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Abstract: Based on the International Convention for the Control and Management of Ships’ Ballast
Water and Sediments (the Ballast Water Management Convention, or BWM Convention) of the
International Maritime Organization, from 8 September 2017, all ships must have an approved Ballast
Water Management Treatment System (BWTS) to prevent the invasion of alien species through the
discharge of ballast. Generally speaking, the need for an approved BWTS is limited to large vessels,
as they are too large or too expensive for small vessels to install. This study aims to propose a
simple ballast-free approach for small vessels (e.g., tugs, workboats, research vessels) that require
ballast to compensate for the weight loss of fuel when sailing. Our approach involves refitting
the dedicated ballast tank of these small vessels to be drinking water tanks and filling the tanks
with onboard-generated distilled or reverse osmosis water to adjust the stability of the ships. We
assessed our approach using three vessels. Two ships using our proposed method were certified by
the American Bureau of Shipping as containing no ballast water tank, and not being subject to the
BWM Convention. This study provides an environmentally harmless, easy to use, and economical
approach for small vessels to comply with the BWM Convention.

Keywords: ballast; stability; BWM Convention; drinking water; distilled water; reverse osmosis;
invasion; vessel; IMO

1. Introduction

Ocean-going vessels have been built to transit cargoes safely between continents. The
ballast is essential for a ship to trim the draft and maintain stability. The ballast is used to
weigh down a vessel and to lower its center of gravity, to increase its draft to effectively
improve propulsion and maneuverability, and to compensate for weight changes in cargo
load levels or due to fuel and freshwater consumption. Generally speaking, the volume of
the ballast water is almost one-third that of the ship’s deadweight [1]. Insufficient ballast
tends to tip or heel the vessel when heavy seas are encountered, and this may result in
capsizing of the vessel.

Most ballast tanks are located under the seawater level, a location with an abun-
dance of living microorganisms. According to the International Maritime Organization
(IMO), there are about 7000 kinds of marine invasive species traveling around the world’s
oceans [2]. When a ship rolls and pitches, the water in the ballast tank intakes oxy-
gen via the tank air vent. Therefore, some aquatic organisms are comfortably able to
grow and reproduce. After the ship reaches the port of loading to load to its maximum
cargo capacity, the seawater ballast is discharged. Some organisms, including bacteria,
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viruses, microbes, small invertebrates, eggs, cysts, and other larvae, can survive in the
new environment to become invasive, outcompeting native species and multiplying to
pest proportions [3–7]. This becomes harmful to coastal and freshwater ecosystems [3–5].
This issue has been known for around a century. For instance, the Asian phytoplankton
algae Odontella (Biddulphia sinensis) was introduced to the North Sea in 1903 [6]. Ac-
cording to the National Wildlife Federation, in the Great Lakes, more than 185 invasive
aquatic organism species can be found, including zebra mussels and quagga mussels (https:
//www.nwf.org/Our-Work/Environmental-Threats/Invasive-Species/Ballast-Water, ac-
cessed on 1 May 2021). Based on the IMO, the ten most unwanted species in ballast
water are Cholera (Vibrio cholera), Cladoceran Water Flea (Cercopagis pengo), Mitten
Crab (Eriocheir sinensis), toxic algae, Round Goby (Neogobious melanostomus), Zebra Mus-
sel (Dreissena polymorpha), North American Comb Jelly (Mnemiopsis leidyi), North Pacific
Seastar (Asterias amurensis), European Green Crab (Carcinus maenas), and Asian Kelp
(Undaria pinnatifida) [2,8].

To avoid the adverse impacts of the discharge of ballast on aquatic ecosystems, the
IMO adopted the ‘International Convention for the Control and Management of Ships’
Ballast Water and Sediment’, the so-called BWM Convention, in 2014, which entered into
force on 8 September 2017. As of 9 January 2020, 81 countries, representing 96.13% of the
gross tonnage of the world’s merchant fleet, have signed the convention [9]. Accordingly, to
the convention, the countries implementing it have the option to take additional measures,
which are subject to criteria set out in the convention and the IMO guidelines.

