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Abstract: Four sustainable materials including a recycled polypropylene blend, polybutylene adipate
terephthalate, and two grades of polylactic acid are compared to a reference isotactic polypropylene.
Tensile specimens were produced using a two-cavity, hot runner mold with fully automatic cycles
per standard industrial practices to investigate the effect of melt temperature, injection velocity, cycle
time, and screw speed on the mechanical properties. Multiple regression and principal component
analyses were performed for each of the materials. Results indicated that all the materials were
readily processed using a hot runner, and the mechanical properties exhibited minimal variation.
To the extent that losses in mechanical properties were observed, the results indicated that the losses
were correlated with thermal degradation as independently characterized by thermal gravimetric
analysis. Such losses can be minimized by reducing melt temperature and cycle time, leading to a
reduction of the environmental impact of injection molding processes.

Keywords: bioplastics; multivariate analysis; injection molding; thermal degradation

1. Introduction

Increasing environmental concerns require a formal analysis of sustainability at the
product design phase to assure appropriate material selection and use [1]. Many firms seek
to support a circular economy [2] in which the industrial economy is regenerative by design.
A literature review [3] of eco-design indicated that the most common best practices included
post-use recycling (98%) and pre-use eco-design (93%), followed by design for re-use (93%),
repair (44%), durability (35%), refurbishing (30%), disassembly (26%), remanufacture (23%),
and repurpose (2%).

There are several performance metrics for eco-design [4], with two of the most common
being “embodied energy” and “carbon footprint”. Ashby [5] defined embodied energy
as the energy consumed to produce 1 kg of material. By comparison, carbon footprint
represents the total direct and indirect CO2 given a product, process, or activity over its
entire lifetime [6]. While energy consumption during product use is a significant concern
in the transportation industries, Rydh et al. [7] found that the emission of carbon dioxide
in product design and manufacturing is practically linear with the embodied energy of the
consumed materials; the same correlation between embodied energy and carbon footprint
was also evident in many of the case studies described by Morini et al. [4].

Sustainability 2021, 13, 8102. https://doi.org/10.3390/su13148102 https://www.mdpi.com/journal/sustainability

https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0002-1166-4043
https://orcid.org/0000-0002-9640-8179
https://orcid.org/0000-0001-8629-0739
https://doi.org/10.3390/su13148102
https://doi.org/10.3390/su13148102
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/su13148102
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su13148102?type=check_update&version=2


Sustainability 2021, 13, 8102 2 of 23

Designers and manufacturers of plastic products can maximize sustainability by (1) se-
lecting materials to minimize the embodied energy of their products, and (2) designing
their products for recycling. For example, bioplastics such as polylactic acid (PLA) and
poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) may have low environmental im-
pact compared to traditional thermoplastics [8–10]. At the same time, the use of recycled
resins and especially blends of polyethylene (PE) and polypropylene (PP) are of great
interest [11–13]. However, both bioplastics and recycled blends are sometimes considered
low-performance materials with respect to their mechanical properties. Specifically, many
bioplastics have inferior brittleness, thermal stability, melt strength, processing robustness,
and other structural properties compared to traditional thermoplastics [14]. Meanwhile,
mechanical properties of recyclates are also of potential concern due to the additional heat
cycle(s) in processing and sensitivity to possible contamination [15].

This article investigates the process:property relations of different commercially avail-
able bioplastics and a recycled PE/PP blend in a pilot production environment using an
instrumented two-cavity, hot runner injection mold. The process settings are set accord-
ing to ordinary molding practices, typical of a plastics manufacturer using commodity
polypropylene. As described, a design of experiments is implemented to test the robustness
of the candidate materials across a wide range of operating conditions to specifically in-
vestigate the robustness of the material with respect to processing temperatures, residence
times, and shear rates. The mechanical properties of the molded samples are tested, and a
set of principal component analyses are performed to characterize the process:property
relations. Propagation of variance is then applied to estimate the expected range of me-
chanical properties in the commercial use of the sustainable plastics. The results are highly
encouraging insomuch as they indicate that the bioplastic and recycled materials are viable
alternatives to the reference polypropylene.

2. Materials and Methods
2.1. Materials Selection and Overview

As summarized in Table 1, the investigated materials were selected to approximate a
reference commodity material, Pro-fax PD702 (LyondellBasell, Houston, TX, USA). This ref-
erence material is an isotactic polypropylene (referred to as iPP) homopolymer with a melt
flow rate of 35 g/10 min per ASTM D1238, which is typically used in injection molding of
consumer products, packaging, and other applications. The alternates included a recycled
polypropylene/polyethylene (referred to as rPP), a biodegradable polyester (polybutylene
adipate terephthalate, PBAT), and two polylactic acid polymers supplied by NatureWorks
and Vegeplast (respectively referred to as PLA-N and PLA-V). The suppliers and grades
were provided with recommended melt temperatures and the representative melt flow
rates and mechanical properties.

Table 1. Overview of investigated materials including recommended melt temperature and mechanical properties.

Item iPP rPP PBAT PLA-N PLA-V

Supplier LyondellBasell KW Plastics Bio-Fed NatureWorks Vegeplast
Grade Pro-fax 702 KWR621-20 M-Vera GP1025 W3052D Flex-AN 29

Recommended melt temperature, ◦C 210 200 190 205 180
Melt for rate, g/10 min 35 20 16 14 50

Onset melt temperature, ◦C 156 153 163 163 144
Peak degradation temperature, ◦C 304 350 358 350 280

y1: Mean; SD tensile modulus, MPa 997; 44 1130; 66 6274; 89 2703; 62 2298; 191
y2: Mean; SD ultimate stress, MPa 16.04; 0.57 15.66; 3.15 63.17; 1.93 54.69; 2.86 12.97; 6.68

y3: Mean; SD elongation @failure, % 56.44; 8.36 52.72; 2.43 2.04; 0.14 5.95; 1.39 34.3; 14.15
y4: Mean; SD toughness, MJ/m3 8.92; 1.31 8.14; 1.67 0.97; 0.08 2.67; 0.80 5.13; 4.50

Inspection of the data in Table 1 suggests that the materials are quite similar with
respect to their processing conditions. The mechanical properties of the iPP and rPP are
also quite similar, though all the bioplastics tend to exhibit higher tensile modulus and
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more brittle behavior. The thermal history of a specimen affects the initial yielding behavior
of the thermoplastic materials, but not the plastic flow in the post-yield regime. For the
post-yield regime, the deformation rate and temperature are relevant control parameters
for the stress.

2.2. Mold Design and Processing Methodology

A two-cavity hot runner mold was supplied by Milacron Mold-Masters (Georgetown,
ON, Canada) and used to injection mold ASTM tensile bars having a nominal thickness of
3.18 mm, gage length of 75 mm, and gage width of 12.7 mm. Hot runner molds maintain the
plastic in the feed system in a molten state. Hot runner molds have significant potential
advantages with respect to sustainability because they (1) avoid the material waste associ-
ated with molding of the runners and (2) allow for cycle time improvement on the order of
100% compared to cold runner molds, since they do not need to plasticate or cool material
in the feed system [16]. However, the use of hot runner molds introduces longer residence
times of the material at elevated temperatures, given the additional melt volume in the
feed system. These longer residence times are potentially detrimental to bioplastics that
are known to be more susceptible to thermal degradation [17].

The layout design of the hot runner mold is shown in Figure 1, with the two tensile
specimen cavities indicated in red. The hot runner mold connects the nozzle of the molding
machine to the mold cavities via a heated sprue. The sprue connects to the center of a
straight manifold that then directs the melt to hot runner nozzles that connect to a gate in
each of the two cavities located in the grip section of the tensile specimens. Given potential
degradation concerns, the volume of the melt in the feed system was estimated as three
times the volume of the cavities based on visual inspection during material and accompa-
nying color changes. Approximately ten cycles were estimated to be required to change
the bulk of the material in the feed system, and 30 molding cycles were performed prior to
acceptance of specimens at start-up and between material changes.

