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Abstract: Concrete-filled steel tubular columns have garnered wide interest among researchers due to
their favorable structural characteristics. To attain the best possible performance from concrete-filled
steel tubular columns while reducing the cost, the use of optimization algorithms is indispensable. In
this regard, metaheuristic algorithms are finding increasing application in structural engineering due
to their high efficiency. Various equations that predict the ultimate axial load-carrying capacity (Nu) of
concrete-filled steel tubular columns are available in design codes as well as in the research literature.
However, most of these equations are only applicable within certain parameter ranges. To overcome
this limitation, the present study adopts a recently developed set of equations for the prediction of Nu
that have broader ranges of applicability. Furthermore, a newly developed metaheuristic algorithm,
called the social spider algorithm, is introduced and applied in optimizing the cross-section of circular
concrete-filled steel tubular columns. The improvement of the structural dimensioning under the Nu
constraint is demonstrated. The objective underlying the optimization presented here is to minimize
the CO2 emission and cost associated with the fabrication of concrete-filled steel tubular stub columns.
In this context, the relationships between the cross-sectional dimensioning of circular concrete-filled
steel tubular columns and the associated CO2 emissions and cost are characterized and visualized.

Keywords: concrete-filled steel tubular (CFST) columns; CO2 emission; CO2 minimization; cost
optimization; eco-friendly design; metaheuristic algorithm; spider algorithm

1. Introduction

Increased ductility, ease of construction, and high strength are some of the advantages
associated with concrete-filled steel tubular (CFST) columns. The favorable mechanical
properties of these columns can be attributed to the excellent composite action between
the steel tubes and the core concrete. The confinement effect on the concrete core provided
by the steel tubes leads to substantially increased strength and ductility. Moreover, the
concrete core has a stabilizing effect on the steel casing by delaying its inward buckling [1].
As a further benefit of this novel method, no formworks are needed during construction,
and this significantly reduces the construction time and cost [2]. In addition to the benefits
already mentioned, CFST columns generally exhibit higher strength, stiffness, ductility,
energy dissipation, and better seismic resistance compared to reinforced concrete or steel
columns [3]. In light of their many advantages over conventional technologies, CFST
columns are increasing in popularity all over the world for the construction of bridges and
mid-rise to high-rise buildings. A prominent use case of CFST columns, for example, was
in the construction of the Taipei 101 skyscraper [4].

In recent decades, extensive experimental studies have been carried out on the struc-
tural response of CFST columns under pure compression, combined compression and
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bending, and pure torsion [5–10]. The results of these studies indicate that the overall
behavior of CFST columns depends on the strength of the steel and the core concrete,
the geometric shape of the steel section, the thickness of the steel tubes, and the loading
condition (eccentric versus concentric). Separate research programs have been dedicated
to the study of slender and stub CFST columns. Uenaka et al. [11] conducted an exper-
imental investigation of the mechanical behavior of concrete-filled double-skin tubular
stub columns under axial loading, where the diameters of the inner and outer tubes and
the tube wall thicknesses were the parameters governing the structural behavior. A total
of 12 specimens with various diameter-to-thickness ratios were tested in this study. It
was observed that all specimens failed due to local buckling of the steel tubes and shear
failure of the filling concrete. Perea et al. [12] tested 18 full-scale specimens of slender
CFST columns under axial loading, combined biaxial bending and axial compression, pure
torsion, and combined torsion and compression. In their experiments, the tube diameters
ranged between 5.56 in (14.12 cm) and 12.75 in (32.4 cm), while the column length ranged
between 18 ft (5.5 m) and 26 ft (7.9 m). The results of their study showed that the equations
prescribed in the AISC 360-16 code [13] are conservative in predicting the capacity of slen-
der columns. Currently, available design standards, such as the American Institute of Steel
Construction (AISC 360-16) [13], Eurocode 4 (EC4) [14], Canadian Standards Association
(CSA S16-19) [15], and the Australian Steel Standard (AS 5100) [16], impose restrictions on
the use of high-strength steel (HSS) and high-strength concrete (HSC) in CFST columns. In
this context, relatively little experimental research has been carried out on CFST columns
that use HSS and HSC [17–20]. Few recent studies have focused on the optimization of
cross-sectional shapes of CFST columns and developed more accurate predictive models
to estimate the capacity using various data-driven optimization and machine learning
algorithms [21–24]. Although extensive research has been conducted in the last three
decades on CFST columns, none of the studies have focused on minimizing the cost and
CO2 emission associated with the fabrication of CFST columns.

