
sustainability

Article

The Effects of Seismic Coefficient Uncertainty on Pseudo-Static
Slope Stability: A Probabilistic Sensitivity Analysis

Dongli Li 1,2, Miaojun Sun 3,*, Echuan Yan 1 and Tao Yang 4

����������
�������

Citation: Li, D.; Sun, M.; Yan, E.;

Yang, T. The Effects of Seismic

Coefficient Uncertainty on

Pseudo-Static Slope Stability: A

Probabilistic Sensitivity Analysis.

Sustainability 2021, 13, 8647. https://

doi.org/10.3390/su13158647

Academic Editors: Yi Zhang,

Lei Huang and Zeyu Wang

Received: 4 July 2021

Accepted: 27 July 2021

Published: 3 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Faculty of Engineering, China University of Geosciences, Wuhan 430074, China;
zhongguotiesiyuan@163.com (D.L.); yecyec6970@163.com (E.Y.)

2 China Railway Siyuan Survey and Design Group Co., Ltd., Wuhan 430063, China
3 POWERCHINA Hua Dong Engineering Corporation Limited, Zhejiang Engineering Research Center of

Marine Geotechnical Investigation Technology and Equipment, Hangzhou 311122, China
4 School of Civil Engineering, Central South University, Changsha 410075, China; yangtao@hotmail.com
* Correspondence: sunmj816@hotmail.com

Abstract: The method of pseudo-static analysis has been widely used to perform seismic slope
stability, in which a seismic coefficient is used to represent the earthquake shaking effect. However, it
is important but difficult to select the magnitude of seismic coefficients, which are inevitably subjected
to different levels of uncertainties. This paper aimed to study the influences of seismic coefficient
uncertainties on pseudo-static slope stability from the perspective of probabilistic sensitivity analysis.
The deterministic critical slope height was estimated by the method of upper-bound limit analysis
with the method of pseudo-static analysis. The soil shear strength parameters, the slope geometrical
parameters (including slope inclinations, slope heights, and the slope widths), the horizontal seismic
acceleration coefficient, and the unit weight of soil masses were considered as random variables.
The influences of their uncertainty degrees, the correlation relations, and the distribution types of
random variables on probabilistic density functions, failure probabilities, and sensitivity analysis
were discussed. It was shown that the uncertainty degrees greatly impact the probability density
distributions of critical slope heights, the computed failure probabilities, and Sobol’ index, and the
horizontal seismic coefficient was the second most important variable compared to the soil shear
strength parameters.

Keywords: slope stability; seismic; three-dimensional analysis; Mohr–Coulomb failure criterion;
global sensitivity analysis; pseudo-static analysis

1. Introduction

The pseudo-static analysis is a classical approach to perform seismic stability of slopes
in the geotechnical community [1,2], by combining it with other analytical deterministic
computational models, for example, the limit equilibrium methods [3,4], as well as the
method of upper-bound limit analysis [5,6]. The limit equilibrium method (LEM) is widely
accepted by slope design engineers. Because many hypotheses about interface forces are
made in LEM, the solution is less theoretically rigorous than those of the limit analysis
method (LAM) [5,7]. Compared to LEM, the method of upper-bound limit analysis is
an efficient method for geotechnical stability analysis that can provide a rigorous upper
estimation to the critical height of slopes, or a lower bound to the necessary face pressures
against failure [5].

Both the limit equilibrium method and the upper-bound limit analysis mentioned
above can make reliable evaluations on slope stability; the predictive accuracy highly
depends on whether the associated input parameters are exactly given [3,5]. However, the
uncertainties of input parameters regarding these models are often inevitable, partly due
to the measurement error and partly due to the transformation model uncertainty and the
inherent soil variability [8,9]. Therefore, it is necessary to study the influence of model
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parameters’ uncertainty on slope stability in the framework of probabilistic analysis, which
is able to provide more insight than pure deterministic analysis. The method of pseudo-
static analysis has been widely accepted to examine seismic slope stability, for which
the selection of the seismic coefficient is critical for the analysis accuracy of this method,
especially for engineering design practice. The seismic coefficient is inevitably subjected
to high uncertainties [10–13]. However, investigating the effect of seismic coefficient
uncertainty on pseudo-static slope stability in the light of probabilistic analysis is rarely
reported. This research aimed to fill this gap, trying to show how the uncertainty degree of
the seismic coefficient impacts slope stability with the pseudo-static method.