Sustainability 2021, 13, x FOR PEER REVIEW 4 of 25 
 

 
Figure 1. Layout design of hot runner, two-cavity mold for producing ASTM tensile specimens. 

The effect of processing conditions on potential material property degradation was 
investigated by varying parameters that directly affect the melt temperature (i.e., hot run-
ner temperature and plastication speed) and those that affect the residence time (i.e., in-
jection velocity and cooling time). The hot runner temperature, plastication speed, and 
cooling time were each specified with two levels, while the injection velocity was specified 
with four levels as reported in Table 2. A full factorial design of experiments (DOE) was 
implemented wherein the resulting DOE had 2×2×2×4 or 32 runs as specified in Table A1. 
The DOE was repeated for each of the five materials with the same processing parameters 
except for the hot runner and barrel temperatures. Specifically, the hot runner/barrel tem-
perature was purposefully set to a broader range for iPP (between 180 and 220 °C) to in-
vestigate possible degradation at higher temperatures. Otherwise, the hot runner and bar-
rel temperatures were set at 180 and 200 °C per material supplier recommendations. The 
molding was operated in fully automatic mode with other process parameters held con-
stant, including a mold coolant temperature of 40 °C, packing pressure of 15 MPa, a pack-
ing time of 8 s, and a mold open time of 5 s. 

Table 2. Factors and level settings implemented for the full factorial design of experiments. 

Level  
Setting 

𝒙𝟏: Hot Runner and  
Barrel Temperature  

(°C) 

𝒙𝟐: Cooling  
Time  

(s) 

𝒙𝟑: Plastication  
Speed  

(% Maximum) 

𝒙𝟒: Injection  
Velocity  

(ml/s) 
1 180 20 25 9.25 
2 200 (or 220 for iPP) 40 75 18.5 
3    39 
4    78 

To minimize sources of external variability, polymers were taken from single batches. 
Resins were pre-dried before molding at 170 °C for 4 h and then directly transferred into 
the molding machine using a sealed hopper. To avoid resin contamination, PP was purged 
through at process start-up and shut down, with 60 automatic molding cycles performed 
and the resulting moldings discarded at every production start-up. To guarantee stability 
of the molding process and of the data acquisition setup, 30 molding cycles were dis-
carded for each DOE run before collecting the first part. Then 30 parts were collected for 
each DOE run on a fully automatic cycle with no interruptions. The response variables 
considered in the later analysis included the melt temperature (measured via an intrusive 

Figure 1. Layout design of hot runner, two-cavity mold for producing ASTM tensile specimens.

The effect of processing conditions on potential material property degradation was
investigated by varying parameters that directly affect the melt temperature (i.e., hot runner
temperature and plastication speed) and those that affect the residence time (i.e., injection
velocity and cooling time). The hot runner temperature, plastication speed, and cooling
time were each specified with two levels, while the injection velocity was specified with four
levels as reported in Table 2. A full factorial design of experiments (DOE) was implemented
wherein the resulting DOE had 2 × 2 × 2 × 4 or 32 runs as specified in Table A1. The DOE
was repeated for each of the five materials with the same processing parameters except for
the hot runner and barrel temperatures. Specifically, the hot runner/barrel temperature was
purposefully set to a broader range for iPP (between 180 and 220 ◦C) to investigate possible
degradation at higher temperatures. Otherwise, the hot runner and barrel temperatures
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were set at 180 and 200 ◦C per material supplier recommendations. The molding was
operated in fully automatic mode with other process parameters held constant, including a
mold coolant temperature of 40 ◦C, packing pressure of 15 MPa, a packing time of 8 s, and
a mold open time of 5 s.

Table 2. Factors and level settings implemented for the full factorial design of experiments.

Level
Setting

x1: Hot Runner and
Barrel Temperature (◦C)

x2: Cooling
Time (s)

x3: Plastication
Speed (% Maximum)

x4: Injection
Velocity (mL/s)

1 180 20 25 9.25
2 200 (or 220 for iPP) 40 75 18.5
3 39
4 78

To minimize sources of external variability, polymers were taken from single batches.
Resins were pre-dried before molding at 170 ◦C for 4 h and then directly transferred into
the molding machine using a sealed hopper. To avoid resin contamination, PP was purged
through at process start-up and shut down, with 60 automatic molding cycles performed
and the resulting moldings discarded at every production start-up. To guarantee stability
of the molding process and of the data acquisition setup, 30 molding cycles were discarded
for each DOE run before collecting the first part. Then 30 parts were collected for each DOE
run on a fully automatic cycle with no interruptions. The response variables considered in
the later analysis included the melt temperature (measured via an intrusive thermocouple
located in the nozzle), the cycle time, and the temperature of the molded parts (measured
immediately after ejection).

Parts were visually inspected, labeled, and stored for later structural characterization.
The mechanical properties of the molded parts were characterized by means of tensile
testing at room temperature (conditioned at 21 ◦C) according to ASTM D638. The thickness
of the tensile specimens was measured with a micrometer and entered to evaluate the
applied stresses. The tests were carried out with a speed of 10 mm/min using an Instron
Universal Testing Machine (Norwood, MA, USA). For each DOE run, molded parts for each
cavity were selected for cycles 10, 20, and 30 and were characterized, resulting in a total of
192 tests for each resin. Elastic modulus, stress at break, and strain at break were evaluated
from the observed stress–strain behavior for comparison of the mechanical properties of
the different resins and the effect of hot runner molding. A data color spectrophotometer
(Datacolor DC500, Lucerne, Switzerland) was also used to evaluate the effect of degradation
on the color shift and visual appearance of the molded parts.

2.3. Biopolymer Properties

The rheological properties of the five investigated materials were characterized with a
capillary rheometer (Dynisco LCR 7600, Franklin, MA, USA) with a capillary die having a
bore diameter of 1 mm and bore length of 30 mm. The apparent viscosity of the materials
at temperatures of 180 and 200 ◦C are plotted in Figure 2. It was observed that all five
materials had relatively similar shear-thinning behaviors with a viscosity on the order of
100 Pa*s at a shear rate of 1000 s−1, which was representative of the shear rates in the mold
cavity at a flow rate of 32 mL/s (near the mid-point of the injection velocities as indicated
in Table 2). The iPP and rPP tended to have the lowest viscosities, while the PBAT and
PLA-V had the greatest temperature sensitivity. The PLA-N had the highest viscosities.
Regardless, all five of the investigated materials were readily processed at the DOE run
settings without difficulty.

Differential scanning calorimetry (DSC) was performed to evaluate the onset of melting
and specific heat with a heat–cool–heat cycle, heating rate of 10 ◦C/min, from 50 to 200 ◦C.
The results for the onset of melting are reported in the fifth row of Table 1 for the five
investigated materials; the iPP and rPP melted around 155 ◦C while the bioplastics varied
from 144 ◦C for the PLA-V to 163 ◦C for the PBAT and PLA-N.
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Figure 2. Apparent viscosity of the five investigated materials indicated in Table 1 where the upward
triangle,4, represents a material temperature of 180 ◦C and the downward triangle,5, represents 200 ◦C.