It is well known that a significant amount of CO2 emission is associated with the
production of concrete and steel. To provide some perspective, the production of 1 kg of
concrete is associated with the emission of around 0.12 kg of CO2 into the atmosphere, while
the production of 1 kg of steel emits 1.38 kg of CO2 [25]. (A detailed list of the CO2 emissions
corresponding to different classes of concrete is given in Table 1). According to Youn
et al. [26], the conventional Portland cement industry is responsible for as much as 5% to
7% of global CO2 emissions. Since concrete and steel are the most widely used construction
materials in the world, due to their strength and durability, there is a growing effort
within the construction industry to reduce their carbon footprint. Therefore, experimental
studies have been carried out to find alternative cementitious materials such as alkali-
activated materials with appropriate mechanical properties which could replace Portland
cement [27].

Table 1. CO2 emission of different concrete classes [27].

Concrete Class C25 C40 C60 C80

CO2 emission [kg/m3] 215 272 350 394

Although the usual process of structural design prioritizes the optimization of the
total structural weight or cost, in line with the commitment of the construction industry
to reducing emissions, the optimization of CO2 emissions has emerged as an important
consideration in structural design. The main goal of this study is to demonstrate the
feasibility of satisfying structural performance requirements of CFST columns while si-
multaneously achieving significant reduction in carbon emissions. In addition to carbon
emission reduction, the cost of fabricating CFST columns was analyzed as an additional
metric to be considered in the structural design. To this end, a novel metaheuristic opti-
mization algorithm, called the social spider optimization, was adopted. As a measure of
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the structural performance of CFST stub columns, the ultimate axial load-carrying capacity
of these members was used, and the applicability of the social spider algorithm to this
structural design problem was evaluated. For different levels of structural performance,
cost and carbon emissions were found to be widely variable, suggesting that the adoption
of effective structural optimization techniques will play a crucial role in the achievement of
eco-friendly and cost-effective design.

2. CO2 Emission and Structural Design

The literature in the field of CFST columns is mainly focused on the development of
effective methods for the accurate prediction of the ultimate axial load-carrying capacity
of these structural members. However, there is a gap in the literature with respect to the
optimal design that minimizes CO2 emissions and the cost of manufacturing CFST columns
while satisfying structural requirements.

Yeo and Potra [28] showed that reinforced concrete frames designed in consideration
of the CO2 footprint can have 5% to 10% lower CO2 emissions compared to a structure
designed in consideration of cost but not emissions. Kayabekir et al. [29] analyzed the
CO2 emission and cost optimization of reinforced concrete cantilever retaining walls. The
volume of concrete was found to have a decisive effect on the CO2 emission and cost
compared to the weight of steel used in construction. Paik and Na [30] investigated the
effect on CO2 emissions of using a voided slab system in place of an ordinary reinforced
concrete slab. They observed a 15% overall reduction in CO2 emissions as a result of
using voided slabs. Although metaheuristic optimization techniques are increasingly being
applied to structural optimization problems, to the best of the authors’ knowledge, to date,
these optimization techniques have not been applied to CFST columns.

Besides the minimization of CO2 emissions, an effort that has gained traction in
recent years, designers also endeavor to minimize the cost of production of structural
members. In the present study, the unit costs of steel and concrete were used as the basis for
calculations to minimize the overall structural cost. The cost of concrete per unit volume
(Cc) and the cost of steel per unit weight (Cs) have been determined based on information
available in the literature. Since the unit costs of steel and concrete may vary between
jurisdictions, the optimization process was repeated for unit costs of concrete and steel in
different jurisdictions representing two different geographic regions. Unit prices in the
Czech Republic were used to represent the Central European region, while unit prices
in Turkey were used to represent the Eastern Mediterranean region. The unit costs of
different classes of concrete in the Czech Republic as reported by Ženíšek et al. [31], listed
in Table 2 were used in this study. The unit cost of steel as reported for the same jurisdiction,
0.81 EUR/kg, was used in our calculations. For Turkey, we used the unit cost of steel as
documented by the Government of Turkey [32]—3.95 Turkish Lira per kg, which converts
to approximately 0.46 EUR/kg. The unit costs of concrete for this jurisdiction are also listed
in Table 2.

Table 2. Unit costs of different concrete classes [31,32].

Concrete Class C25 C40 C60

Cost/m3 [EUR] (Czech Republic) 75.8 91.9 147.7
Cost/m3 [EUR] (Turkey) 27.8 34.7 38.9

3. Axial Capacity of CFST Columns

Various methods have been developed to predict the load-carrying capacity (Nu)
of CFST members, and these methods have been included in design codes such as ACI
318-19 [33] and AISC 360-16 [13]. However, most of these methods are only applicable
when the design variables, such as the yield strength of the steel (fy) and the compressive
strength of the concrete (f′c), are within a certain range. For example, the equations given
in the AISC code can predict the ultimate load-carrying capacity (Nu) of CFST columns
only for fy ≤ 525 MPa and for 21 MPa ≤ f′c ≤ 70 MPa. The proper definition of the ultimate
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load-carrying capacity is another crucial factor that has to be agreed upon in order to ensure
a sound interpretation of the values predicted by the code equations. According to Tao
et al. [34], Uy et al. [35], and Wang et al. [36], Nu is defined as the maximum load if this
load level is reached while the axial strain in the steel casing is less than 0.01. Otherwise,
Nu is defined as the load level that corresponds to a compressive strain of 0.01.

