machine tools is not the only way to achieve a high energy efficiency. Thus,
the primary objectives were to reduce energy consumption and waste generation. The
results show that MQL-assisted machining has a high energy efficiency compared to dry
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machining because the tool life is longer in MQL-assisted machining, which reduces tool
change. This further reduced stand-by energy utilization in the tool changing phase.

Specific cutting energy (SCE) was also one of the key indicators of sustainability
analysis. SCE is the ratio of total energy consumed to the material removal rate [47]. To
reduce the SCE, either the material removal is increased using the same energy or a reduced
energy consumption is needed for the same material removal, as presented in Equation (7).

SCE =
Em

MRR
(7)

Material removal rate (MRR) is calculated as per Equation (8).

MRR = Vc × f × ap (8)

Figure 15c shows the SCE concerning the experimental run for dry and MQL-assisted
machining. It can be seen that the SCE varies in the range of 2–4 J/mm2. From the results,
it can be seen that MQL-assisted machining has a low SCE compared with dry-machining.
The prime reason for this is dependent on the sharpness of the cutting edge of the tool. In
the case of MQL-assisted machining, the tool cutting edge has a long-life cycle. Therefore,
the tool’s life depends on its cutting edge sharpness, which requires a low cutting force
and energy to perform job operations. Moreover, there is no built-up-edge formation in the
process, which increases the tool life and maintains the cutting edge’s sharpness because
MQL-lubrication disposes of the heat energy generated in the machining zone. As a result,
the long-life sharp edge produced a high material removal, and less tool change, which
reduced cutting power consumption, which reduced the SCE.

Carbon emissions (CO2) can be termed as another significant indicator of sustainability.
The energy consumption indirectly calculates carbon emissions via machine tools. The
total carbon emission (CEtotal) is calculated as per Equation (9).

CEp = CES × (Ei + Ea + Ec + Etc + El) + CFCT × tc

TL
+ CFMQL × QMQL × tc (9)

Figure 15d shows the variations in CO2 concerning experimental run for dry and
MQL-assisted machining. The carbon emissions under the obtained sustainable machining
process were in the range of 200 to 300 kg-CO2. However, it can be seen that the CO2
emissions were comparatively much lower in MQL-assisted machining as compared to dry
machining. This is because, in MQL machining, a very nominal amount of cutting fluid is
used, which generates a smaller carbon footprint. Moreover, less energy consumption is
required in MQL machining to achieve high degree of material removal and a very low
tool change. In this, savings in energy, time, money, as well as for the environment occur,
making MQL a sustainable machining process [43,48–50].

The obtained results are in line with previously published research work. Khan
et al. reported investigating Al2O3-based nano-fluid-assisted MQL machining in terms of
technological and economic factors [51]. Various sustainable parameters, such as energy,
cost, and carbon emission were studied. It has been reported that nano-fluid-assisted
MQL machining reduces the cost per unit of the product and achieves a low carbon
manufacturing goal [52]. Gupta et al. studied the environmental and sustainability aspects
of hybrid-cooling-assisted machining of Ti-6Al-4 V alloy [53]. It was reported that LN2
and MQL were the most effective cooling systems and helped in reducing the production
time, energy, cost, and carbon emissions. Similar to the above-mentioned studies, the
current study also presented that MQL machining reduces production time, energy, cost,
and carbon emissions while processing Al-based alloys. Other sustainability indices, such
as human wellbeing, pollution, vibrations, etc., will be considered in future research.
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5. Conclusions

Current research focuses on the sustainability aspect of machining Al-based alloy
using the PCD tool. At the same time, various machining attributes (surface roughness
and cutting temperature) were also addressed to interrelate the effect of input parameters
on the resultant responses. The addition of Zr in the material preparation significantly
impacted reducing the cutting temperature under MQL cutting conditions. Based on the
research, the following conclusions can be made.

From ANOVA analyses, it is understandable that the cutting velocity was the most
dominant factor, followed by the depth of cut, to induce a preferable value for both the
response parameters, which was also aligned with the SN ratio results attainted. As such,
both methods can give assurances regarding the identification of the dominant factors
affecting the response variables.

The SN ratio response graph demonstrates that, to obtain the optimum surface rough-
ness and cutting temperature, a combination of parameters with a depth of cut of 0.25 mm,
cutting speed of 86 m/min, and feed rate of 0.10 mm/rev was desirable. On the other hand,
DFA showed the optimum surface roughness and cutting temperature, with a combination
of 0.305 mm for the depth of cut, 86 m/min for cutting speed, and a 0.10 mm/rev for
feed rate. Moreover, the highest perceived value of 0.997 could be attained amongst the
92 solutions while setting the mentioned parameters.

The ANN-based model effectively established a link between the input factors and
response variables for the testing dataset and the training dataset. It could also be observed
that the mean absolute percentage error fell to a good range of values of 3.25% to 3.95%
for the response variables. The deviation chart indicated the acceptability of the Sugeno
hybrid ANFIS prediction model, with mean absolute percentage errors of 1.071% and
1.72%, respectively, for surface roughness and cutting temperature, demonstrating the
capacity to predict the performance of the responses more reliably than the ANN model.

MQL-assisted machining has been proven to be a sustainable machining process
as compared to dry-machining. In MQL machining, owing to the very nominal use of
cutting fluid, it generates a smaller carbon footprint. Moreover, significantly less energy
consumption is required in MQL machining to achieve a high material removal and very
low tool changes were needed. In this, there are savings in terms of energy, time, money,
and the environment, making MQL a sustainable machining process.

It appears that the minimum quantity of lubrication could play a prominent role in
maintaining the sustainability aspect of machining of the chosen material. Nevertheless,
before applying this method for frequent industrial applications, more research needs to be
done on the machining behavior considering higher cutting speeds and various nose radii
of the PCD tool.

A limitation of current research work is that other sustainability indexes, such as
human wellbeing, pollution, vibrations, etc., are not covered and will be considered in
future research work.
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