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Abstract: COVID-19 is threatening the whole world. This paper aims to explore the correlation
between climatic factors and the morbidity of COVID-19 in Wuhan, China, mainly by using a
geographic detector and GWR model. It was found that the response of the morbidity of COVID-19
to meteorological factors in Wuhan is different at different stages. On the whole, the morbidity of
COVID-19 has a strong spatial aggregation, mainly concentrated in the central area of Wuhan City.
There is a positive correlation between wind speed and the spread of COVID-19, while temperature
has a negative correlation. There is a positive correlation between air pressure and the number of
COVID-19 cases. Rainfall is not significantly correlated with the spread of COVID-19. It is concluded
that wind speed, relative humidity, temperature, and air pressure are important meteorological
factors affecting the spread of COVID-19 in Wuhan. Any two variables have greater interaction
with the spatial distribution of the incidence rate of COVID-19 than any one factor alone. Those
findings not only provide a new insight for the key intervention measures and the optimal allocation
of health care resources accordingly but also lay a theoretical foundation for disease prevention,
disease intervention and health services.

Keywords: climatic factors; weather; COVID-19; morbidity; Wuhan

1. Introduction

A pneumonia outbreak of unknown cause, detected in Wuhan, China, was first
reported to the World Health Organization (WHO) Country Office in China on 31 December
2019. By 2 January 2020, 41 admitted patients with confirmed infections by this virus,
now named Corona Virus Disease 2019 (COVID-19), had been identified in hospitals in
China [1]. At 10:00 on 23 January 2020, Wuhan New Coronavirus Epidemic Prevention
and Control Headquarters announced that the city bus, subway, ferry and long-distance
passenger transport were suspended. The airport and train stations were temporarily
closed. Wuhan was put into lockdown. Case numbers in China stabilized at around
80,000 by mid-February [2]. On 12 March 2020, WHO declared COVID-19 to be a global
health emergency [3]. There have been 94,963,847 confirmed cases of COVID-19 globally,
including 2,050,857 deaths, reported to the WHO on 20 January 2021 [4].

Since the beginning of this pandemic, researchers across the world have shown great
interest in understanding its influences and driving mechanisms. It is widely acknowledged
that saliva, nasal discharge, or airborne particles lead to the spread of COVID-19 [5–7],
while person-to-person transmission has been proved to be the likely route [8–11]. Elderly
people and children are at a higher risk of coronavirus infection [12–16]. In particular, it
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has also been found that weather factors, mainly including temperature, wind speed and
humidity, are considered as the main predictors of coronavirus disease, due to the viability,
transmission and range of spread of the virus [17].

However, most of those studies address the impact between a single climatic factor
and COVID-19 incidences [18–20]. The interaction of those climatic parameters with
COVID-19 is still unknown. Climatic factors are characterized by regional differences.
Each climatic factor does not exist alone, and multiple factors often interact with each
other. In addition, Wuhan was the first city where the virus was discovered. However,
the spatiotemporal characteristics and climatic factors of COVID-19 in Wuhan have not
been explored. Therefore, to fill this research gap, this paper has analyzed in detail the
correlation between multiple meteorological factors and COVID-19 in Wuhan, which can
hopefully provide new insights for policymakers and medical institutions regarding the
real-life situation, to better determine the key intervention measures and the optimal
allocation of health care resources accordingly.

The remainder of the paper is organized as follows. Firstly, the related literature is
reviewed. Secondly, the spatial correlation and differences of the incidence rate of COVID-
19 in Wuhan are analyzed by using global spatial autocorrelation. Thirdly, local Getis–Ord
G∗I is used to conduct hotspot detection, to analyze its local autocorrelation. Based on
this detection, the influence of climatic factors on incidence rate is analyzed by comparing
the traditional linear regression model with geographically weighted regression (GWR).
Fourthly, the interaction between multiple meteorological factors and COVID-19 is further
identified by a geographic detector. Finally, the conclusions of this study are given.