Sakino et al. [37] carried out a comprehensive research program for the experimental
study of CFST short columns. A total of 114 specimens consisting of both hollow and
concrete-filled steel tubes were tested under concentric axial load. The steel tube tensile
strength in these experiments was found to vary between 400 MPa and 800 MPa, whereas
the concrete compressive strength varied between 20 MPa and 80 MPa. The outside
diameter of circular tubes (D) varied between 122 mm and 450 mm, whereas the wall
thickness of the tubes was found to fall within the range of 2.96 mm to 9.45 mm.

The equations for the prediction of Nu developed by Wang et al. [36] consider the
contributions of the steel and concrete parts of the CFST member to the axial load-carrying
capacity separately, as shown in Equation (1).

Nu = Ns + Nc, (1)

Ns = ηsfyAs, Nc = ηcf′cAc, (2)

ηs = 0.95− 12.6f−0.85
y ln

(
0.14D

t

)
< 1, (3)

ηc = 0.99 +

[
5.04− 2.37

(
D
t

)0.04(
f′c
)0.1
](

tfy

Df′c

)0.51

> 1 (4)

In Equation (1), Ns and Nc are the contributions of the steel tube and the concrete core
to the ultimate strength of the member, respectively. In Equation (2), As and Ac are the
areas of the steel tube cross-section and concrete core cross-section, respectively. Under
axial load, the concrete core of the CFST column is confined by the steel tube and this
confinement effect leads to the development of the hoop stresses in the steel tube which
is accompanied by a decrease in the wall thickness. Therefore, the development of hoop
stresses in the steel tube leads to a decrease in the axial load-carrying capacity of the steel
tube. Furthermore, local buckling prior to reaching Nu can also decrease the load-carrying
capacity of the steel tube. The reduction factor ηs in Equation (2) takes into account the
effect of these conditions on the axial load-carrying capacity of the steel tube. In contrast to
the steel tube part, the confinement by the steel tube has a favorable effect on the concrete
core, and the amplification factor ηc takes into account the increase in the load-carrying
capacity of the concrete core due to this confinement effect. The equations for ηs and ηc
obtained through nonlinear regression are given in Equations (3) and (4). These equations
are valid for CFST stub columns with a circular cross-section for certain ranges of the
variables D/t, f′c, and fy, as listed in Table 3. In Equation (3), D and t are the diameter and
wall thickness of the steel tube, respectively, as depicted in Figure 1.

Table 3. Parameter ranges for which Equations (1)–(4) are applicable [36].

Diameter-to-thickness ratio 12 ≤ D/t ≤ 150
Yield strength of the steel tube 175 MPa ≤ fy ≤ 960 MPa

Compressive strength of the concrete 20 MPa ≤ f′c ≤ 120 MPa
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4. Metaheuristic Optimization Methodology

Metaheuristic algorithms are increasingly being applied to many challenging opti-
mization problems. Among those algorithms, the most widespread applications in the field
of engineering are the harmony search algorithm [40,41], particle swarm optimization [42],
artificial bee colony technique [43,44], ant colony algorithm [45], and Jaya algorithm [46].
Alrashidi et al. [47] applied a newly developed metaheuristic algorithm, called social spi-
der optimization (SSO), to the problem of finding the optimum probability distribution
parameters to characterize the wind speeds. SSO was developed by Cuevas et al. [48].
The algorithm takes its name from a spider species called social spider that form colonies
that stay together with a communal web, where the members live in close proximity to
each other [49]. The communal web also acts as a medium of information transmission
between the colony members. The SSO algorithm is based on the principles that govern
the interactions of the social spider colony members. This technique starts with randomly
generating an initial spider population of a certain size. This population consists of female
and male spiders, where the males are further divided among themselves as dominant and
non-dominant males. The population is divided in such a way that the females constitute
65 to 90 percent of the entire population. In this context, a spider is an abstraction for any
vector of design variables that needs to be optimized. In this regard, the population is
generated considering the upper and lower bounds for each one of the design variables
that make up a vector of design variables. Let S be the set of all spiders (design vectors)
and N the total number of spiders in the colony. Let F = {f1, f2, . . . , fNf} and M = {m1, m2,
. . . , mNm} be the sets of female and male spiders, with Nf and Nm being the numbers
of female and male members in the colony, respectively, such that S = F∪M and N = Nf
+ Nm. S is initialized in such a way that the first Nf members of the set are females and
the rest of the members are males, which results in a set S = {f1,f2, . . . , fNf, m1, m2, . . . ,
mNm}. In the current study, we are dealing with CFST column cross-sections, and each
cross-section is defined by 2 design variables: the outer diameter of the circular column (D)
and the wall thickness of the steel tube (t). The yield stress of steel (fy) and the compressive
strength of concrete (f′c) are predefined constants. Each one of these parameters are kept
within the boundaries given in Table 3 throughout the optimization process. Each unique
combination of these parameters corresponds to a spider (design vector) in the population
of spiders. The next step is to rank the population according to their fitness metric. In case
of CFST column optimization, an indication of fitness could be the ultimate strength of the
column, or for a fixed amount of ultimate strength, the design leading to minimum CO2
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emission or cost would be regarded as the best design (fittest spider). To this end, a weight
is assigned to every design vector using Equation (5) [47].