After enforcement, all ships with ballast are required to have a ballast water plan, a
ballast water record book, and an International Ballast Water Management Certificate [10].
The IMO has adopted two ballast water management standards: the D-1 and D-2 standards.
Generally speaking, the D-1 standard requires ships to exchange their ballast water in
open seas, at least 200 nautical miles from land and in water at least 300 m deep. The
D-2 standard specifies the species of organisms and the maximum amount allowed to be
discharged. From 8 September 2017, new ships must meet the D-2 standard, and existing
ships must meet at least the D-1 standard. Existing ships undergoing a renewal survey
linked to the International Oil Pollution Prevention Certificate after 8 September 2019,
must meet the D-2 standard. We summarize the timeline of the requirements of the BWM
Convention in Figure 1.
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to be used, as of December 2019. Treatments include filtration, UV radiation, electrolytic
chlorination, deoxygenation, ozonation, chemical injection, heating, etc. All these methods
have been used to kill, remove, or stop the reproduction of a majority of marine organisms
in ballast waters [11,12]. It is worth mentioning that the capacities of the approved systems
have a large range, from 12 to 34,000 m3/h. This is because large vessels, such as cargo
vessels, have to discharge or reload the ballast within 24 h, which is the time it takes to
load or discharge cargo. However, the approved BWTS are often either too large or too
expensive for small vessels to install. The cost for installing a BWTS is estimated to be
between US$0.7 and US$1.1 million [13]. The values estimated by tanker operators were
about US$1.8 million for the Euronav, and between US$15 and US$23 million for the Kuwait
Oil Tanker Co. S.A.k. [14]. Generally, the cost increases with the ship’s size, and varies
with the ship’s type. However, few BWTS have been designed specifically for small vessels,
such as those using ultrasound-based techniques or onboard produced ballast [15,16].

For small vessels, such as tugboats, workboats, and research vessels, ballast is needed
to adjust their stability when their weights are decreased due to oil consumption during
sailing or operation. This study aimed to propose an environmentally friendly ballast-free
method for these small vessels, by changing the existing ballast tanks to drinking water
tanks, and then using the on-site produced drinking water to adjust the ship’s stability.
According to article 3.2 of the BWM Convention, these ships will not be subject to the BWM
Convention as they contain no ballast water tank. We examined our approach with three
vessels with different water makers installed. Figure 2 shows the conceptual framework of
the traditional ballast water management, and our approach.
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Figure 2. Conceptual framework for the (top) traditional ballast water management of large and small vessels, as well as
(bottom) the approach this study proposed for small vessels.

2. Materials and Methods

To examine the (1) feasibility of using water generated by water makers to adjust a
ship’s stability and the differences in using a distilled water maker or RO water maker, and
(2) the quality of the generated water, three vessels owned by Asian Marine Salvage Ltd. in
Taiwan, with lengths and tonnages ranging from 65–68 m and 1714–2057 tons, respectively,
were examined in this study (Figure 3, Table 1). Generally, the studied vessels were multi-
purpose, but were mainly used for marine salvage and towage. The ballast tanks for these
vessels were firstly refitted to be drinking water tanks, connected to a distilled or RO water
maker. To examine if the distilled or RO water maker was able to produce sufficient water
to meet the ballast need, one vessel, Salvage Titan, had a 10 m3/day Japan-made distilled
water maker (the Sasakura Oasis Distilling Plant Type VA-100) installed which was able to
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recycle waste heat from ship’s main engine to generate distilled water. Later, the Salvage
Champion had a China-made RO water maker, ZC-FSHB6, with a size of 1.08 × 0.44 ×
1.6 m, installed. The RO water generator was expected to produce up to 5 m3 of RO water
daily. The Salvage Ace had both the distilled water maker and the RO maker installed.
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Figure 3. The vessels, (a) Salvage Ace, (b) Salvage Champion and (c) Salvage Titan, used in this study. Table 1 shows their
information in detail.