In recent decades, the topic of probabilistic analysis on slope stability has attracted
much attention in academia, such as the subset simulations, the first-order reliability
method, the importance sampling method, and the classical response surface methods
(RSM). The mathematical models used for building an RSM include polynomial chaos ex-
pansion [14,15], support vector machine [6,16], multivariate adaptive regression splines [17],
and Kriging [18]. The method of the sampling method, such as the Monte Carlo method, is
subjected to low computational efficiency. The first order reliability method requires an
explicit expression of the limit-state function, which is, however, not always available. The
method of sparse polynomial chaos expansions combined with Monte Carlo Simulations
has been widely used in probabilistic analysis of classical geotechnical problems, such as
slopes, tunnels, retaining walls, and foundations [14,15,19]. The benefit of the sparse poly-
nomial chaos expansions (SPCE) is that it has higher computational efficiency compared
with common polynomial chaos expansions, making it applicable to high-dimensional
problems with accurate results of probabilistic analysis.

This paper aimed to study the influences of seismic coefficient uncertainties on pseudo-
static slope stability from the perspective of probabilistic sensitivity analysis. Deterministic
critical slope height was computed by employing the method of upper-bound limit analysis
with a three-dimensional rotational horn-type mechanism. The input parameters, including
the Mohr–Coulomb shear strength parameters, the three-dimensional slope geometrical
parameters, the horizontal seismic acceleration coefficient, and the unit weight of soil
masses, were considered as random variables to check the influence of their uncertainties
in this paper. The method of SPCE combined with MCS for probabilistic analysis is
briefly introduced in the next section. Then, the three-dimensional stability analysis of
slopes using a horn-type failure mechanism was presented, with the failure of soil masses
characterized by the Mohr–Coulomb failure criterion. The influences of uncertainties of
model parameters on the pseudo-static slope stability analysis are discussed. This paper is
closed with a conclusion.

2. Sparse Polynomial Chaos Expansions
2.1. Sparse Polynomial Chaos Expansions

The method of the SPCE method has attracted much attention in the community
of probabilistic analysis and uncertainty quantification [19,20]. In this section, the SPCE
method is introduced as follows.

If the input parameters of a deterministic physical model T are characterized by a
random variable vector ξ, the model response Y is also a random variable. The associated
model response can be represented by an SPCE [20,21],

Y = T(ξ) ∼= ∑
β

kβψα(ξ) (1)

where ψα(ξ) =
M
∏
i=1

Hαi(ξi) are multivariate polynomials, with Hαi(ξi) denoting an uni-

variate polynomial, for example, Hermite polynomials and Laguerre polynomials, M the
number of the input parameters, and α = (α1, · · · αi, · · · αM) being an M-dimensional
vector of integers; kβ are the PCE coefficients to be determined. In this study, the Her-
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mite polynomials were employed to build a PCE basis due to its wide applications in
geotechnical problems.

For practical engineering applications, Equation (1) should be truncated to limit it to
certain terms for computational convenience. There are many truncation schemes [21], such
as the common scheme, the low-rank truncation, and hyperbolic truncation scheme. In the
common truncation scheme, it is assumed that only the total degree of the multivariate
polynomials less than the assigned PCE order are kept, which results in a large number of
retained PCE terms. Instead, the hyperbolic truncation scheme only keeps the multivariate
polynomial terms with the newly defined q-quasi-norm less than the specified PCE order p.
The q-quasi-norm is written as [21],

αq =

(
M

∑
i=1

α
q
i

)1/q

(0 < q < 1) (2)

The hyperbolic scheme is used herein to truncate the PCE expansions. The number of
retained PCE terms is highly linked to the magnitude of q, with a smaller q resulting in
fewer PCE terms. A PCE-RSM with a small number of retained terms may lose its powerful
fitting ability. Thus, a good compromise between the predictive accuracy and the model
sparsity should be found to select the value of q.