wi =
F(si)− F(sworst)

F(sbest)− F(sworst)
(5)

In Equation (5), F(si) represents the fitness of the i-th colony member, whereas F(sbest)
and F(sworst) represent the fitness values of the best- and worst-performing colony mem-
bers, respectively.

Colony members emit vibrations to transmit various types of information through the
communal web. A vibration, in particular, carries information about the relative distance
and weight of a community member emitting it. Let i,j be the indices of two colony
members where j is the index of the colony member emitting a vibration and i is the index
of the colony member that receives that vibration. The intensity of this vibration is modeled
as in Equation (6).

Ii,j = wj · e−d2
i,j (6)

In Equation (6), di,j is the Euclidean distance between the design vectors si and sj. An
issue with Equation (6) that needs to be addressed is that, for large distances, the expression
for Ii,j quickly converges to zero. In order to prevent this, all distances are scaled in such
a way that the largest distance between any two members is equal to 1. There are three
types of vibrations that play a role in the SSO algorithm. The first vibration type involves
the case where sj is the colony member closest to si with wj > wi. This type of vibration is
also illustrated in Figure 2, where s3 is the closest member to s1, which also has a greater
weight than s1. In the second type of vibration, sj is the fittest member of the colony, and in
the third type of vibration, sj is the female colony member with the smallest distance from
si. An illustration of the first vibration type is shown in Figure 2.
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The importance of spider gender in the SSO algorithm is that the iteration steps
towards an overall better-performing community are determined by the gender. The
female and male spiders exhibit different patterns of attraction and repulsion towards the
other members of the colony, which determines the iteration steps of the SSO algorithm.
There are three types of iteration steps called female cooperative iteration, male cooperative
iteration, and mating iteration. The first and second types of vibrations have an influence
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on the female iteration steps, whereas the third type of vibration plays a role in the male
iteration. The female cooperative iteration formula is given in Equation (7).

fk+1
i =


fk
i + αIi,c

(
sc − fk

i

)
+ βIi,b

(
sb − fk

i

)
+ δ
(
γ− 1

2

)
for ε < PF

fk
i − αIi,c

(
sc − fk

i

)
− βIi,b

(
sb − fk

i

)
+ δ
(
γ− 1

2

)
for ε ≥ PF

(7)

In Equation (7), Ii,c and Ii,b are vibration intensities perceived by fi. Ii,c is emitted by sc,
which is the colony member closest to fi with a larger weight (better performance) than
fi, and Ii,b is emitted by sb which is the best-performing colony member. In Equation (7),
α, β, γ, δ, ε are random numbers between 0 and 1. PF is a predefined threshold value
between 0 and 1 that introduces randomness (in addition to the random movement part
δ
(
γ− 1

2

)
into the iteration in order to better mimic the natural process of attraction or

repulsion between spiders. As an example, setting PF equal to 0.7 would assign a 70%
probability to the attraction of fi towards sc and sb.

The iteration of a male depends on whether it is a dominant or non-dominant male.
The males in a social spider population are classified as dominant and non-dominant
depending on their weights (performance). To perform this classification, the males in the
set M are sorted according to their weights from best to worst. Afterwards, all males that
perform better than the median member (located in the middle of the set) are labeled as
dominant, whereas the rest of the males are labeled as non-dominant. The index of this
median male member in the set S is Nf + m. The iteration formula for males is given in
Equations (8) and (9), where WMM is the weighted mean of the male population and Sf is
the nearest female to mi. The male iteration moves the dominant males towards the nearest
female in the population, and the non-dominant males towards the weighted mean.