The thermal degradation properties of the five investigated materials were character-
ized via thermal gravimetric analysis (TA Instruments TGA 2950, Wakefield, MA, USA)
at a heating ramp rate of 10 ◦C/min in a nitrogen environment. The results are plotted
in Figure 3 with the observed peak degradation temperatures reported in the sixth row
of Table 1. The results suggested that all materials were thermally stable at temperatures
below 200 ◦C and should pose no significant problems in processing at those tempera-
tures. The iPP was the most thermally stable, as was expected, given its conventional
polymerization route [18]. It was interesting to observe the broad mass loss of the rPP that
was likely the result of its broader molecular weight distribution due to its reprocessing
and multiple heat cycles [19]. Of the bioplastics, PLA-N had the best thermal stability,
which was likely related to a higher molecular weight, as implied by its higher viscosity.
The PLA-V and PBAT showed the earliest degradation, losing 2% of the sample weight at
temperatures of 270 and 305 ◦C, respectively. Interestingly, there appeared to be a strong
correlation between the melt viscosity and the onset of thermal degradation, supported by
prior investigations of the effects of molecular weight [20].
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3. Results

The characterized mechanical properties including the mean and standard deviation
for the ultimate tensile stress σ, Young’s modulus E (defined by Instron as the steepest
slope of stress with respect to strain in the initial portion of the tensile loading), elongation
to failure ε f , and toughness U are respectively provided in the last four rows of Table 1,
where SD represents the standard deviation across the 32 runs of the DOE. Also, toughness
[J/m3] is defined as the integral of the stress with respect to strain, U =

∫
σdε, between 0

and the elongation to failure. A table of the experimental data is available as Supplementary
Material. The table comprises 955 rows of observations for the five investigated materials
including 42 columns of processing data and mechanical properties.

Inspection of Table 1 indicates that the iPP and rPP had similar properties, although
the recycled material had slightly lower ultimate stress, elongation to failure, and thus
toughness. The slight reduction in the properties would likely be acceptable in most
applications except that there was also a significant increase in the standard deviation of
these properties. The increase in standard deviation meant that the specification limits
must be shifted further from the failure point to ensure robust performance in application.

The results for the bioplastics were also notable. The PBAT was the stiffest and
strongest material of those investigated, with an elastic modulus near 7 GPa and ulti-
mate stress of 63 MPa. However, PBAT was also a relatively brittle material with a mean
elongation to failure of 2% that resulted in the lowest toughness of the investigated ma-
terials. The two PLA materials also differed significantly from each other as well as the
PP grades. The PLA-N had the second highest modulus and ultimate stress and relatively
high elongation to failure and toughness. As such, PLA-N is likely an excellent alternative
to PP in many applications and may even be competitive with polycarbonate (PC, with
mean modulus and stress around 2600 and 55 MPa) in some applications. By comparison,
the PLA-V also had an excellent tensile modulus but lower ultimate stress due to early
yielding. PLA-V might be expected to have lower toughness than PBAT, but a relatively
high elongation significantly improved its toughness to failure. The standard deviation
of the mechanical properties for molded PLA-V specimens is of critical concern, however,
since a significant variation in the mechanical properties of molded products would likely
result if the material and process are not well controlled.

The bottom set of subplots in Figure 4 provides the relative structural performance
as a percentage of maximum toughness for each of the iPP, rPP, PBAT, PLA-N, PLA-V
materials across the 32 runs of the implemented design of experiments. The specific run
numbers having the highest and lowest properties are respectively indicated with the
upward triangle (4) and downward triangle (5). The top set of subplots then provides
the observed range of the stress–strain behaviors for each of the investigated materials
wherein the tensile specimens with the highest and lowest toughness are plotted.

The top set of subplots presents the observed range of mechanical behavior of the
materials corresponding to the DOE run numbers with the highest and lowest toughness
for each material. The iPP and rPP materials behaved in a ductile manner with a broad
ultimate stress peak and extensive plastic deformation. As the tensile properties suggested,
PBAT behaved in a more brittle manner with a high modulus and stress but a low strain to
failure. The PLA-N was a relatively rigid and strong grade with more elasticity than the
PBAT. Finally, the PLA-V provided a closer approximation to iPP with greater elongation
to failure than PLA-N albeit with a significantly reduced ultimate stress.

Figure 5 provides a set of images for representative specimens corresponding to the
DOE runs indicated in Figure 4 that resulted in the (4) highest and (5) lowest observed
toughness; the images are provided with constant width such that the length of the tested
specimens is generally indicative of the plastic deformation. The images are consistent with
the described tensile properties and behaviors. Specifically, the iPP and rPP demonstrated
ductility with extensive necking in the gage region. The PBAT and PLA-N specimens all
indicated a more brittle failure without necking. The images of the PLA-N show the high
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transparency of the material, which may allow the substitution for PC and polystyrene (PS)
in some applications.
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The PLA-V was the most complex of the materials in that its mechanical properties
showed the most significant processing dependence, a complexity also consistent with
the high standard deviations reported in Table 1. As suggested by the toughness data in the
bottom right subplot of Figure 4, specimens produced in runs 1, 2, 3, 5, 6, 9, 11, and 13



Sustainability 2021, 13, 8102 8 of 23

failed in a ductile manner with observed necking and stress whitening across the entirety
of the gage region. However, all other specimens had reduced toughness due to limited
ductility. Generally, the PLA-V was observed to start necking within the gage region
but then transitioned to an abrupt brittle failure with sub-necking within the necking
region, such as shown for specimen 4–20. Such variation in the mechanical properties is
a potential cause for concern and motivated the subsequent multivariate analysis with
principal component analysis.

4. Multivariate Analysis

The objective of the multivariate analysis was to identify the causality between the
processing conditions and the resulting mechanical properties for each of the five materials.
Two approaches were taken. First, a traditional multiple regression was conducted in
which the form of the regression model was based on the structure and explicit factor
settings of the full factorial, 32-run design of experiments. Then, a principal component
analysis was conducted in which the mechanical properties were modeled on the acquired
processing states that were observed during the same design of experiments. The method-
ology and results are presented in the subsequent two sections, followed by discussion
and conclusions.

4.1. Multiple Regression

The 32-run design of experiments had four factors defined in Tables 1 and A1 where
in x1, x2, and x3 had two level settings while x4 had four level settings. Accordingly,
a multiple regression model for each response, ỹ, is posed providing an intercept, main
effects, first-order interactions, and a quadratic term for the velocity, x4. The model form is:

ỹ = b0 + b1x1 + b2x2 + b3x3 + b4x4 + b5x1x2 + b6x1x3 + b7x1x4 + b8x2x3 + b9x2x4 + b10x3x4 + b11x2
4 + b12t (1)

where t is the dimensionless time representing the relative specimen number within the
molding trial for each DOE run. The model has 13 coefficients, leaving 19 remaining
degrees of freedom to estimate the coefficient values and statistics. Twenty sets of multiple
regression results are provided in Tables A2–A21 of Appendix B.

Figure 6 summarizes the 20 statistical models via scatter plots of the observed coef-
ficient of variation (COV equaling the standard deviation divided by the mean) of the
response data as a function of the fitted coefficient of determination (R2). Ideally, practition-
ers would like low COV, on the order of a few percent, which means that the mechanical
properties are not significantly affected by the process settings in the DOE. If the COV is
significant, practitioners like a high R2, hopefully above 0.8, which allows them to tune
and control the process to optimize and maintain mechanical properties. As such, material
selection to minimize variation and uncertainty can be guided by preferring materials
that are to the bottom and the right for each of the mechanical properties of importance.
Based on this guidance, iPP was a preferred material, while PLA-V consistently had the
greatest COV.