2. Climatic Indicators and COVID-19

Recent literature has demonstrated that different climatic indicators, such as tempera-
ture, humidity, and wind speed, can significantly affect the number of COVID-19 cases and
mortality [21,22].

The majority of studies show that the relationship between temperature and COVID-19
cases is mostly place- and facility-specific [18]. A significant relationship is found between
average and minimum temperatures in COVID-19 cases in New York [23]. It was observed
that the increase of one unit in the daytime temperature range resulted in a decrease in the
number of COVID-19 cases by approximately 6.4 times in Italy [19]. Lower temperature
levels are related to the higher number of COVID-19 cases on a particular day, according to
the study in Turkey [21]. A study conducted in 17 different cities of China advocated that a
1 ◦C increase in ambient temperature and diurnal temperature range was associated with a
decrease in the number of daily confirmed cases [22]. However, in one study conducted in
Jakarta, Indonesia, no correlation between temperature and the number of COVID-19 cases
was found [20].

There is also a body of literature that considers humidity as one of the crucial at-
mospheric factors in predicting the transmission of COVID-19. Humidity is proved to
have a negative relationship with the virus outbreak speed [19]. Another study shows
that absolute humidity has significant negative effects on confirmed case counts for four
cities in China [22]. It was suggested that the relation between humidity and the number
of COVID-19 cases was the most significant on the particular day of the study in Turkey.
This indicates that an increase in humidity results in a decline in the number of COVID-19
cases [21]); however, no significant association between COVID-19 cases and absolute
humidity was found in China [24].

There is relatively less research on the relationship between wind speed and the spread
of COVID-19. The low speed of the wind was observed to be significant [19]. One study
showed that there was no significant correlation between wind speed and the number of
COVID-19 cases [23]. However, it is interesting to find that the average wind speed over
14 days has the highest correlation with the number of COVID-19 cases in Turkey. Higher
wind speed was also related to a greater number of cases [21].
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The correlation between rainfall and the number of COVID-19 cases has also been
examined in many studies. Evidence shows that rainfall is negatively and weakly correlated
with the spread of COVID-19 [23]. However, some countries with higher rainfall showed
an increase in the number of COVID-19 cases. It is advocated that an increase of one inch
of rainfall per day was associated with an increase of 56 COVID-19 cases per day [25]. No
correlation between rainfall and the number of COVID-19 cases was found in Iran [19],
which is consistent with the study in Indonesia [20].

The literature mentioned above has improved our understanding of the spread of
COVID-19. However, there are still some gaps that need to be addressed. On the one
hand, the existing literature mainly used correlation and regression analysis methods, but
geographically weighted regression, which can show spatial distribution characteristics, has
been largely neglected. On the other hand, the interaction of those climatic parameters with
COVID-19 has barely been studied, which falls short of revealing a deeper understanding
of the dynamics of the pandemic. Therefore, in this study, the interaction of those climatic
parameters is emphasized by using the geographic detector and GWR model, which
contributes to addressing those gaps.

3. The Study Area

Wuhan is the capital of Hubei Province in central China (Figure 1). It is located in the
east of Hubei Province, at the intersection of the Yangtze River and the Hanshui River. Its
geographical location is 29◦58′–31◦22′ N and 113◦41′–115◦05′ E. The distance from the east
to the west of Wuhan is 134 km, and it is about 155 km from the north to the south at its
maximum extent. Wuhan is topographically flat in the central portion, surrounded by hills
and ridges to the north and south, and low mountains to the north (Figure 2). The areas
of low mountains, hills, ridges and elevated plains, and flat plains in the city, account for
5.8%, 12.3%, 42.6% and 39.3% of the total land area, respectively. The altitude ranges from
19.2 m to 873.7 m, but most of the area is below 50 m [26].

Wuhan has a monsoon (humid) climate in the north subtropical zone, which is char-
acterized by abundant rainfall and heat. It has four distinct seasons, with a cold winter
and hot summer. The annual average temperature in Wuhan is 15.8–17.5 ◦C. The annual
rainfall is 1150–1450 mm, and the rainfall is concentrated from June to August, accounting
for about 40% of the annual rainfall [26].