WMM =
∑Nm

h=1 mk
hwNf+h

∑Nm
h=1 wNf+h

(8)

mk+1
i =

 mk
i + αIi,f

(
sf −mk

i
)
+ δ
(
γ− 1

2

)
for wNf+i > wNf+m

mk
i + α

(
WMM−mk

i
)

for wNf+i ≤ wNf+m

(9)

The final step in the update of a population is the mating iteration by which potentially
new members are created that replace the old members. Depending on their performance,
these new members are either discarded or they replace the worst-performing members
in the population. For this purpose, a new variable called the radius of mating (r) is
introduced which defines an area around a dominant male such that the females within
this area and the dominant male are involved in mating. The radius of mating is computed
as in Equation (10), where dvj

high and dvj
low denote the upper and lower bounds of the

j-th design variable, with n being the total number of design variables.

r =
∑n

j=1

(
dvhigh

j − dvlow
j

)
2n

(10)

The newly generated members snew have their properties assigned based on the
weights of the male and females involved in the mating. In this process, those participants
with greater weights also have greater influence on the properties of the new member. In
case there are no females within the mating radius of a dominant male, no mating takes
place in that iteration step.
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Computational Procedure

The first step in this process is to generate a colony (Algorithm 1) of a certain size
which is divided into females and males. This process is described with the following
pseudocode where low and high are the lower and upper bounds of a particular design
variable and rand ∈ (0, 1):

Algorithm 1: Pseudocode for the initialization of the spider colony.

For i = 1 to N (number of colony members)
For j = 1 to n (number of design variables)

Spiders[i,j] = low + (high—low) (rand)
Check if Nu ≥ Nu,min

Repeat until Nu ≥ Nu,min

Since the goal of the optimization is to find the cross-section dimensions that minimize
the CO2 emission or the cost that also satisfies certain requirements for the ultimate
load-carrying capacity, the random generation of design variables continues until the
requirement for the ultimate load-carrying capacity is satisfied. The connectivity of the
spiders inside a colony are described through the distances and perceived vibrations
between any two colony members (Algorithm 2). Since the intensity of a vibration created
by a colony member depends on its weight, the weights of each spider have to be computed
and stored in an array. The creation of the weight array, the distance matrix, and the
vibration matrix can be done as follows:

Algorithm 2: Connectivity of the spiders.

For i = 1 to N
For j = 1 to N

Distance matrix[i,j] = Distance(spiders[i], spiders[j])
Scaled distance matrix = Distance matrix/max (Distance matrix)

For i = 1 to N
For j = 1 to N

vibration matrix[i,j] = distance(spiders[i], spiders[j])

Once the distance and vibration matrices are established, the female members of the
colony (the first Nf members of the array spiders) make their iterative move (Algorithm 3),
which is a combination of a movement towards or away from the best-performing member
of the colony, the nearest better-performing member of the colony, and a random movement.

Algorithm 3: Iteration of the female spiders.

Function move females
Generate α, β, γ, δ, ε ∈ (0, 1)
For i = 1 to Nf

Find the best performing and the nearest better performing members
If ε < 0.7 then apply attraction
Else apply repulsion

Compute cross-section area and Nu
Repeat until Nu ≥ Nu,min

The next step is the movement of the dominant males towards the nearest female in
the colony and the movement of the non-dominant males towards the weighted mean of
the male population (Algorithm 4). To simulate this movement, first the males have to be
sorted in decreasing order with respect to their weights. Afterwards, the males are divided
such that all males with an index smaller than the median member are dominant and the
rest of the males are non-dominant.
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Algorithm 4: Iteration of the male spiders.

Function move males
Compute the weighted mean of the males
Sort the males and find the median male
For i = Nf to N

If Spiders[i] is dominant then find the nearest female to Spiders[i]
Apply attraction towards the nearest female
Else move towards the weighted mean of the male population

After each movement, whether the updated design variables are within the allowable
range or not has to be controlled (Algorithm 5).

Algorithm 5: Control of the variable ranges.

Function control variable ranges
For i = 1 to N
For j = 1 to n

If Spiders[i,j] violates the boundaries then
Spiders[i] = randomly generated member
Compute area and Nu for the new member
Repeat until Nu ≥ Nu,min

The last stage of the SSO iteration is the mating stage (Algorithm 6). Here, the
spider with the greatest weight inside the mating set also has the highest probability of
influencing the properties of the newly generated spider. A flow-chart of the entire social
spider algorithm can be seen in Figure 3.

Algorithm 6: Mating.