Table 1. Name, length, gross tonnage, maximum ballast water capacity, type of water maker used, Classification Society, ballast-free
certification from ABS, and the navigation after installation of water maker of the three examined vessels.

Name Length
(m)

Gross
Tonnage

(Ton)

Ballast
Capacity

(m3)

Type of Water
Maker

Classification
Society

Ballast-Free
Certification

by Class

Navigation after
Installation till 1

January 2021
(Mile) 2

Salvage Ace 65 1714 571 1 Distillation+ RO ABS
√

> 30,000
Salvage Champion 65 1830 610 1 RO ABS

√
> 30,000

Salvage Titan 68 2057 420 Distillation CCS - > 10,000
1 Estimated as 1/3 of the gross tonnage, 2 Installation for Salvage Titan was done in 2016, while the rest were between 2019 and 2020.

A nine-day continuous operation between the 3 and 13 June 2016 was carried out
to examine the performance of the distilled water maker. To determine the water quality
of the distilled water generated, water samples were taken from the Salvage Titan on
8 November 2016 and the Salvage Ace on 30 May 2019. The water quality of the distilled
water sample taken from Salvage Titan was analyzed by the SGS Far East Ltd., Taiwan.
We analyzed the water quality of the distilled water sample taken from Salvage Ace with
analytical methods, following the Environmental Protection Administration of Taiwan
guidelines. An additional RO water maker was installed in the Salvage Ace and will be
discussed later. The distilled water maker installed in the Salvage Titan and the RO water
maker installed in the Salvage Ace are shown in Figure 4.
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3. Results and Discussion
3.1. Drinking Water System and the Production Rate

To determine if the amount of drinking water produced onboard is sufficient to balance
the weight reduction due to fuel consumption, the weight of loading (sum of fuel, diesel
oil, and drinking water) of the vessels can be modeled as follows:

Wloading = W f uel+diesel oil + Wdistilled/RO water (1)

W f uel+distilled oil = Winitial f uel+distilled oil − R f uel+diesel oil × t (2)

Wdistilled/RO water = Winitial distilled/RO water + Rdistilled/RO water × t (3)

Wdistilled/RO water ≤Wwater tank (4)

where Wloading is the weight of loading of a vessel, W f uel+diesel oil is the weights of fuel and
diesel oil, Wdistilled/RO water is the weight of distilled or RO water, Winitial f uel+distilled oil is
the initial weights of fuel and diesel oil when time (t) is equal to zero, Winitial distilled/RO water
is the initial weight of distilled or RO water when t is equal to zero, Wwater tank is the
maximum storage weight of the water tank, R f uel+diesel oil is the consumption rate of fuel
and diesel oil, and Rdistilled water/RO is the production rate of distilled or RO water.

As an example, the Salvage Titan has fuel and diesel oil carrying capacities of
1100 M/t and 215 M/t, respectively. The fuel consumption is about 15 tonne/day, in-
cluding 0.7 tonne/day consumption by the generator. Therefore, the total maximum
duration for sea passage is about (1100 + 215)/15 = 87.7 days without refilling. When
the vessel has consumed all the fuel, a total of 420 tons of ballast water is needed for
sailing to maintain reasonable stability. That is, the minimum distilled water generation
rate is 420/87.7 = 4.79 tonne/day. The weight of loadings of the Salvage Titan, based on
Equations (1)–(4), are shown in Figure 5.
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weight of fuel and diesel oil. The blue line refers to the weight of water produced by the distilled or RO water maker at the
minimum requirement rate of 4.79 tonne/day. The value is assumed to be zero when time is equal to zero. The red line
refers to the total weight, while the green line is the minimum requirement weight for the ballast system.