Wuhan is divided into 13 administrative districts, comprising Jiang’an District, Jiang-
han District, Qiaokou District, Hanyang District, Wuchang District, Qingshan District,
Hongshan District, Caidian District, Jiangxia District, Huangpi District, Xinzhou District,
Dongxihu District and Hannan District [26]. At the end of 2019, Wuhan had a total area of
8569.15 square kilometers and a population of 11.21 million, including 9.02 million urban
residents, accounting for 80.49% of the total population [27].
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Figure 1. Location of Wuhan City in Hubei Province.
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Figure 2. DEM map of Wuhan.

4. Data and Methods
4.1. Experimental Data and Pretreatment
4.1.1. Data Regarding COVID-19 and Preprocessing

The data regarding COVID-19 in Wuhan were obtained from the official website of
the Hubei Center for Disease Control and Prevention (http://www.hbcdc.com/ accessed
on 22 October 2020. The data includes the number of newly discharged cases, the number
of newly fatal cases, the number of suspected cases, the total number of confirmed cases
and the number of newly confirmed cases in each district. The time span covered was
from 21 February 2020 to 17 March 2020. Using this basic information, the method of
geocoding was used to transform it into spatial data that could be used for GIS analysis.
Considering the effect of population base differences on the spread of COVID-19, the
concept of incidence rate in epidemiology was introduced so that the incidence level could
be more accurately reflected [28]. The incidence rate refers to the proportion of morbidity
of the total population in a certain area and within a certain period. Therefore, the district
is used as the spatial unit of incidence rate. Meanwhile, in order to avoid an analysis error
caused by the insufficient data of small samples, the time unit of incidence rate used in

http://www.hbcdc.com/
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this paper is on a daily scale. The formula for the incidence rate is as follows, and the unit
is 1/100,000.

Incidence rate = (a certain number of new cases in the district per day/the total population in the area) * 100,000

The zero value in the case data was interpolated. Meanwhile, in order to eliminate
the effect of heteroscedasticity, the incidence rate was calculated logarithmically [29]. The
population data of each district in Wuhan city was obtained according to the statistical data
of the Hubei Provincial Bureau of Statistics in 2020.

4.1.2. Meteorological Data and Preprocessing

The meteorological data used in this paper were from 85 meteorological stations in
Hubei Province (Figure 3). The data provided by each station were by day, including
temperature, relative humidity, wind speed, rainfall and air pressure. Relevant studies
have shown that there are correlations between meteorological factors, such as temperature,
relative humidity, wind speed, and rainfall, and the morbidity of COVID-19 [24,25,30].
Therefore, the above four types of meteorological elements were taken as explanatory
variables. In addition, considering the correlation of air pressure with other meteorological
factors, these were also taken as explanatory variables. The ordinary Kriging spatial inter-
polation method is used to process the daily meteorological data, and the grid interpolation
results of each meteorological element, with 500 m spatial resolution, were obtained. The
average values of meteorological data by day and district were obtained using ArcGIS
10.4 software.

Figure 3. The spatial distribution of meteorological stations.
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4.2. Research Methods
4.2.1. Geographical Detection

Geographical detection is a method proposed by Wang Jinfeng et al. from the Institute
of Geographical Sciences and Resources, Chinese Academy of Sciences [31], and is mainly
used to detect spatial differentiation and reveal the driving forces behind it. The geographi-
cal detector includes four detectors, of which the differentiation and factor detector is used
mainly to detect the spatial differentiation of a geographical object Y, and the extent to
which the detection of the geographical factor X reveals the spatial differentiation of the
geographical object Y. The basic idea of differentiation and the factor detector is to divide
the research area into several sub-areas. If the sum of the variance of the sub-area is less
than the total variance of the area, there is spatial differentiation. Therefore, this method
can be used to analyze the overall difference degree between different types of regions in
space. The interaction detector is mainly used to identify the interaction between different
risk factors (XS), that is, to evaluate whether the combined action of factors X1 and X2 will
increase or decrease the explanatory power of the dependent variable Y, or whether the
influence of these factors on Y is independent of each other. The evaluation method is to
first calculate the q value of two factors X1 and X2 to Y (q (X1) and q (X2)), calculate the
q value of their interaction (q (X1 ∩ X2)), and compare q (X1), q (X2) and q (X1 ∩ X2). The
specific formula of the geographical detector is as follows:

q = 1− 1
Nσ2 ∑L

h=1 Nhσh2 (1)

where q is a measure of spatial differentiation; h =1, 2 . . . , L is the number of classifications;
Nh and N are the number of sample units in layer h and the whole region, respectively; and
σh and σ are the variance of layer h and the whole region, respectively. The value range of
q is (0,1). The larger the value of q, the more obvious the spatial differentiation.

4.2.2. Spatial Autocorrelation Analysis

Spatial autocorrelation analysis is used to study whether there is a correlation between
the observations of a spatial unit and those of its adjacent units. It is a measure of the
aggregation degree of the observations of a spatial unit [32]. It can be divided into global
spatial autocorrelation analysis and local spatial autocorrelation analysis [33]. Among these,
global spatial autocorrelation analysis is used to analyze the average correlation degree,
spatial distribution pattern and significance of each unit in the whole study area. Local
spatial autocorrelation is used to diagnose whether there are different spatial aggregation
patterns in the local spatial region, and to explore the heterogeneity of the data [34]. In this
paper, the Global Moran’s I index is used to analyze the spatial correlation and difference
of the incidence rate of COVID-19 in Wuhan:

I =

n
n
∑

i=1

n
∑

j=1
wij(xi − x)(xj − x)

n
∑

i=1

n
∑

j=1
wij

n
∑

i=1
(xi − x)2

=

n
∑

i=1

n
∑

j=1
wij(xi − x)(xj − x)

S2
n
∑

i=1

n
∑

j=1
wij

; x =
1
n ∑n

i=1 xi (2)

In the formula, S2 represents 1
n

n
∑

i=1
(xi − x)2 and wij represents a space adjacency matrix.

When the entity, I, is topologically adjacent to the entity, J, with a common edge, the value
is 1. Otherwise, it is 0. n is the number of units; xi or xj is the new incidence rate of i or j
for a certain area unit; x is the mean of all regional incidence rates; and W is the spatial
weight matrix. The value range of Moran’s I index is [−1,1]. At a given significance level,
a positive value represents a positive correlation of the overall distribution. The larger
the value, the closer the relationship between the spatial units, and the more similar the
property, and vice versa. When Moran’s I index is 0, it means that there is no spatial
correlation, and the observation objects are randomly distributed in space.
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Local Getis–Ord G∗I is used to detect hotspots, and its local autocorrelation is analyzed.
The index can clearly reflect the hotspot distribution of observations in local space. The
calculation formula is as follows:

G∗I =
∑n

j=1 wij xj − w∗i x

s

√(
ns1i −

(
w∗i
)2
)

/(n− 1)

w∗i =
n

∑
j=1

wij , s1i =
n

∑
j=1

w2
ij (3)

In this formula, s is the standard deviation of the incidence rate in the whole area.
The larger the absolute value of G∗I , the higher the degree of aggregation of the study
area, forming a hot area. When the index is positive, it is an aggregation of high value.
Otherwise, it is an aggregation of low value.

4.2.3. Geographically Weighted Regression

Geographically weighted regression is a method to study the quantitative relationship
among multiple variables with spatial distribution characteristics, by using the regression
principle. As is different from the ordinary linear regression model (OLS), the GWR
model can explore the non-stationarity of a spatial relationship according to the change of
parameter estimation value with geographical location, by incorporating spatial location
information into the regression equation:

yi = β0(ui, vi) +
p

∑
k=1

βk(ui, vi)xik + εi , i = 1, 2, . . . , n (4)

where (ui,vi) is the coordinate of the sampling point I; βk(ui,vi) is the regression parameter
of I; β0(ui, vi) is the intercept of i, indicating the expected value of the dependent variable
when all explanatory variables are zero; and εi is the residual of i.