Function Mating
For m = Nf + 1 to N

If Spiders[m] is a dominant male then Create empty set for mating
For f = 1 to Nf

If Distance matrix [m,f] ≤ radius of mating
Add Spiders[f] to mating set

Compute the weight distribution inside the mating set
Generate new member with the properties of the best spider in the mating set

If weight of the new spider > the weight of the worst spider then
Replace the worst spider with the new spider
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5. Results and Discussions

In this section, the optimization process of the CO2 emission and cost for circular CFST
stub columns is presented for C25, C40, and C60 concrete classes. For each class, different
threshold values for the ultimate axial load capacity (Nu,min) are set, and these values are
used as one of the optimization constraints in addition to the dimensional constraints.
For each concrete class, a value in the same order of magnitude as the ultimate axial load
capacity of a specimen with the dimensions in the midrange of the values tested in the
experimental study of Sakino et al. [37] was used as the threshold value for Nu. The study
of Sakino et al. [37] was also used as a reference to determine upper and lower bounds for
the diameter and wall thickness such that in the optimization, the outer diameter is varied
in the range [122 mm, 450 mm] and the wall thickness is varied in [2.96 mm, 9.45 mm].
Using the social spider algorithm, the outer diameter and tube thickness of the member is
optimized while keeping Nu above the threshold value at all times. As the optimization
objectives, the CO2 emission and cost associated with the production of a CFST column of
unit height are selected.

5.1. Optimization of the CO2 Emission

Figure 4 shows the optimization process at four different stages after 25, 50, 250,
and 500 iterations. In Figure 4, the ultimate axial load-carrying capacity is kept above
6000 kN. A convergence of the minimum CO2 emission to the vicinity of 47 kg could be
observed approximately after 350 iterations, which can be confirmed by Figure 4d. An
optimum diameter/thickness pair of (273.79 mm, 2.96 mm) was obtained corresponding
to a CO2 emission of 47.18 kg (Table 4) through the optimization process, using the social
spider algorithm. The diameter and wall thickness values listed in Table 4 are the limit
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values to which these parameters converged in the optimization process. Figure 4 shows
that the most significant improvements during the optimization are observed in the first
30 iterations. After that initial phase, the optimization process continued for a total of
500 iteration steps, although only minor improvements are observed in this second phase.
In the last 200 steps no further improvements could be observed, which is an indicator of
convergence to an optimum (D,t) pair. In this (D,t) pair, the value of the wall thickness
is equal to the lower bound for this parameter, whereas the diameter is 224% of its lower
bound and 61% of its upper bound. The same procedure has been repeated for a total of six
different levels of Nu,min ranging between 6000 kN and 1000 kN, the results of which are
listed in Table 4. The visualization of these results for Nu,min = 5000 kN, 4000 kN, 2000 kN
are shown in Figures 5–7, respectively.
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In Figure 5, where the load capacity requirement was lowered to 5000 kN, in addition
to the minimum CO2 emission at each social spider iteration, the average CO2 emission of
the entire population has also been visualized in red color after 25, 50, 250, and 500 iterations.
It can be observed that approximately 200 iterations were sufficient to bring the entire
population to the optimum level for Nu,min = 5000 kN and Nu,min = 4000 kN. A comparison
of Figures 4 and 5 reveals that lower CO2 emission levels could be achieved in Figure 5 by
decreasing the Nu requirement from 6000 kN to 5000 kN. The lowest level of CO2 emission
in 500 social spider iterations for Nu,min = 5000 kN was 44.08 kg, which corresponds to
a 6.57% reduction of CO2 emission by a 16.7% reduction of the load-carrying capacity
requirement. The optimum (diameter, wall thickness) pair for this lower load-carrying
capacity requirement was (218.46 mm, 4.36 mm). A comparison to the optimum cross
section for a higher load capacity shows that a lower diameter and higher wall thickness
was more favorable in the optimization case with lower load capacity requirement.
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Figure 5. Optimization of CO2 emission for Nu,min = 5000 kN. f′c = 60 MPa.