The determination of the PCE coefficient vector kβ needs a set of training samples,

which is a group of the realizations of the input vector χ =
[
ξ(1), ξ(2), · · · ξ(M)

]T
together

with the corresponding model responses
∧
Y =

[ ∧
Y1,

∧
Y2, · · · ,

∧
YN

]T
, which is obtained by

running the original deterministic computational model, such as the deterministic pseudo-
static slope stability analysis model, for each set of the input realizations. Even though the
unknown PCE coefficients can be assessed using the least-square minimization method, it
suffers from the risk of over-fitting and requires a large number of training samples. In an
attempt to solve this issue, the technique of Bayesian regression analysis is employed to
assess the unknown PCE coefficients based on the selected training samples in this work.
Interested readers are referred elsewhere to [20] for details on how to perform Bayesian
regression for building a PCE model.

2.2. Probabilistic Analysis Using SPCE-MCS

Once the unknown SPCE vector kβ is solved and determined by Bayesian regression,
the SPCE-RSM model is built to represent the responses of the original deterministic
computational models. The successfully constructed SPCE-RSM is then combined with
MCS to perform probabilistic analysis, for example, constructing probabilistic density
functions and computing failure probabilities. A performance function is then defined as

G =
Hc

H
− 1 (3)

where Hc represents the critical slope height assessed by the SPCE surrogate model, and H
is the slope height. According to MCS, the failure probability can be computed by

Pf =
1
N

N

∑
i=1

I(G) (4)

where N denotes number of Monte Carlo samples, which had to be set to large enough to
reach a coefficient of variation of Pf less than 5% in this study. The Monte Carlo samples
were generated by the Latin hypercube sampling technique in this study. I(G) is equal to 1
for G < 0, otherwise it is zero.

Besides this, the constructed PCE-RSM has been widely employed to conduct a global
sensitivity analysis. Specially, the Sobol’ indices, which reflect the contributions of input
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random variable to the variance of system responses, can be directly computed as a function
of the PCE coefficients. Interested readers are referred to [20] for details on how to perform
global sensitivity analysis with a PCE model.

3. D Stability of a Soil Slope

A slope is sketched in Figure 1a, in which β denotes the angle of inclination, H and B
represent the slope height and width, respectively, and c and ϕ are the soil cohesion and
friction angle, respectively. The slope was subjected to two external forces, gravity and
the earthquake loadings. The pseudo-static approach was employed herein to consider
the seismic effect, which was assumed to be uniform inertial forces and equal to the soil
unit weight (γ) multiplied by a so-called seismic acceleration coefficient (kh). Under the
contributions of these two external forces, the slope was about to fail. In order to check
the three-dimensional stability of slopes, the three-dimensional (3D) rotational horn-type
mechanism, proposed by Michalowski and Drescher [22], was employed in this study,
combining the pseudo-static method with the upper-bound limit analysis. The 3D horn-
type failure mechanism of slopes is sketched in Figure 1b. The horn-type failure mechanism
is composed of the 3D horn section split by a plane-strain insert body. In the longitudinal
symmetry plane, the contours of the horn-type failure mechanism are described by two
log-spirals. The 3D horn section, crossing the slope toe, partly intersects the slope body,
which defines the moving part of the slope at failure. The plane-strain insert section with
width b was inserted into the horn section to make the analysis reduce to two-dimensional
analysis results when the slope width was not confined. The whole composite failure
mechanism followed a rotational velocity field with respect to the center O. The cross
section of the 3D horn body had to be a circle in order to meet the kinematic admissibility
required by the norm rule based on the limit analysis method [22]. The 3D horn-type
failure mechanism was completely determined by four geometrical parameters.