5. Results and Analysis
5.1. Temporal and Spatial Distribution of COVID-19

From 21 February 2020 to 17 March 2020, the time sequence of the number of newly
confirmed cases in Wuhan is shown in Figure 4. According to this, the spread of COVID-19
in Wuhan can be divided into four stages. Stage A included 21 February and 22 February
2020, when COVID-19 was still in the outbreak period. At this time, the number of newly
confirmed cases was still large, and it then rose sharply, reaching a peak on 22 February
2020. Stage B was from 23 February to 27 February 2020. At this stage, the government
strengthened its control, which alleviated the spread of COVID-19 to a certain extent, and
the number of newly confirmed cases fell sharply for a short time. Stage C included 28
February and 29 February 2020. At the end of February, the number of newly confirmed
cases reached a peak again. Stage D was from 1 March to 17 March 2020. At the beginning
of March, the epidemic situation was gradually alleviated with the intervention of human
prevention and control measures. Newly confirmed cases continually go down in number.

According to the zonal distribution of the morbidity of COVID-19 in Wuhan (Figure 5),
the morbidity of COVID-19 had a strong spatial aggregation, mainly concentrated in the
central area of Wuhan City, such as Hanyang District, Qiaokou District and Hongshan
District, and scattered in the areas far away from the center.

The average incidence rate of these four stages was calculated. In order to verify
whether there are significant differences in incidence rate at these four stages, the geograph-
ical detector was used. In the model, Y is the incidence rate of different stages, and X is
the number of stages. It is calculated that the q value is about 0.431, and the p-value is 0,
which shows that the incidence rate of these four stages shows a strong differentiation and
is greatly significant. The morbidity of the COVID-19 in Wuhan was irregular as a whole,
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but there was a noticeable phenomenon of agglomeration in some areas. The morbidity of
the city center was high for a long time, and it was unstable in suburban districts.

Figure 4. Sequential variation of the number of newly confirmed cases of COVID-19 in Wuhan.

Figure 5. Morbidity of COVID-19 at each stage in every district of Wuhan.

5.2. Spatial Distribution of the COVID-19

In order to quantitatively evaluate the spatial aggregation of morbidity of COVID-
19, the global Moran’s I index is calculated and its corresponding significance test for
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morbidity is carried out in four stages through the global spatial autocorrelation statistical
model, as shown in Table 1. From this, it is known that the spatial distribution of the
incidence rate tends to spatial aggregation in the four stages from 21 February 2020 to 17
March 2020. The Moran’s I index in stage D, which is less than 0.1, is relatively low. The
global spatial correlation at this stage is also weaker than at other stages. The Z values of
stage B and stage C are greater than 1.96 at a significance level of 0.05, showing statistical
significance. The spatial distribution pattern shows aggregation. The Z values of stage
A and stage D are less than 1.96, which is not statistically significant. Combined with
the spatial distribution characteristics of the incidence rate at different stages, it can be
seen that the spatial autocorrelation of the early stage and the last stage of morbidity of
COVID-19 in Wuhan is weaker than the later stages. However, on the whole, it presents
the characteristics of spatial aggregation.

Table 1. Global Moran’s I analysis of morbidity of COVID-19 in Wuhan during the four stages.

Stage Moran’s I Z Value p Value

A −0.12382 −0.35922 0.719432
B 0.173692 2.266786 0.023403
C 0.201288 2.507522 0.012158
D 0.080119 1.450025 0.147052

Based on the above global spatial autocorrelation analysis, the incidence rate of local-
ized Getis–Ord hotspots was analyzed, and the visualized results are shown in Figure 6.
During the whole study period, there are clustered areas, except in stage A. There are
hotspots with high values in the city centers for most of the time, especially in Hongshan
and Wuchang (Table 2). The incidence rate is strongly concentrated in stage B and stage D.
In addition, strong randomness in stage C is shown, with rapidly increasing morbidity.