The optimization results for the reduced values of Nu,min are visualized in Figure 6
and 7 for Nu,min = 4000 kN and Nu,min = 2000 kN, respectively. A more comprehensive
list of the optimum combinations of diameter and wall thickness can be found in Table 4.
For f′c = 60 MPa, as the Nu,min value decreases, the D/t ratio associated with the optimum
design also decreases, except for the transition from Nu,min = 4000 kN to Nu,min = 3000 kN
where the D/t ratio has a jump from 26.2 to 59.6. The results of the optimization process
repeated for f′c = 40 MPa and f′c = 25 MPa are also listed in Table 4. A summary of the
visualizations can also be found in Figure 8 for the first 50 social spider iterations, where
the iteration steps corresponding to the different values of Nu,min are shown with different
colors.
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Table 4 provides a list of the cross-sectional dimensions associated with the minimum
CO2 emission for different classes of concrete and for different ultimate load-carrying
capacity requirements. Within each concrete class as the load-carrying capacity requirement
is lowered, the optimized cross-sections tend to have smaller outer diameters. On the
other hand, the wall thicknesses show a more irregular pattern. A clear correlation can
be observed between the load-carrying capacity and the CO2 emission such that lower
load-carrying capacities are associated with lower CO2 emissions. In general, a decrease
in the D/t ratio also tends to lower the CO2 emissions except for the cases where the wall
thickness significantly decreases. The wall thickness of 2.96 mm, which is the lower bound
for the applicability of the equations used to calculate Nu in this work, occurs in Table 4
as the optimum wall thickness of eight configurations which indicates that smaller wall
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thicknesses are more favorable in terms of CO2 emission. Figure 9 shows the average
of the six CO2 emission values corresponding to each concrete class for C25, C40, and
C60 concrete classes. From the variation of these average values, it can be inferred that
using a concrete class with lower compressive strength is also conducive to lower carbon
emissions.
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Table 4. Optimum configurations based on CO2 emission.

f′c [MPa] D [mm] t [mm] D/t Nu,min [kN] CO2 [kg]

60 273.79 2.96 92.5 6000 47.18
60 218.46 4.36 50.1 5000 44.08
60 163.23 6.24 26.2 4000 39.79
60 176.47 2.96 59.6 3000 25.59
60 134.13 3.01 44.6 2000 18.03
60 122.42 3.21 38.1 1000 15.79
40 264.27 3.42 77.3 6000 44.67
40 244.52 2.96 82.6 5000 36.65
40 211.59 3.00 70.5 4000 30.46
40 176.44 2.96 59.6 3000 23.81
40 131.19 3.20 41.0 2000 17.36
40 122.55 2.98 41.1 1000 14.95
25 267.28 3.27 81.7 6000 41.03
25 244.48 2.96 82.6 5000 34.10
25 212.37 2.96 71.8 4000 28.43
25 176.47 2.96 59.6 3000 22.50
25 134.85 2.96 45.6 2000 16.20
25 124.05 8.12 15.3 1000 14.36
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For each new configuration obtained during the optimization process, there is a
corresponding axial load-carrying capacity Nu which is an indicator of the structural
performance. Figure 10 shows the variation of this value for the concrete classes C60 and
C40. The occasional rises and falls in the value of Nu in Figure 10 indicate that, depending
on the proportions of steel and concrete in the CFST column, it is possible that some
configurations with smaller CO2 emission also have better structural performance.
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5.2. Optimization of the Cost

A similar process was applied to the cost optimization as well. In order to obtain the
structural dimensions that deliver the lowest cost while maintaining a certain load-carrying
capacity, the social spider algorithm was applied to CFST columns with a unit height
for concrete compressive strength values ranging between 25 MPa and 60 MPa and the
ultimate load-carrying capacities ranging from 1000 kN to 6000 kN. Figures 11 and 12
show the minimum and average costs throughout the social spider optimization process
for f′c = 60 MPa and f′c = 25 MPa, respectively. In each one of these figures, the optimization
process is visualized at four different levels of the minimum ultimate load-carrying capacity
requirement. The number of iterations included in the visualizations was adjusted so that
the parts of the optimization after the convergence were mostly omitted. This procedure
has been repeated considering the unit costs in two different countries (Czech Republic
and Turkey). While Figures 11 and 12 depict optimization related to the unit prices in the
Czech Republic, Figures 13 and 14 are based on the unit prices in Turkey. A more detailed
list of the results related to cost optimization can also be found in Tables 5 and 6 for Czech
Republic and Turkey prices, respectively.
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From Tables 4–6 it is observed that as the Nu,min value decreases, so does the D/t
ratio in both cost and CO2 optimization. However, there are certain differences in the
speed of this decrease. In the case of CO2 optimization, an average decrease of 30.2%
is observed between two consequent Nu,min levels. This percentage of decrease is 21.5%
in the cost optimization with Czech unit prices and 16.6% in the cost optimization with
Turkish unit prices. Furthermore, in cost optimization, a smaller D/t ratio was always
associated with lower cost, except for one case with the lowest load-carrying capacity
requirement. An observation of the values in Tables 5 and 6 shows that the concrete
compressive strength and the cost associated with the production are correlated. In order
to visualize this correlation, for each concrete class the average cost associated with this
concrete class has been calculated and plotted in Figure 15, where the average costs in
the Czech Republic and Turkey are plotted in blue and red colors, respectively. It can
be seen that, as the concrete compressive strength increases, so does the average cost of
producing the columns without added benefits of greater load-carrying capacity. Another
inference that can be made from Tables 5 and 6 is that lowering the requirement for the
load-carrying capacity results in smaller outer diameters and lower cost, whereas the wall
thickness is not necessarily decreasing with the associated load-carrying capacity. Figure 16
shows the structural performance as it varies throughout the cost optimization process.
Figure 17 provides an overall idea about the variation of Nu with respect to cross-sectional
dimensions.