The statistical significance and value of the multiple regression model coefficients
varied substantially across the responses and materials. Figure 7 summarizes the model
coefficients as normalized relative to the mean of each observed response. Only the model
intercept, b0, was statistically significant for each of the effects. Not surprisingly, PLA-V
showed the most significant sensitivity with significant decreases in properties associated
with increases in x1 (hot runner and barrel temperature) and x4 (injection velocity). Speci-
men molding order, b12t, was never statistically significant although the interaction term
b7x1x4 was often statistically significant (an unsurprising result, given the statistical signifi-
cance of x1 and x4). The study was primarily focused on understanding and controlling
the material variation, and improved model fidelity is needed for process optimization and
online quality assurance. This need motivated further multivariate modeling.
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4.2. Principal Component Analysis

Principal component analysis (PCA, [21]) was performed using singular value decom-
position (SVD, [22]). The PCA data set comprised a matrix X with 955 rows of observations
and 9 columns corresponding to factors including process settings and mechanical behav-
iors, including: (1) observed cycle time that was highly correlated with x2, (2) observed
melt temperature as acquired from an intrusive thermocouple in the machine nozzle and
highly correlated with x1, (3) calculated cavity shear rate that was highly correlated with
x4, (4) screw speed x3, (5) specimen number proportion to time t of molding, (6) strain to
failure y1, (7) ultimate stress y2, (8) tensile modulus y3, and (9) toughness y4. There were
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two reasons for this selection of data. First, these variables closely corresponded to the data
set already analyzed for the previously presented multiple regression model of Equation (1).
Second, the number of variables was relatively low, allowing for compact presentation of
the results. Other processing states from instrumentation were also available and tested
with results very similar to those subsequently presented.

The MATLAB script for performing the PCA with SVD is provided in Appendix C
and is operable with the data set described in the data availability statement. Appendix D
provides Tables A22–A27 with the principal component (PC) coefficients for each of the
materials investigated and a model for all materials combined. Each column of the provided
tables in Appendix D provides coefficients for one principal component, and the columns
are ordered from left to right in descending order of component variance. The last row
in each table provides the cumulative sum representing the total percentage of explained
variation. The results reported in Appendix D indicated that the first two PCs typically
explain 40–50% of the observed variation in the data set.

Figure 8 provides a biplot of the first and second principal components (PC1 and
PC2) for the five investigated materials and a sixth model of all material data together
wherein the modeled material is indicated in the horizontal axis label with PC1. For each
factor, the length of each vector indicates the relative percentage contribution to the PC
while its relative direction indicates the relative correlation to the other factors; vectors
terminating near the center of the biplots in Figure 8 indicate factors having low importance.
For example, the length and direction of toughness and maximum strain were significant
and highly correlated for iPP and most materials. The toughness dependence varied across
materials, and the results indicated a strong correlation between toughness and ultimate
stress for rPP and PLA-V. As would be expected given Hooke’s law [23], there was also a
strong correlation between elastic modulus and ultimate stress for iPP and PBAT. The lack
of correlation between modulus and ultimate stress for some materials was somewhat
surprising but likely due to the low sensitivity of the modulus such that the modulus was
nearly constant, such as for PLA-N, or at least independent of (i.e., orthogonal to) ultimate
stress, such as for rPP.
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5. Discussion

As first described in the introduction, a primary objective of the research was to investi-
gate the robustness of the sustainable polymers compared to the reference iPP. Of particular
concern was the dependence of the mechanical properties on melt temperature, shear, and
residence time, which led to the selection of the processing variables for the DOE specified
in Table 2. The PCA biplots of Figure 8 are more helpful than the multiple regression results
of Figures 6 and 7. The primary results are:

• The residence time was not a significant factor for most of the materials. The reason
was that both cycle time and specimen number (indicative of the relative time of
molding across the DOE run) were located near the origin. The notable exception
was PLA-V, for which the cycle time was inversely correlated with elastic modulus.
This behavior could be expected, given the TGA data of Figure 3, in which the
PLA-V exhibited early weight loss at processing temperatures. Prolonged residence
of the melt at processing temperatures can be expected to drive melt degradation and
associated loss of mechanical properties.

• Melt temperature tended to be negatively correlated with the mechanical properties
such that higher melt temperatures resulted in lesser properties. The relation be-
tween polymer molecular weight and mechanical strength may be used to explain
the reduction of mechanical strength after thermal degradation, which reduces the
molecular weight. The magnitude and correlation of the effect were not significant
across all materials but suggested that thermal degradation could be a concern when
the processing temperatures approached the onset of weight loss (see lower subplot
of Figure 3).

• Screw speed was also shown to have a relatively low effect. The low effect of screw
speed can be explained, given that the use of a hot runner allowed the material to equi-
librate, which greatly reduced the number and impact of cold slugs or inhomogeneities
in the melt after plastication [24].

• The significance of the cavity shear rate (proportional to the injection velocity) varied
between the iPP and more sustainable materials. For the iPP, higher shear rates
improved most mechanical properties. The other materials exhibited a negative
correlation, suggesting that high shear rates should be avoided. A likely reason for
the improved mechanical properties of iPP at high shear rates could be the flow-
induced orientation of iPP chains, which would essentially result in strain hardening
the modulus [25].

6. Conclusions

From the viewpoint of sustainability, this research showed that hot runners are highly
compatible with sustainable plastics. The recycled and bioplastic materials were readily
processed with the two-cavity, hot runner mold with fully automatic cycling per standard
industrial practices. Most of the materials exhibited robust processing performance with
only minor losses in mechanical properties. The results suggest that reducing the melt
temperature and cycle time tends to maximize the mechanical properties for all materials
tested, minimizing the energy consumption of the injection molding process [26]. The use
of hot runners incidentally reduces material and energy consumption by reducing scrap
and increasing molding productivity. As such, practitioners considering the adoption of
sustainable materials should consider the use of hot runners as part of their new product
development processes [27]. When degradation or variation is a concern, real-time estima-
tion of product properties in production is increasingly straightforward using a soft sensor
approach based on PCA or other multivariate analysis as demonstrated in this paper and
elsewhere [28].

Supplementary Materials: A table of the experimental data is available online at https://www.
mdpi.com/article/10.3390/su13148102/s1. The table comprises 955 rows of observations for the five
investigated materials including 42 columns of processing data and mechanical properties.

https://www.mdpi.com/article/10.3390/su13148102/s1
https://www.mdpi.com/article/10.3390/su13148102/s1
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Appendix A. Design of Experiments

Table A1. Run settings for the full factorial design of experiments given the levels indicated in
Table 2.

Run Hot Runner andBarrel
Temperature

Cooling
Time

Plastication
Speed

Injection
Velocity

1 1 1 1 1
2 1 1 1 2
3 1 1 1 3
4 1 1 1 4
5 1 1 2 1
6 1 1 2 2
7 1 1 2 3
8 1 1 2 4
9 1 2 1 1
10 1 2 1 2
11 1 2 1 3
12 1 2 1 4
13 1 2 2 1
14 1 2 2 2
15 1 2 2 3
16 1 2 2 4
17 2 1 1 1
18 2 1 1 2
19 2 1 1 3
20 2 1 1 4
21 2 1 2 1
22 2 1 2 2
23 2 1 2 3
24 2 1 2 4
25 2 2 1 1
26 2 2 1 2
27 2 2 1 3
28 2 2 1 4
29 2 2 2 1
30 2 2 2 2
31 2 2 2 3
32 2 2 2 4

Appendix B. Multiple Regression Models

Multiple regression model coefficients and statistics follow for all investigated ma-
terials and model responses. Units on responses and coefficients are as indicated in the
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sub-headings according to Equation (1) in the main text wherein factors x and t are nor-
malized on the interval of [0,1] corresponding to their minima and maxima. The statistical
significance of each model coefficient is provided, including the coefficient estimate, stan-
dard error (SE), t-statistic (tStat), and p-value along with model statistics.

Table A2. DOE-based model for Modulus, MPa (iPP material).

Estimate SE tStat p-Value

(Intercept) 1011.7 11.756 86.058 1.4286e-147
b1 −39.209 11.783 −3.3274 0.0010638
b2 17.686 11.175 1.5827 0.11527
b3 −3.7513 11.185 −0.33537 0.73774
b4 −65.211 26.986 −2.4165 0.016676
b5 −17.945 10.05 −1.7856 0.075854
b6 24.812 9.9187 2.5015 0.013263
b7 5.1422 13.428 0.38295 0.70221
b8 −39.319 10.05 −3.9126 0.00012958
b9 22.906 13.74 1.6672 0.097233

b10 38.437 13.428 2.8625 0.0047047
b11 75.519 22.317 3.3839 0.00087794
b12 −10.56 8.9989 −1.1735 0.24215

Number of observations: 192, Error degrees of freedom: 179. Root Mean Squared Error: 34. R-squared: 0.445,
Adjusted R-Squared: 0.407. F-statistic vs. constant model: 11.9, p-value = 1.45e-17.