Figure 1. Sketch of (a) the slope problem under study and (b) the associated 3D rotational failure mechanism.

In order to derive the critical slope height based on the upper-bound limit analysis [22],
both the external work rate and the internal energy dissipation had to be calculated in
terms of the assumed 3D horn-type failure mechanism. In this study, the external force
mainly referred to the earthquake shaking forces and the gravity, while the internal energy
dissipation included those in the volume and along the failure surface. The external
work rate of gravity and internal energy dissipation could be directly obtained from [22].
The pseudo-static method was used herein to represent the earthquake shaking forces to
compute its external work rate, in which the horizontal seismic coefficient was a necessary
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and important input parameter. Thus, an assessment of the critical slope height with the
3D horn-type failure mechanism can be written as

Hc =
c cos ϕ

[
sin θhe(θh−θ0) tan ϕ − sin θ0

]
γ

f
(
θ0, θh, r′0/r0, b/H, kh

)
(5)


0 < θ0 < θB < θh < π
0 < r′0 < r0 < 1
0 < (b + B′max)/H < B/H

(6)

The expression of f (θ0, θh, r′0/r0, b/H, kh) can be found in the Appendix A. The critical
slope height was searched by optimization using the genetic algorithm with respect to the
four geometrical parameters.

4. Input Random Variables

According to Equations (5) and (6), six input parameters are essential to compute
the safety factor of slopes in this study, including the soil Mohr–Coulomb shear strength
parameters (soil cohesion c and friction angle ϕ), the horizontal seismic acceleration coeffi-
cient (kh), the slope geometrical parameters (slope inclination β, width H, and width–height
ratio B/H). and the unit weight of soil masses (γ). In order to examine the influence of
uncertainties in these model parameters, they were considered as random variables. Their
statistical properties are given in Table 1. The Latin hypercube sampling technique was
used to generate samples according to their distributions. The benefit of LHS is that it
generates samples that distribute as evenly as possible over the sampling space.

Table 1. Statistics for Input Random Variables.

Input Variable Mean(µ) COV (%) Distribution Type
Optimistic Scenario Neutral Scenario Pessimistic Scenario

ϕ (◦) 30.0 5.0 10.0 15.0 Normal/lognormal
c (kPa) 20.0 20.0 25.0 30.0 Normal/lognormal

kh 0.2 20 25.0 30 Normal/lognormal
γ (kN/m3) 20.0 3 5 8 Normal/lognormal

β (◦) 50 1.0 3.0 5.0 Normal/lognormal
B/H 5.0 1.0 2.5 4.0 Normal/lognormal

In Table 1, the mean values for soil Mohr–Coulomb shear strength parameters are
commonly encountered in geotechnical practice [8]. The degree of uncertainty is described
by the coefficients of variation (COVs), and three scenarios in terms of their COVs were
considered in this study. According to [8], the value of the COVs of soil friction angle Vϕ
ranged between 10% and 20%, while the value of the COVs of soil cohesion Vc changed
from 10% to 50%. The neutral uncertainty level of the friction angle and the cohesion were
set to 10% and 25%, respectively, from which their Pessimistic Scenario and Optimistic
Scenario, respectively, were obtained by increasing and reducing by 5%.

The horizontal seismic coefficients, kh, are usually set to a range between 0.0 and
0.3 when the pseudo-static design analysis is used [23]. The statistical properties of the
horizontal seismic coefficient reported in the literature are summarized in Table 2 [10–13].
Other input parameters, including the slope angle β, the width–height ratio B/H, and the
unit weight of soil masses γ, were also considered as random variables, as seen in Table 1,
with a low randomness compared with the shear strength parameters and the horizontal
seismic coefficient.
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Table 2. Statistical Properties for input variable kh.

Range Mean(µ) COV (%) Distribution Type Ref.