Figure 6. Cont.
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Figure 6. Local Getis–Ord G∗I of morbidity of COVID-19 in stage B, stage C and stage D in Wuhan.
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Table 2. Hotspots of morbidity of COVID-19 in stage B, stage C and stage D in Wuhan.

Stage Extremely Significant Hotspot Significant Hotspot

B Hongshan District Wuchang District, Hanyang
District, Dongxihu District

C
Hongshan District, Wuchang District,

Hanyang District,
Qiaokou District, Jianghan District

Dongxihu District

D Hongshan District Wuchang District

5.3. Analysis of Climatic Factors Affecting Spatial Differences in the Morbidity of COVID-19
5.3.1. Calculation Results of the Panel Data of COVID-19

Panel data models describe the behavior of COVID-19, both across time and individu-
als. There are three types of models: the pooled model, the fixed effects model, and the
random-effects model. To grasp the global impact of the various climatic factors on the
incidence rate, the incidence rate is analyzed based on panel data models. The results are
shown in Tables 3 and 4.

Table 3. The statistical description of variables.

Variable Name Mean S.D. Min. Max.

Morbidity 1.954369 4.210536 0 41.34
Wind Speed 10.66797 39.75123 1.423684 210.6399

Rainfall 2.086061 4.80734 −0.0585661 28.28895
Atmospheric Pressure 1015.949 5.000894 1000.543 1028.252

Temperature 12.12238 3.089419 5.495003 20.00483
Relative Humidity 72.5454 16.56671 10.40511 96.97927

Table 4. Calculation results of panel data of COVID-19.

Model 1
OLS

Model 2
FE

Model 3
FE

Model 4
RE

Wind Speed 0.000 ***
(5.48)

0.000 ***
(5.20)

0.000 ***
(5.58)

0.000 ***
(5.50)

Rainfall 0.838
(−0.20)

0.799
(−0.26)

0.881
(−0.15)

0.870
(−0.16)

Atmospheric Pressure 0.000 ***
(8.51)

0.000 ***
(9.96)

0.000 ***
(8.64)

0.000 ***
(8.58)

Temperature 0.000 ***
(6.78)

0.000 ***
(8.77)

0.000 ***
(7.34)

0.000 ***
(7.29)

Relative Humidity 0.000 ***
(7.07)

0.000 ***
(6.83)

0.000 ***
(6.77)

0.000 ***
(6.77)

Constant 0.000 ***
(−8.63)

0.000 ***
(−10.04)

0.000 ***
(−8.74)

0.000 ***
(−8.70)

R2 0.2216 0.2276 0.2276 0.2274
Hausman χ

(p Value)
61.57

(0.0000)
Observations 325 325 325 325

(1) Mixed OLS estimation, FE estimation and RE estimation in brackets are T values calculated based on White’s
heteroscedasticity robust standard error; (2) *** indicates it is statistically significant at 1%.

According to Table 4, there are four climatic factors that have a great impact on the
incidence rate, under the significant level of 10% and below. According to the absolute
value of the coefficient, the order of influence in descending order in the OLS model is
air pressure, relative humidity, temperature, and wind speed. The order of influence in
descending order in the FE model and RE model is air pressure, temperature, relative
humidity, and wind speed. The results demonstrate that the four climatic factors show
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a significantly positive correlation with the morbidity of COVID-19, but rainfall is not
statistically significant.

5.3.2. Results of GWR Model

The spatial distribution of the incidence rate of COVID-19 has significant spatial cor-
relation and spatial heterogeneity. Traditional linear regression models ignore the effect of
spatial location on the incidence rate of COVID-19. The GWR model can effectively solve the
problem of local variation between dependent variables and independent variables, caused
by spatial location [35]. Therefore, based on the GWR4 software, the incidence rate is taken
as the dependent variable and those six climatic factors, including temperature, relative
humidity, rainfall, wind speed, and air pressure, are taken as explanatory variables. The
bi-square function is selected as the weight function, and a cross-validation method is used.