Table A3. DOE-based model for Modulus, MPa (rPP material).

Estimate Se tStat p-Value

(Intercept) 1076.7 18.474 58.281 1.9223e-117
b1 79.051 18.638 4.2415 3.5736e-05
b2 79.699 17.65 4.5156 1.1497e-05
b3 −36.661 17.681 −2.0734 0.039583
b4 90.872 42.824 2.122 0.035228
b5 −104.93 15.9 −6.5994 4.6249e − 10
b6 44.447 15.678 2.835 0.0051158
b7 −70.806 21.126 −3.3516 0.00098225
b8 −10.02 15.864 −0.63165 0.52843
b9 −99.162 21.633 −4.5839 8.5968e-06

b10 10.846 21.128 0.51336 0.60834
b11 15.407 35.275 0.43676 0.66282
b12 −1.1954 14.278 −0.083723 0.93337

Number of observations: 190, Error degrees of freedom: 177. Root Mean Squared Error: 53.4. R-squared: 0.393,
Adjusted R-Squared: 0.352. F-statistic vs. constant model: 9.55, p-value = 3.56e-14.

Table A4. DOE-based model for Modulus, MPa (PBAT material).

Estimate Se tStat p-Value

(Intercept) 6340.5 28.52 222.32 1.4534e-219
b1 −75.906 28.524 −2.6611 0.0085009
b2 20.322 27.051 0.75124 0.4535
b3 −29.764 27.064 −1.0998 0.27292
b4 −227.96 65.444 −3.4833 0.00062329
b5 −59.103 24.353 −2.4269 0.016224
b6 36.844 24.04 1.5326 0.12714
b7 102.51 32.489 3.1553 0.0018831
b8 3.2804 24.353 0.1347 0.893
b9 48.758 33.242 1.4668 0.1442

b10 18.918 32.489 0.5823 0.5611
b11 99.321 54.186 1.833 0.068476
b12 21.468 21.878 0.98127 0.32779

Number of observations: 191, Error degrees of freedom: 178. Root Mean Squared Error: 82.2. R-squared: 0.204,
Adjusted R-Squared: 0.15. F-statistic vs. constant model: 3.79, p-value = 3.85e -05.
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Table A5. DOE-based model for Modulus, MPa (PLA-N material).

Estimate Se tStat p-Value

(Intercept) 2659.5 21.067 126.24 7.2075e-177
b1 −4.4021 21.13 −0.20833 0.83521
b2 29.251 20.039 1.4597 0.14612
b3 1.2935 20.058 0.064487 0.94865
b4 61.207 48.391 1.2648 0.20758
b5 9.1498 18.021 0.50773 0.61227
b6 −26.221 17.786 −1.4742 0.14217
b7 9.9297 24.079 0.41238 0.68056
b8 23.6 18.021 1.3096 0.19202
b9 −51.054 24.638 −2.0722 0.03968

b10 16.195 24.079 0.67257 0.50209
b11 −26.954 40.019 −0.67353 0.50148
b12 20.555 16.137 1.2738 0.2044

Number of observations: 192, Error degrees of freedom: 179. Root Mean Squared Error: 60.9. R-squared: 0.102,
Adjusted R-Squared: 0.0414. F-statistic vs. constant model: 1.69, p-value = 0.0729.

Table A6. DOE-based model for Modulus, MPa (PLA-V material).

Estimate Se tStat p-Value

(Intercept) 2458.7 60.473 40.658 1.0391e-91
b1 −32.671 62.11 −0.52602 0.59953
b2 8.2516 57.403 0.14375 0.88586
b3 −162.12 57.584 −2.8154 0.0054241
b4 −495.96 139.57 −3.5534 0.00048757
b5 −114.58 52.218 −2.1943 0.029517
b6 79.092 51.343 1.5405 0.12524
b7 −21.384 68.137 −0.31383 0.75402
b8 118.53 52.218 2.2699 0.024419
b9 −60.605 69.726 −0.86918 0.38592

b10 33.822 68.137 0.49639 0.62023
b11 372.05 115.56 3.2196 0.0015273
b12 42.827 46.547 0.92008 0.35878

Number of observations: 190, Error degrees of freedom: 177. Root Mean Squared Error: 174. R-squared: 0.223,
Adjusted R-Squared: 0.171. F-statistic vs. constant model: 4.25, p-value = 6.93e-06.

Table A7. DOE-based model for Ult Stress, MPa (iPP material).

Estimate Se tStat p-Value

(Intercept) 16.522 0.12996 127.13 2.0886e-177
b1 −0.7974 0.13026 −6.1214 5.7137e-09
b2 0.01436 0.12354 0.11624 0.90759
b3 −0.10248 0.12365 −0.82877 0.40834
b4 −1.3237 0.29833 −4.437 1.59e-05
b5 −0.21188 0.1111 −1.9072 0.058099
b6 0.36698 0.10965 3.3468 0.00099636
b7 −0.04643 0.14844 −0.31278 0.75482
b8 −0.038494 0.1111 −0.34649 0.72938
b9 0.40015 0.15189 2.6345 0.0091651

b10 −0.1378 0.14844 −0.92826 0.35452
b11 1.4261 0.24671 5.7805 3.2502e-08
b12 −0.014868 0.099483 −0.14945 0.88137

Number of observations: 192, Error degrees of freedom: 179. Root Mean Squared Error: 0.375. R-squared: 0.596,
Adjusted R-Squared: 0.569. F-statistic vs. constant model: 22, p-value = 2.42e-29.
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Table A8. DOE-based model for Ult Stress, MPa (rPP material).

Estimate Se tStat p-Value

(Intercept) 17.709 0.98102 18.051 5.481e-42
b1 0.12348 0.9897 0.12477 0.90085
b2 0.19994 0.93724 0.21333 0.83132
b3 −0.53294 0.93892 −0.56761 0.57102
b4 −4.4646 2.274 −1.9633 0.051174
b5 0.072571 0.84433 0.085951 0.9316
b6 0.68373 0.83252 0.82127 0.4126
b7 −1.5495 1.1218 −1.3812 0.16895
b8 0.59884 0.84241 0.71086 0.4781
b9 −0.67928 1.1487 −0.59133 0.55505

b10 0.28814 1.1219 0.25683 0.79761
b11 1.5516 1.8732 0.82834 0.40859
b12 −0.27483 0.75819 −0.36249 0.71742

Number of observations: 190, Error degrees of freedom: 177. Root Mean Squared Error: 2.83. R-squared: 0.242,
Adjusted R-Squared: 0.19. F-statistic vs. constant model: 4.7, p-value = 1.22e-06.

Table A9. DOE-based model for Ult Stress, MPa (PBAT material).

Estimate Se tStat p-Value

(Intercept) 63.758 0.60366 105.62 1.6903e-162
b1 −0.029482 0.60376 −0.048831 0.96111
b2 0.52151 0.57256 0.91083 0.36362
b3 0.65783 0.57284 1.1484 0.25236
b4 −5.5063 1.3852 −3.975 0.00010217
b5 −1.5349 0.51547 −2.9777 0.0033092
b6 −0.78306 0.50883 −1.5389 0.1256
b7 2.7604 0.68768 4.0141 8.7828e-05
b8 −0.30718 0.51547 −0.59592 0.55199
b9 2.02 0.70361 2.8709 0.0045897

b10 −0.36766 0.68768 −0.53463 0.59357
b11 2.3491 1.1469 2.0482 0.042011
b12 0.39179 0.46308 0.84606 0.39865

Number of observations: 191, Error degrees of freedom: 178. Root Mean Squared Error: 1.74. R-squared: 0.241,
Adjusted R-Squared: 0.19. F-statistic vs. constant model: 4.72, p-value = 1.14e-06.