0.01–0.5 0.2 10 lognormal Tsompanakis et al., 2010
0.0–0.3 0.15 / / Hynes-Griffin and Franklin 1984

0.0–0.77 0.69 42 / Cramer, 2001
/ / 10–30 / Cao et al., 1996

5. Results and Discussions

The influence of the uncertainty degree, correlation structures, and distribution types
of the six input random variables on the assessed probabilistic density functions, failure
probability, and sensitivity analysis using the method of SPCE-MCS were investigated and
discussed in this section.

5.1. Influence of Uncertainty Degrees

The impact of uncertainty degrees on the probabilistic analysis results, including
probability density functions (PDFs) of the critical slope heights (Hc), sensitivity analysis,
and failure probability, were studied. It was assumed that the six input variables followed
lognormal distributions.

5.1.1. Influence on PDFs

The effects of the three uncertainty scenarios on the probability density functions of
the critical slope height are given in Figure 2. The critical slope heights were normalized by
the mean value of the cohesion and the unit weight of soil masses in this plot. As shown
in Figure 2, the shape of PDFs was largely affected by the uncertainty levels. A higher
uncertainty level leads to a shorter and wider shape of PDFs. This was expected, since
lower COVs of input parameters should result in higher accuracy, which shows a higher
peak in the PDFs. Besides, it could infer that the mean value of the critical slope height
was slightly affected by the uncertainty degrees. It was seen that the mean value of the
normalized slope critical height decreased slightly with the changing of the uncertainty
degrees of the input parameters.

Figure 2. Impact of uncertainty level on PDF with the critical slope height normalized by the soil
unit weight and cohesion.

5.1.2. Influence on Computed Failure Probabilities

The computed failure probabilities under different uncertainty levels versus the nor-
malized critical slope height are plotted in Figure 3. The coefficient of variation of slope
height was also taken into account in this analysis. It can be seen from Figure 3 that the
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computed failure probabilities largely increased as the critical slope height became large. It
is also known that a higher uncertainty level results in a higher failure probability when
the normalized critical slope height γuH/c < 14. For instance, in the case of γuH/c = 10, the
failure probability increased from 11.7% to 25.1% when the uncertainty level changed from
the Optimistic Scenario to the Pessimistic Scenario. On the contrary, when γuH/c > 14, the
opposite trends manifested as the increase of uncertainty level, with a higher uncertainty
tending to result in lower failure probabilities. The corresponding curves of cumulative
distribution functions (CDFs) are shown in Figure 4, which can explain this special phe-
nomenon. The Optimistic uncertainty levels, i.e., the greatest values of COVs in input
variables, provided the highest computed failure probabilities after γuH/c exceeded 14.

Figure 3. Failure probability under three uncertainty levels as a function of the critical slope height
normalized by the soil unit weight and cohesion.

Figure 4. Curves of CDF under three probabilistic scenario with the critical slope height normalized
by the soil unit weight and cohesion.

5.1.3. Influence on Sobol’ Index

To investigate the impact of the uncertainty degrees of the soil shear parameters on
the global sensitivity analysis, three COV scenarios of the friction angle and the cohesion
were considered in this section, while four other parameters were fixed at the Neutral
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Scenario. Figures 5 and 6, respectively, plot the influence of the uncertainty degrees of the
cohesion c and the friction angle ϕ on the results of Sobol’ indices. In this study, only the
Sobol’ indices of an individual input parameter were presented in Figures 5 and 6.

Figure 5. Impact of COVs on Sobol’ Index for cohesion c.

Figure 6. Impact of COVs on Sobol’ Index for friction angle ϕ.

It can be seen that the variation of COV of the shear strength parameters greatly affects
the Sobol’ indices of all input variables. The practical significance of this sensitivity analysis
lies in that it can provide guidance for designers to determine the importance of input
parameters. Making reference to Figure 5, at COVc = 30%, the Sobol index of the cohesion
c was the highest, indicating that c had the largest impact on the critical slope height for
this case, followed by the friction angle ϕ and the horizontal seismic coefficient kh. This
means that the friction angle ϕ and the horizontal seismic coefficient were the second most
significant input variables. The Sobol’ indices of the other input parameters in terms of
importance were as follows: β > γ > B/H. The ratio B/H was the least important variable,
whose Sobol’ indices could be ignored for all cases. It is noted that this ranking in terms of
importance is dependent on the coefficient of variation of input parameters. It may change
as the level of uncertainty varies. For instance, as shown in Figure 6, the importance of
the friction angle ϕ rose from the third to the second place when the COV varied from 5%
to 15%.