The average R2 of the GWR model on a daily scale is 0.558, which is higher than 0.2276,
the highest goodness of fit of the linear regression model. The GWR model could explain
55.8% of the dependent variable. In addition, on some days, the R2 of the GWR model on a
daily scale is above 0.804. It shows that the fitting result of the GWR model is better than
that of the traditional regression model, and the interpretation effect is better. On the other
hand, in view of the type of data, this result is also acceptable and meaningful.

The daily regression model and the regression coefficient of each explanatory variable
are tested. The results show that in all the 26 days of the study period, the corresponding
models of 20 days pass the test, accounting for 76.9% of the total number. The failure period
is likely to be affected by the quality of the data itself, so the regression coefficient of each
explanatory variable in those days would not be tested.

According to Figure 7, the range of regression coefficients of the variables is very
large, and the coefficients of explanatory variables are both positive and negative. It can
be seen that the regression coefficient obtained by the traditional regression method can
only represent the average level of the variables, thus ignoring some local coefficient
characteristics. It can be seen that the incidence rate is not in a stable coefficient relationship
with the climatic factors. Due to the actual situation in different regions, different climatic
factors lead to strong spatial instability, and change with time.

Figure 7. The trend of T values, calculated by the GWR model.
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5.3.3. Analysis Results of the Geographical Detector

The interaction between different climatic elements is further identified by geograph-
ical detectors. That is, whether any two climatic factors can increase or decrease the
explanatory power of the incidence rate when the combined effects of these two factors are
involved, or if the influence of these climatic factors on the incidence rate is independent.
The results show that any two variables have greater interaction with the spatial distribu-
tion of the incidence rate than any one variable alone (Tables 5 and 6). The meteorological
factors have different effects on the spatial distribution of the incidence rate at each stage.
For example, the q value of the geographical detector in stage B is as follows: temperature,
wind speed (0.261679) > relative humidity (0.05373) > rainfall (0.024671) > air pressure
(0.001552). It is clear that temperature and wind speed are the most important controlling
factors of spatial differentiation of the incidence rate of COVID-19. The q value of the
geographical detector in stage D is as follows: air pressure (0.2395) > relative humidity
(0.131341) > temperature (0.111868) > rainfall (0.038989) > wind speed (0.000709). It is
clear that at this stage, air pressure is the most important controlling factor of spatial
differentiation of the incidence rate of COVID-19.

Table 5. Result of interaction detector on 25th February.

Wind Speed Rainfall Atmospheric Pressure Temperature Relative Humidity

Wind Speed 0.000709
Rainfall 0.235696 0.038989

Atmospheric Pressure 0.36264 0.369512 0.2395
Temperature 0.523846 0.528456 0.540562 0.111868

Relative Humidity 0.531986 0.214962 0.465428 0.52001 0.131341

Table 6. Result of interaction detector on 8th March.

Wind Speed Rainfall Atmospheric Pressure Temperature Relative Humidity

Wind Speed 0.261679
Rainfall 0.816171 0.024671

Atmospheric Pressure 0.321217 0.111514 0.001552
Temperature 0.318473 0.816171 0.321217 0.261679

Relative Humidity 0.608421 0.48776 0.161714 0.608421 0.05373

6. Discussions

It can be concluded that wind speed, relative humidity, temperature and air pressure
are important meteorological factors affecting the spread of COVID-19. This conclusion is
consistent with most of the previous research [19,21,22]. It also shares some similarities
with studies on other respiratory diseases, such as the influenza virus [36–38], which
advocate that meteorological variables such as temperature and air humidity can be treated
as risk indicators for an increase in flu cases [39] and aerosol spread of the influenza virus
is dependent upon both ambient relative humidity and temperature [40].