Table A10. DOE-based model for Ult Stress, MPa (PLA-N material).

Estimate Se tStat p-Value

(Intercept) 59.303 0.84276 70.367 2.2576e-132
b1 −3.6969 0.84529 −4.3735 2.0714e-05
b2 −1.9248 0.80164 −2.401 0.017373
b3 −2.9009 0.8024 −3.6153 0.00038986
b4 −5.916 1.9359 −3.056 0.0025866
b5 0.63422 0.72091 0.87974 0.38018
b6 0.53754 0.71152 0.75548 0.45095
b7 2.2274 0.96326 2.3124 0.021894
b8 2.558 0.72091 3.5483 0.00049527
b9 0.053231 0.98561 0.054008 0.95699

b10 2.4352 0.96326 2.5281 0.012332
b11 1.2524 1.6009 0.7823 0.43507
b12 0.08152 0.64554 0.12628 0.89965

Number of observations: 192, Error degrees of freedom: 179. Root Mean Squared Error: 2.44. R-squared: 0.319,
Adjusted R-Squared: 0.273. F-statistic vs. constant model: 6.98, p-value = 2.54e-10.
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Table A11. DOE-based model for Ult Stress, MPa (PLA-V material).

Estimate Se tStat p-Value

(Intercept) 18.369 1.9519 9.4108 2.6168e-17
b1 −10.792 2.0047 −5.3835 2.2976e-07
b2 1.587 1.8528 0.85656 0.39285
b3 0.64305 1.8586 0.34598 0.72977
b4 −10.396 4.505 −2.3077 0.022171
b5 −0.86327 1.6854 −0.51219 0.60915
b6 −0.02832 1.6572 −0.017089 0.98638
b7 11.759 2.1992 5.347 2.734e−07
b8 −2.1301 1.6854 −1.2638 0.20796
b9 1.3412 2.2505 0.59596 0.55196

b10 −1.7917 2.1992 −0.81469 0.41635
b11 1.1105 3.7299 0.29773 0.76626
b12 2.2454 1.5024 1.4946 0.1368

Number of observations: 190, Error degrees of freedom: 177. Root Mean Squared Error: 5.61. R-squared: 0.34,
Adjusted R-Squared: 0.295. F-statistic vs. constant model: 7.59, p-value = 2.99e-11.

Table A12. DOE-based model for Max Strain, pct (iPP material).

Estimate Se tStat p-Value

(Intercept) 50.249 2.7666 18.162 1.8042e-42
b1 0.91546 2.7731 0.33013 0.74169
b2 2.7222 2.6299 1.0351 0.30201
b3 3.0168 2.6323 1.1461 0.2533
b4 14.403 6.3508 2.2679 0.024532
b5 0.70353 2.365 0.29747 0.76645
b6 2.6747 2.3342 1.1459 0.25339
b7 −1.8421 3.1601 −0.58294 0.56067
b8 −7.225 2.365 −3.055 0.0025951
b9 −1.9847 3.2334 −0.6138 0.54013

b10 2.0393 3.1601 0.64532 0.51955
b11 −14.635 5.252 −2.7866 0.0059009
b12 3.9834 2.1178 1.881 0.061602

Number of observations: 192, Error degrees of freedom: 179. Root Mean Squared Error: 7.99. R-squared: 0.144,
Adjusted R-Squared: 0.0867. F-statistic vs. constant model: 2.51, p-value = 0.00449.

Table A13. DOE-based model for Max Strain, pct (rPP material).

Estimate Se tStat p-Value

(Intercept) 53.989 0.81742 66.047 1.2258e-126
b1 −0.91166 0.82466 −1.1055 0.27045
b2 −2.5643 0.78095 −3.2836 0.001235
b3 −1.5389 0.78235 −1.9671 0.050738
b4 0.21084 1.8948 0.11127 0.91153
b5 1.8492 0.70353 2.6285 0.0093308
b6 −0.28486 0.69369 −0.41064 0.68184
b7 0.0988 0.93475 0.1057 0.91594
b8 2.3107 0.70193 3.2919 0.0012013
b9 0.88727 0.95717 0.92697 0.3552

b10 1.2406 0.93483 1.3271 0.18619
b11 −1.0172 1.5608 −0.65174 0.51542
b12 0.055259 0.63175 0.087469 0.9304

Number of observations: 190, Error degrees of freedom: 177. Root Mean Squared Error: 2.36. R-squared: 0.113,
Adjusted R-Squared: 0.0525. F-statistic vs. constant model: 1.87, p-value = 0.0406.
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Table A14. DOE-based model for Max Strain, pct (PBAT material).

Estimate Se tStat p-Value

(Intercept) 1.9915 0.04549 43.78 3.1827e-97
b1 0.02649 0.045497 0.58222 0.56115
b2 0.12494 0.043147 2.8958 0.004256
b3 0.011408 0.043167 0.26428 0.79187
b4 −0.035384 0.10439 −0.33897 0.73503
b5 −0.077916 0.038844 −2.0059 0.046386
b6 0.016269 0.038344 0.42429 0.67187
b7 −0.093434 0.051821 −1.803 0.073077
b8 −0.10292 0.038844 −2.6495 0.0087865
b9 −0.13447 0.053022 −2.5361 0.012068

b10 0.0034345 0.051821 0.066275 0.94723
b11 0.16765 0.086428 1.9398 0.053986
b12 0.025342 0.034896 0.72622 0.46866

Number of observations: 191, Error degrees of freedom: 178. Root Mean Squared Error: 0.131. R-squared: 0.186,
Adjusted R-Squared: 0.131. F-statistic vs. constant model: 3.39, p-value = 0.000178.

Table A15. DOE-based model for Max Strain, pct (PLA-N material).

Estimate Se tStat p-Value

(Intercept) 5.0032 0.47481 10.537 1.6632e-20
b1 1.3812 0.47624 2.9002 0.0041961
b2 0.096271 0.45164 0.21316 0.83145
b3 0.47937 0.45207 1.0604 0.29039
b4 2.1716 1.0907 1.9911 0.047991
b5 −0.35719 0.40616 −0.87944 0.38034
b6 −0.68575 0.40087 −1.7107 0.088878
b7 −1.3518 0.5427 −2.491 0.013651
b8 −0.41886 0.40616 −1.0313 0.30381
b9 0.067567 0.55529 0.12168 0.90329

b10 −0.23653 0.5427 −0.43584 0.66348
b11 −1.1824 0.90196 −1.3109 0.19157
b12 0.14228 0.3637 0.3912 0.69611

Number of observations: 192, Error degrees of freedom: 179. Root Mean Squared Error: 1.37. R-squared: 0.0871,
Adjusted R-Squared: 0.0259. F-statistic vs. constant model: 1.42, p-value = 0.159.

Table A16. DOE-based model for Max Strain, pct (PLA-V material).

Estimate Se tStat p-Value

(Intercept) 44.093 3.8629 11.414 5.734e-23
b1 −15.455 3.9675 −3.8955 0.0001388
b2 8.429 3.6668 2.2987 0.022689
b3 6.8905 3.6784 1.8732 0.062685
b4 −29.045 8.9157 −3.2577 0.0013463
b5 −3.7701 3.3356 −1.1303 0.2599
b6 −7.4207 3.2797 −2.2626 0.024875
b7 18.694 4.3525 4.295 2.8755e−05
b8 −7.1982 3.3356 −2.158 0.032276
b9 1.1072 4.454 0.24859 0.80397

b10 −5.5062 4.3525 −1.2651 0.20751
b11 9.1499 7.3817 1.2395 0.21679
b12 3.0296 2.9733 1.0189 0.30962

Number of observations: 190, Error degrees of freedom: 177. Root Mean Squared Error: 11.1. R-squared: 0.424,
Adjusted R-Squared: 0.385. F-statistic vs. constant model: 10.9, p-value = 4.8e-16.
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Table A17. DOE-based model for Toughness, MJ/m3 (iPP material).