Our results showed that the RO water makers of Salvage Ace and Salvage Champion
stably produced five tons of RO water daily. In contrast, the production rate of the distilled
water maker varied with the performance of the vessel’s engine. To understand the
efficiency of the distilled water maker, we conducted a nine-day continuous operation
between 3 and 13 June 2016, in the Salvage Titan. The results showed that the distilled
water production rates reached as high as 7.7 tonne/day (average 6.3 ± 1.2 tonne/day)
in the 9-day sea trial (Figure 6a). Briefly, compared with the minimum requirement of
4.79 tonne/day, the distilled water produced was enough to meet the ballast need with
about 31.5% extra in reserve. However, the rates were still 37% lower than the expected
rate of 10 tonne/day under normal operation conditions. This was because the vessel was
not fully operational, so the distilled water was produced at a reduced capacity.

The principles of the distilled water maker are as follows. The ambient seawater is first
pumped into a vacuum shell. The engine’s jacket cooling water, with the inlet temperature
as high as 80 ◦C, is then transferred by a pipe, passing through a vacuum shell to heat
the seawater. Then, a vacuum pump is used to lower the pressure and boil the seawater
below 80 ◦C. Water vapor forms when the seawater temperature and the pressure are
high and low enough, respectively, for boiling. Meanwhile, the water vapor condenses to
distilled water, and is then collected and transferred to distilled water tanks, serving as
the distilled water ballast system. Figure 6b shows the positive correlation between the
distilled water production rates and the inlet water temperatures. That is, the higher the
inlet water temperature, the higher the distilled water production rate. The regression in
Figure 6b shows that when the inlet temperature was 80 ◦C, the distilled water production
rate equaled 9.65 tonne/day, matching the claimed 10 tonne/day from the manufacturer.
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Based on the water production rate of the distilled water maker varying with the
performance of the vessel’s engine, we installed the RO water maker on both the Salvage
Ace and Salvage Champion. The distilled water maker was different from the RO water
maker as the distilled water maker generated distilled water only when the vessel’s engine
was under operation. The distilled water production rate also was related to the perfor-
mance of the vessel’s engine (the waste heat production rate). In contrast, the RO water
maker worked steadily, without being influenced by the inlet seawater temperature or the
performance of the vessel’s engine. In brief, the rate of distilled or RO water generated
was sufficient to adjust the ships’ stability during sailing. Furthermore, the RO water
maker worked more reliably, with a steadier freshwater production rate than the distilled
water maker.

3.2. Quality of the Distilled or RO Water

To examine the quality of the onboard-produced water, several parameters were
analyzed (Table 2). The drinking water standards of the EU are shown for comparison. As
expected, the examined items for the onboard drinking waters complied with the drinking
water standards of the EU. That is to say, the onboard-produced distilled or RO water
can be used to adjust the ship’s stability, and for drinking. Additionally, the discharge of
water from the drinking water tanks is equivalent to the discharge of drinking water into
the ocean.

Since the distilled water was formed by condensed water vapor, it was expected to
contain no marine organisms and minimal dissolved substances. We expected the RO
process would be able to remove more than 99.9% of contaminants (depending on the
quality of the filter used) which had larger molecular sizes than water molecules. Such
contaminants included dissolved minerals. Filtration is a commonly used method in BWTS,
as it can very effectively screen unwanted species from the ballast [17–19]. Generally
speaking, a pore size of <10 µm meets the requirements of the D-2 standard [8,17,18]. It
is worth mentioning that the pore size of the filter for the RO maker is far below that
size, which meets the D-2 standard. That is, the discharge of the distilled water made
onboard will not cause any environmental impacts due to the invasion of alien species. As
mentioned above, ships that operate locally do not need to install any BWTS. It has been
suggested that such an exemption may cause a secondary spread of invasive species [19,20],
which could be avoided if these ships use the method we have proposed here.