Table 5. Optimum configurations based on cost (Czech Republic).

f′c [MPa] D [mm] t [mm] D/t Nu,min [kN] Cost [EUR]

60 268.32 3.22 83.33 6000 25.11
60 243.00 3.03 80.20 5000 21.14
60 212.37 2.96 71.75 4000 17.41
60 176.47 2.96 59.62 3000 13.70
60 134.90 2.96 45.57 2000 9.78
60 137.07 6.88 19.92 1000 8.66
40 273.80 2.96 92.50 6000 21.30
40 238.35 3.26 73.11 5000 19.3
40 212.49 2.96 71.79 4000 15.55
40 176.47 2.96 59.62 3000 12.43
40 134.91 2.96 45.58 2000 9.05
40 125.9 8.26 15.24 1000 8.38
25 274.02 2.96 92.57 6000 20.41
25 244.48 2.96 82.60 5000 17.76
25 211.93 2.98 71.12 4000 15.05
25 180.74 2.97 60.86 3000 12.43
25 134.90 2.96 45.57 2000 8.84
25 123.01 3.23 38.08 1000 7.90
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f′c [MPa] D [mm] t [mm] D/t Nu,min [kN] Cost [EUR]

60 272.18 3.04 89.53 6000 11.49
60 244.47 2.96 82.59 5000 9.9
60 212.37 2.96 71.75 4000 8.38
60 161.20 3.89 41.44 3000 7.70
60 134.91 2.96 45.58 2000 4.97
60 126.37 2.97 42.55 1000 4.44
40 268.64 3.20 83.95 6000 11.58
40 244.47 2.96 82.59 5000 9.71
40 212.37 2.96 71.75 4000 8.24
40 176.47 2.96 59.62 3000 6.66
40 134.91 2.96 45.58 2000 4.91
40 125.78 3.22 39.06 1000 4.40
25 273.79 2.96 92.50 6000 10.72
25 244.47 2.96 82.59 5000 9.41
25 212.37 2.96 71.75 4000 8.01
25 176.47 2.96 59.62 3000 6.50
25 129.60 3.31 39.15 2000 5.10
25 122.89 3.11 39.52 1000 4.32
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6. Conclusions

In this study, the application of the social spider algorithm to the cross-sectional
optimization of CFST columns has been demonstrated. The ultimate axial load-carrying
capacity of the columns was introduced as a design constraint such that only the designs
leading to a certain level of load-carrying capacity are considered. Among the various
equations in the literature that predict the axial load-carrying capacity of CFST columns,
the set of equations developed by Wang et al. [7] was adopted for the calculation of Nu.
This set of equations was considered to be the most suitable because of the wide ranges of
parameters to which the equations are applicable. The design optimization was carried
out for CFST stub columns with unit height, considering the CO2 emission and cost in two
different jurisdictions as the quantities to be minimized. The key outcomes of this study
are listed as follows:

• The results of the optimization showed that, on average, using concrete with lower
compressive strength is favorable in terms of both CO2 emissions and cost.

• In general, having a smaller wall thickness for the steel casing has a favorable effect
on both the CO2 emissions and the cost since the optimum wall thickness is near the
lower bound for this variable at most load levels.

• In the majority of the investigated cases, a decrease in the outer diameter and the D/t
ratio was also associated with a decrease in cost and CO2 emissions.

• Designs that lead to lower carbon emissions also tend to have a lower cost.

Further research in this field can be carried out on concrete-filled columns with
rectangular cross-sections. Additionally, structures with uniform material properties such
as steel columns could be optimized with respect to their load-carrying capacities, cross-
sectional dimensions, or slenderness properties. Furthermore, the number of variables
affecting the load-carrying capacity as well as the number of constraints could be increased.
Future studies can also include the unit prices of additional jurisdictions in the optimization.
The scope of the optimization could also be extended from stub columns to include slender
columns as well. Moreover, a sensitivity analysis could be carried out encompassing the
variables affecting the structural performance.
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by C.C., K.I., G.B. and M.B. The figures were prepared by C.C., K.I., G.B. and M.B. supervised the
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41. Bekdaş, G. Harmony Search Algorithm Approach for Optimum Design of Post-Tensioned Axially Symmetric Cylindrical
Reinforced Concrete Walls. J. Optim. Theory Appl. 2014, 164, 342–358. [CrossRef]

42. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the 1995 IEEE International Conference on Neural
Networks, Perth, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948.
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