Estimate Se tStat p-Value

(Intercept) 8.2166 0.44002 18.673 6.9424e-44
b1 −0.28229 0.44105 −0.64006 0.52295
b2 0.43716 0.41827 1.0452 0.29736
b3 0.41756 0.41866 0.99735 0.31994
b4 1.5118 1.0101 1.4967 0.13623
b5 −0.0004966 0.37615 −0.0013202 0.99895
b6 0.61158 0.37125 1.6473 0.10124
b7 −0.34001 0.5026 −0.6765 0.4996
b8 −1.1614 0.37615 −3.0876 0.0023389
b9 −0.102 0.51426 −0.19834 0.843

b10 0.25409 0.5026 0.50556 0.61379
b11 −1.4916 0.83532 −1.7857 0.075843
b12 0.61253 0.33682 1.8186 0.07065

Number of observations: 192, Error degrees of freedom: 179. Root Mean Squared Error: 1.27. R-squared: 0.114,
Adjusted R-Squared: 0.0546. F-statistic vs. constant model: 1.92, p-value = 0.0347.

Table A18. DOE-based model for Toughness, MJ/m3 (rPP material).

Estimate Se tStat p-Value

(Intercept) 9.3719 0.52774 17.759 3.5542e-41
b1 −0.041533 0.53241 −0.078009 0.93791
b2 −0.2763 0.50419 −0.548 0.58438
b3 −0.48392 0.50509 −0.95808 0.33933
b4 −2.0872 1.2233 −1.7062 0.089723
b5 0.27968 0.45421 0.61575 0.53885
b6 0.2927 0.44786 0.65355 0.51425
b7 −0.82143 0.60349 −1.3611 0.1752
b8 0.66921 0.45318 1.4767 0.14153
b9 −0.2557 0.61796 −0.41378 0.67954

b10 0.26787 0.60354 0.44383 0.65771
b11 0.53519 1.0077 0.53111 0.59601
b12 −0.15913 0.40787 −0.39015 0.69689

Number of observations: 190, Error degrees of freedom: 177. Root Mean Squared Error: 1.52. R-squared: 0.223,
Adjusted R-Squared: 0.171. F-statistic vs. constant model: 4.24, p-value = 7.08e-06.

Table A19. DOE-based model for Toughness, MJ/m3 (PBAT material).

Estimate Se tStat p-Value

(Intercept) 0.948 0.025531 37.132 9.584e-86
b1 0.011537 0.025535 0.45182 0.65195
b2 0.086445 0.024216 3.5698 0.00045944
b3 0.012424 0.024227 0.51283 0.60871
b4 −0.092539 0.058586 −1.5796 0.11598
b5 −0.069159 0.021801 −3.1723 0.0017817
b6 0.0055103 0.02152 0.25605 0.79821
b7 −0.022807 0.029084 −0.78418 0.43397
b8 −0.068003 0.021801 −3.1193 0.0021153
b9 −0.060433 0.029758 −2.0308 0.043761

b10 −0.0019438 0.029084 −0.066833 0.94679
b11 0.13458 0.048507 2.7745 0.0061181
b12 0.021732 0.019585 1.1096 0.26866

Number of observations: 191, Error degrees of freedom: 178. Root Mean Squared Error: 0.0736. R-squared: 0.217,
Adjusted R-Squared: 0.165. F-statistic vs. constant model: 4.12, p-value = 1.11e-05.
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Table A20. DOE-based model for Toughness, MJ/m3 (PLA-N material).

Estimate Se tStat p-Value

(Intercept) 2.3195 0.23908 9.7017 3.7857e-18
b1 0.62491 0.2398 2.606 0.0099324
b2 −0.014199 0.22742 −0.062435 0.95029
b3 0.15835 0.22763 0.69566 0.48754
b4 1.0365 0.54918 1.8874 0.06073
b5 −0.16893 0.20451 −0.826 0.4099
b6 −0.3523 0.20185 −1.7454 0.08264
b7 −0.68712 0.27327 −2.5145 0.012802
b8 −0.13268 0.20451 −0.64874 0.51734
b9 0.011903 0.27961 0.042571 0.96609

b10 −0.037825 0.27327 −0.13842 0.89007
b11 −0.63398 0.45416 −1.3959 0.16446
b12 0.069351 0.18313 0.37869 0.70536

Number of observations: 192, Error degrees of freedom: 179. Root Mean Squared Error: 0.691. R-squared: 0.081,
Adjusted R-Squared: 0.0194. F-statistic vs. constant model: 1.31, p-value = 0.214.

Table A21. DOE-based model for Toughness, MJ/m3 (PLA-V material).

Estimate Se tStat p-Value

(Intercept) 8.9272 1.2357 7.2244 1.4416e-11
b1 −6.5563 1.2691 −5.1659 6.4017e-07
b2 2.1394 1.173 1.8239 0.069857
b3 1.1219 1.1767 0.95345 0.34166
b4 −9.1083 2.852 −3.1936 0.0016633
b5 −1.2023 1.067 −1.1268 0.26137
b6 −0.98203 1.0491 −0.93603 0.35053
b7 7.2995 1.3923 5.2428 4.4719e-07
b8 −1.8924 1.067 −1.7735 0.077865
b9 0.63497 1.4248 0.44566 0.65638

b10 −1.1713 1.3923 −0.84126 0.40134
b11 2.2411 2.3613 0.94909 0.34387
b12 1.1876 0.95113 1.2487 0.21344

Number of observations: 190, Error degrees of freedom: 177. Root Mean Squared Error: 3.55. R-squared: 0.418,
Adjusted R-Squared: 0.379. F-statistic vs. constant model: 10.6, p-value = 1.14e-15.
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Appendix C. MATLAB Script for Principal Component Analysis
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Figure A1. Matlab script for PCA operable with data file “BioplasticsTensile.csv” available in
Supplementary Materials.

Appendix D. Principal Component Analysis Models

Table A22. Factors, principal component coefficients, and cumsum (R2, cumulative variation explained) for iPP.

Factor PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9

Cycle Time, s 0.1527 −0.0494 0.2571 0.6846 0.2243 0.6101 −0.0584 −0.1164 −0.0021
Melt Temp, C −0.4473 −0.2117 0.4644 −0.0392 0.0458 0.0603 0.6137 0.3943 0.0058

Cav Shear Rate, s−1 0.1986 0.1078 0.6885 −0.4016 0.2395 0.0144 −0.4823 0.1530 −0.0065
Screw Speed, %Max −0.0158 0.1280 0.3654 0.5290 −0.4814 −0.5631 −0.1415 0.0352 −0.0016
Specimen # (order) −0.0459 0.0724 −0.0739 0.2380 0.8086 −0.4991 0.0661 −0.0361 −0.0007

Max Strain, % −0.3528 0.5904 0.0168 −0.0299 −0.0401 0.1581 −0.0214 −0.1023 0.6987
Ult Stress, MPa 0.5472 0.2845 −0.1882 0.0938 −0.0012 0.0140 0.1651 0.7290 0.1749
Modulus, MPa 0.5058 0.2351 0.2615 −0.1495 −0.0351 −0.0785 0.5781 −0.5065 0.0034

Toughness, MJ/m3 −0.2209 0.6581 −0.0334 −0.0073 −0.0430 0.1628 0.0329 0.0804 −0.6936

cumsum(R2) 0.2481 0.4691 0.6013 0.7132 0.8232 0.9241 0.9716 0.9999 1.0000



Sustainability 2021, 13, 8102 21 of 23

Table A23. Factors, principal component coefficients, and cumsum (R2, cumulative variation explained) for rPP.