We also needed to address the low pH and salinity of both the distilled and RO
waters. Generally, surface oceans have a pH and salinity of about 8.0–8.2 and 34–35, re-
spectively [21]. Based on our method, the place of discharge of the distilled water or RO
water generally is in the harbor where the vessels are refueling. Therefore, the discharged
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drinking water will float, mix with the ambient seawater, and spread on the sea surface.
Indeed, because the ocean is absorbing an increasing amount of human-released CO2, sea-
water is acidifying [22,23]. Previous studies have found that a decrease of pH in the ocean
reduces the calcification rate of marine organisms which use CaCO3 to build their skeleton
or shells [24,25]. Meanwhile, freshening of the surface seawater, and the consequence of
the capping effect, may cause anoxic bottom water inside the harbor [26]. On the other
hand, increased buoyancy may enhance productivity outside the harbor [27,28]. We expect
that the freshening and acidifying effects would be minimal when the amount of discharge
of distilled or RO water is small, or when the water exchange between the harbor and
seawater outside is strong. Having high dissolved oxygen but low nutrient concentrations,
distilled water or RO water also tends not to cause or enhance coastal eutrophication or
hypoxia. Nevertheless, potential changes of marine ecosystems around harbors due to the
discharge of the distilled or RO water deserve further investigation.

Table 2. Water quality of the onboard-produced distilled and RO waters. The drinking water standards of the EU are shown
for reference.

Test Item Drinking Water Standards of EU [29]
Distilled Water Sample

Salvage Titan Salvage Ace

Temperature (◦C) 36 31.2
Salinity (psu) 0.0 0.1

pH 6.5–9.5 6.7 at 23.5 ◦C 7.41
E. coli 0 CFU/250 mL <10 CFU/100 mL

Phytoplankton 48 cells/L
Zooplankton ND (individual/L)

--------------------------mg/L--------------------------
Dissolved O2 6.9 6.96

Biological oxygen demand 1.4
Chemical oxygen demand 1.6

Total organic carbon 0.60
Mineral grease 0.5
Total phenols 0.01
Chlorophyll-a ND (<0.0003)

Cadmium 0.005 ND (<0.002) ND (<0.0001)
Chromium 0.05 ND (<0.004) 0.0003

Copper 2 0.207 0.0123
Mercury 0.001 ND (<0.0004) ND (<0.0001)

Zinc 2.05 0.156
Lead 0.01 0.00263 0.0029

Nickle 0.02 0.0417
Manganese 0.05 0.0078

Arsenic 0.01 ND (<0.0005)
Ammonia-N 0.5 0.08 0.46

Nitrite-N 0.5 ND < 0.002 0.011
Nitrate-N 50 ND < 0.01 0.128
Phosphate <0.0005 0.015

The low salinity of distilled or RO water has additional advantages to vessels. Rusting
in the ballast tank is one of the most significant problems related to ballast, representing
a costly maintenance requirement. Since the corrosion rate of ballast tanks filled with
distilled or RO water is much lower than those filled with seawater, the service life of ships
could be extended further when our proposed distilled or RO water is used. Furthermore,
by adding an appropriate amount of minerals, the distilled or RO water could be a very
reliable source of drinking water for crews.
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3.3. Cost

As mentioned above, the cost of installing the approved BWTS is estimated to be
US$0.7–US$1.1 million or even higher [13,14]. Such costs are too high for small vessels,
such as tugs. In European seas, the operational cost of treatments for the non-indigenous
species has been estimated to be between 1.6 and 4% of the annual operation cost for a
ship [30]. In addition, a training course for the crew for operating the system is essential.
Here, we calculate the cost of our approach as follows.