In addition, this study yields the result that any two variables have greater interaction
with the spatial distribution of the incidence rate of COVID-19 than any one factor alone,
which reveals a deeper understanding of the pandemic of COVID-19. In reality, relative
humidity is affected by the air temperature. Therefore, there is to some extent a relationship
between those two variables that makes the situation more complex. Other factors are
also yielding the same dilemma. On the whole, among those climatic factors, there is a
positive correlation between wind speed and the spread of COVID-19, which is consistent
with Bashir’s conclusion [23]. The influence of relative humidity is more complex, and
the results show that there is generally a positive correlation, but the opposite situation
appears in a small range. In the related research, mean relative humidity has no significant
relationship with the incidence rate of COVID-19 [23], and some studies also show that the
COVID-19 spread is negatively correlated with relative humidity [22]. Combined with the
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transmission mechanism of the virus itself, the virus is more infectious when the relative
humidity is higher, but the persistence is lower [41]. It is speculated from the results of
this paper that the infectivity and persistence of the virus need to be comprehensively
considered. The overall temperature has a negative correlation with the spread of COVID-
19, and Liu et al. (2020) reach a similar conclusion, which is also consistent with the long-
term epidemic transmission period. That is, epidemic disasters are often more frequent
in cold periods, and rare in warm periods [42]. In one study, it was suggested that the
epidemic period lasted approximately 10 weeks for all pandemics. None of the pandemics
had its epidemic period before late autumn. The epidemic period of the Asian influenza
was preceded by falling temperatures [36].

It is worth mentioning that although the relationship between air pressure and the
spread of COVID-19 is seldom studied, there is similar research on seasonal influenza in
Queensland, Australia, which indicates that a 1-hPa increase in air pressure will result
in an increase in the monthly influenza cases [37]. In this study, it is concluded that
there is a positive correlation between air pressure and the number of COVID-19 cases.
Rainfall is not significantly correlated with COVID-19. However, any interaction of those
two factors with other climatic factors will affect the number of COVID-19 cases. All in
all, in this study period of Wuhan, wind speed and air pressure are positively related
to the spread of COVID-19, while temperature has a negative correlation with it. Those
findings are consistent with studies in other regions. In addition, the influence of relative
humidity shows a complication factor that can also be seen in other research. It is also
interesting to identify the influence of the interaction of any other climatic factors on the
newly confirmed cases of COVID-19. Nevertheless, Wuhan embodies a monsoon climate,
and climatic factors are characterized by regional differences that still need to be taken into
consideration. Those findings not only provide a new insight for key intervention measures
and the optimal allocation of health care resources accordingly but also lay a theoretical
foundation for disease prevention, disease intervention, and health services globally. In the
future, besides the regional factors, the single climatic factor and the interaction of those
factors should be taken into consideration for preventing the spread of viruses.

7. Conclusions

To the best of our knowledge, this paper is the first one to explore the correlation
between climatic factors and the morbidity of COVID-19 in Wuhan. The interaction of
those climatic parameters is emphasized by using the geographic detector and GWR model.
It is revealed that the response of the morbidity of COVID-19 to meteorological factors is
different at different stages.

On the whole, the morbidity of COVID-19 has a strong spatial aggregation, mainly
concentrated in the central area of Wuhan City, for instance, in Hanyang District, Qiaokou
District and Hongshan District, and is scattered in the areas far away from the center.
In terms of time, meteorological factors have no significant effect on COVID-19 at the
initial stage. Before COVID-19 morbidity reached the first peak, the positive influence
of wind speed and the negative influence of temperature were the most obvious factors.
With the decline in the number of newly confirmed cases, the influence of meteorological
factors was relatively weak. The influence of meteorological factors on morbidity may
have been weakened due to the intervention of government control, human prevention
and other factors. Before the second peak of morbidity of COVID-19, the positive effect
of air pressure and the negative effect of relative humidity were more obvious. To sum
up, climatic influences on this pandemic spread are of great importance and should be
further investigated.

It is worthwhile to mention that this paper also has the following limitations. Firstly,
due to the particularity of epidemic control in Wuhan and the limitation of data acquisition,
the research period of this paper is limited. Secondly, previous studies have shown that the
impact of meteorological factors on the spread of disease is different in different climatic
types. Based on the study of the COVID-19 spread in Wuhan, the relevant conclusions
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can be compared with other similar climatic types. In specific climatic conditions, more
targeted analysis is needed.
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