Factor PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9

Cycle Time, s 0.1080 −0.3599 −0.0920 −0.5273 0.2180 0.6016 0.2860 0.2847 0.0055
Melt Temp, C −0.0402 0.4787 −0.4514 −0.1471 −0.1928 0.0288 0.6252 −0.3391 0.0022

Cav Shear Rate, s−1 −0.0622 −0.4665 0.5301 0.0744 −0.0027 −0.1491 0.5128 −0.4548 −0.0030
Screw Speed, %Max 0.0760 −0.0928 −0.2019 0.8250 0.1872 0.4320 0.1963 0.0631 0.0027
Specimen # (order) −0.0221 0.0105 −0.2178 −0.0529 0.8787 −0.4092 0.0876 −0.0426 0.0027

Max Strain, % 0.1584 −0.4332 −0.3787 0.0800 −0.3147 −0.4968 0.2586 0.4516 −0.1435
Ult Stress, MPa 0.6463 0.2162 0.2118 −0.0098 0.0682 0.0115 0.0375 −0.0223 −0.6956
Modulus, MPa −0.2897 0.4065 0.4600 0.0695 0.0659 −0.0698 0.3777 0.6185 0.0021

Toughness, MJ/m3 0.6707 0.1238 0.1366 0.0083 −0.0021 −0.0953 0.0855 0.0651 0.7039

cumsum(R2) 0.2315 0.3951 0.5271 0.6388 0.7502 0.8552 0.9389 0.9997 1.0000

Table A24. Factors, principal component coefficients, and cumsum (R2, cumulative variation explained) for PBAT.

Factor PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9

Cycle Time, s −0.2049 −0.0125 0.6599 −0.3206 0.4517 −0.0630 −0.2687 −0.3733 0.0047
Melt Temp, C −0.2709 0.5149 0.2478 0.0069 −0.0086 −0.2040 −0.1882 0.7231 0.0004

Cav Shear Rate, s−1 −0.0589 0.5483 0.1828 −0.0043 −0.1228 0.6933 0.3633 −0.1863 −0.0030
Screw Speed, %Max −0.1349 0.1731 −0.1572 0.6648 0.6548 −0.1105 0.1838 −0.1018 −0.0004
Specimen # (order) 0.0343 −0.1295 0.5015 0.6605 −0.4867 −0.0490 −0.1871 −0.1413 0.0016

Max Strain, % 0.6177 0.0603 0.1882 −0.0003 0.1562 −0.0144 0.0727 0.1403 0.7279
Ult Stress, MPa −0.3485 −0.2946 0.2644 −0.0816 −0.0899 −0.2564 0.7746 0.1175 0.1659
Modulus, MPa −0.1475 −0.5435 0.0914 0.1092 0.2363 0.6251 −0.1335 0.4437 0.0361

Toughness, MJ/m3 0.5806 −0.0397 0.2826 −0.0158 0.1638 −0.0496 0.2617 0.2055 −0.6643

cumsum(R2) 0.2674 0.4358 0.5562 0.6687 0.7716 0.8576 0.9368 0.9999 1.0000

Table A25. Factors, principal component coefficients, and cumsum (R2, cumulative variation explained) for PLA-N.

Factor PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9

Cycle Time, s −0.1111 0.0142 0.5786 −0.3447 −0.3765 −0.6036 −0.0100 0.1661 −0.0063
Melt Temp, C 0.1887 0.5994 −0.1854 0.0462 −0.0916 −0.0827 −0.6944 0.2667 −0.0040

Cav Shear Rate, s−1 0.1056 0.6552 −0.0075 0.0423 0.0034 0.0239 0.6977 0.2650 −0.0106
Screw Speed, %Max −0.0488 0.1399 0.2998 −0.4367 0.8269 0.0406 −0.1076 0.0206 0.0027
Specimen # (order) 0.0158 0.0158 0.3113 0.8042 0.3262 −0.3815 −0.0304 −0.0548 −0.0030

Max Strain, % 0.5957 −0.2187 0.0762 −0.0221 0.0285 0.0120 0.0354 0.2435 0.7277
Ult Stress, MPa −0.5000 −0.2424 −0.1519 0.1055 0.0991 0.0378 −0.0087 0.7991 0.0840
Modulus, MPa −0.0777 0.0926 0.6408 0.1676 −0.2164 0.6917 −0.1278 0.0709 0.0090

Toughness, MJ/m3 0.5722 −0.2759 0.0668 −0.0114 0.0457 0.0342 0.0281 0.3531 −0.6806

cumsum(R2) 0.2791 0.4600 0.5931 0.7064 0.8124 0.9044 0.9604 0.9998 1.0000

Table A26. Factors, principal component coefficients, and cumsum (R2, cumulative variation explained) for PLA-V.

Factor PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9

Cycle Time, s −0.0471 0.6478 0.2389 0.2213 −0.4883 0.4798 0.0470 −0.0342 −0.0025
Melt Temp, C −0.3209 −0.0187 0.2612 −0.0205 −0.2186 −0.4231 0.7748 0.0288 0.0101

Cav Shear Rate, s−1 −0.1933 −0.3018 −0.1534 0.6505 0.3199 0.4633 0.3225 0.0614 0.0039
Screw Speed, %Max −0.0907 0.5599 −0.0588 −0.3294 0.7021 0.1099 0.2437 0.0424 −0.0114
Specimen # (order) 0.0589 −0.0834 0.8947 0.1841 0.3204 −0.0631 −0.2192 0.0190 0.0081

Max Strain, % 0.5005 0.1210 −0.0477 0.1867 −0.0153 −0.1551 0.1206 0.7149 −0.3845
Ult Stress, MPa 0.5125 0.0108 0.0040 0.0961 0.0558 −0.0284 0.2451 −0.6763 −0.4546
Modulus, MPa 0.2038 −0.3867 0.2102 −0.5722 −0.1084 0.5754 0.2674 0.1496 −0.0262

Toughness, MJ/m3 0.5395 0.0640 −0.0254 0.1164 0.0272 −0.0648 0.1997 −0.0361 0.8028

cumsum(R2) 0.3580 0.4842 0.5976 0.7055 0.8087 0.8990 0.9745 0.9979 1.0000
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Table A27. Factors, principal component coefficients, and cumsum (R2, cumulative variation explained) for all materials together.

Factor PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9

Cycle Time, s −0.0088 0.3222 0.5928 −0.2100 −0.6977 −0.1171 0.0127 −0.0008 −0.0031
Melt Temp, C 0.0873 0.5996 −0.1035 0.0948 0.0290 0.7782 0.0112 0.0655 −0.0484

Cav Shear Rate, s−1 −0.0653 0.6028 −0.5129 0.1912 −0.1245 −0.5283 0.0452 −0.1900 0.0047
Screw Speed, %Max −0.0033 0.4043 0.4876 −0.2021 0.7040 −0.2482 0.0263 −0.0008 −0.0000
Specimen # (order) 0.0064 −0.0250 0.3575 0.9311 0.0190 −0.0475 −0.0454 −0.0007 −0.0016

Max Strain, % 0.5257 0.0293 −0.0364 0.0212 −0.0174 −0.0726 0.2441 0.3217 0.7432
Ult Stress, MPa −0.4840 −0.0540 0.0705 0.0100 0.0194 0.1637 0.5514 −0.5125 0.4048
Modulus, MPa −0.4946 0.0408 −0.0524 0.0410 −0.0142 −0.0645 0.3900 0.7606 −0.1195

Toughness, MJ/m3 0.4824 −0.0622 0.0154 0.0200 −0.0064 −0.0381 0.6922 −0.1225 −0.5168

cumsum(R2) 0.3762 0.5002 0.6132 0.7242 0.8315 0.9327 0.9781 0.9971 1.0000
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