In this study, the costs of installing the distilled water maker and the RO water maker
for the studied vessels were around US$30,000 and US$10,000, respectively. This was about
3–4%, or lower, of the cost for large vessels [13,14]. Each of the studied vessels was equipped
with 2 to 3 sets of diesel generators. Each of the generators was capable of generating
320–416 kW. Normally, only one generator set is required for operation, and practically,
only 25% of the generator capacity was utilized. Table 3 shows this information in detail.
The generator of the vessels consumed diesel at rates between 0.70 and 0.91 tonne/day
among the studied vessels, including 24 kg/day for the RO water maker and 72 kg/day
for the distilled water maker. This is equivalent to the prices of US$13.2 per day for the RO
water maker or US$39.6 per day for the distilled water maker, when US$550 per tonne for
the diesel is taken into account. The cost for replacing the filter for the RO water maker
was about US$0.07/tonne of RO water made.

Table 3. The power, diesel consumption rate, and cost of the vessel’s electronic generator and the distilled or RO water maker.

Power of Vessel’s
Generator (kW)

Power of
Water Maker

(kW)

Practical Diesel
Consumption (tonne/day) Cost (US$/day) 3

Name Maximum Practical Use 1 Generator 2 Water Maker Generator Water Maker

Salvage ACE 320 80 2.75 0.70 0.024 385 13.2
Salvage

Champion 320 80 2.75 0.70 0.024 385 13.2

Salvage Titan 416 104 8.25 0.91 0.072 500.5 39.6
1 Assume the power generated is 25% of the maximum capacity of the generator. 2 Calculated assuming that generating 320 kW consumed
0.7 tonne daily. 3 Calculated assuming the price for the diesel as US$550/ tonne.

3.4. Nil Ballast Statement from the Ship’s Classification Society

According to the BWM Convention, since the studied research vessels contain only
drinking water tanks and no ballast tank, they would not be subject to the BWM Convention.
Indeed, the classification society of each vessel takes responsibility for official approval.
Normally, each vessel has a class. The 12 members (each refers to an individual class) of the
International Association of Classification Societies (IACS) covers 90% of the cargo vessels
worldwide, including the American Bureau of Shipping (ABS), Korean Register (KR),
Bureau Veritas (BV), Lloyd’s Register (LR), China Classification Society (CCS), Nippon
Kaiji Kyokai (NK), Croatian Register of Shipping (CRS), Polish Register of Shipping (PRS),
DNV GL AS (DNV GL), RINA, Indian Register of Shipping (IRS), and Russian Maritime
Register of Shipping (RS). In this study, the classes of Salvage Ace and Salvage Champion
were ABS, and the Salvage Titan belonged to CCS (Table 1). Of note is that the Salvage
Ace and Salvage Champion, using our proposed method, were certificated by the ABS as
containing no ballast water tank, and were therefore not subject to the BWM Convention.
Figure 7 shows the statement from the ABS for the Salvage Champion. The Salvage Ace
and Salvage Champion provide an example of how the water maker can be used to achieve
ballast-free management. It is important to state that the classification society of each vessel
has the right to certify that there is no ballast tank onboard the vessel.
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4. Conclusions

Using three vessels as examples, this study proposed an easy and economical ballast-
free management option for small vessels, by refitting the ballast tanks to be drinking
water tanks. Drinking water is generated onboard and fills the tanks to compensate for
the vessel’s weight loss due to fuel consumption. The cost of installing the onboard water
maker is just 3–4%, or even lower, of the cost of the BWTS for large vessels. Our results
suggest that, practically, the RO water maker has a steadier water production rate and
lower cost than the distilled water maker. Using our approach, two vessels were certificated
by the ABS, stating that since there was no ballast tank on board, the vessels would not
be subject to the BWM 2004 Convention. Vessels with similar existing seawater ballast
systems or under construction could be modified with our proposed method to meet the
requirements of the BWM Convention. It is important to note that this method is suitable for
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vessels that undergo stability changes due to oil consumption, which can be compensated
for by distilled or RO water generated onboard. Additionally, the classification society of
the vessel has the right to certify whether the vessel contains a ballast tank.
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