5.2. Influence of Correlation Relations

In order to consider the dependence between c and ϕ, the correlation coefficient rcϕ
was considered. The values of the correlation coefficient rcϕ recommended by several
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scholars [14,24–27] are listed in the following Table 3. The value of the correlation coefficient,
rcϕ = −0.5, was considered in this study. The other parameters were fixed at the Neutral
scenario listed in Table 2, and the distribution types of all the input variables were assumed
to be lognormal distributions.

Table 3. Summary of correlation coefficients between c and ϕ.

Recommended Values Ref.

0.25 (CU), −0.47 (CD) Wolff, 1985
−0.49 to −0.24 Yucemen et al., 1973
−0.7 to −0.37 Lumb, 1970
−0.5 Cho, 2010
−0.7 Jiang et al., 2014

Note: CU representing consolidated–undrained tests, CD representing consolidated–drained tests.

5.2.1. Influence on PDFs

The PDF curves corresponding to correlated and independent shear strength parame-
ters are presented in Figure 7. It can be seen that the correlation between shear strength
parameters greatly impacts the shape of PDF curves of the critical slope height. Considering
that the correlation between shear strength parameters results in a narrower and higher
PDF curve, this indicates that it gives a more robust assessment of the critical slope height
Hc when the correlation between shear strength parameters is considered.

Figure 7. Impact of correlation on PDF with the critical slope height normalized by the soil unit
weight and cohesion.

5.2.2. Influence on Computed Failure Probabilities

Figures 8 and 9 illustrate the CDF curves and the assessed failure probability for
the dependent and independent of shear strength parameters, respectively, versus the
normalized critical slope height Hc. As can be seen in Figures 8 and 9, the correlation
between shear strength parameters led to a lower failure probability when the normalized
critical slope height γuH/c < 14. For example, in the case of γuH/c = 10, the failure
probability decreased from 19.3% to 14.4% when the correlation coefficient was taken
into account. However, the opposite results were observed when γuH/c > 14. It can be
concluded that the impact of considering correlation coefficient is similar to the lower
uncertainty level. This makes sense, because a negative correlation between the soil shear
strength parameters means that the uncertainty degrees in the calculated shear strength
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were lower than the combined uncertainty degrees in terms of c and ϕ when charactering
the soil shear strength.

Figure 8. Impact of correlations on CDF with the critical slope height normalized by the soil unit
weight and cohesion.

Figure 9. Impact of correlation on failure probability as a function of the critical slope height
normalized by the soil unit weight and cohesion.

5.3. Influence of Distribution Types

In this section, the impacts of different distribution types on probabilistic density func-
tion, failure probability, and sensitivity analysis were investigated. All random variables
were assumed to follow lognormal distributions and normal distributions in this section.
The input parameters were fixed at the Neutral scenario listed in Table 2.

5.3.1. Influence on PDFs

The results of probability density functions of the assessed slope critical heights under
lognormal and normal distributions are given in Figure 10. It can be seen in this plot that
the normal distribution tended to give a lower and wider curve of PDFs. Besides this, it is
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interesting that the mean values of critical slope height were almost the same for the two
different distributions.

Figure 10. Impact of distribution types on PDF.

5.3.2. Influence on Computed Failure Probabilities

The computed failure probabilities versus the normalized critical slope height Hc
were presented in Figure 11 under the case of lognormal and normal distributions. Making
reference to Figure 11, compared with the lognormal distribution, the normal distribution
led to a higher failure probability, especially when γuH/c < 10. This indicates that the
assumption of normal distribution tended to give a conservative result.

Figure 11. Impact of distribution types on failure probability.

5.3.3. Influence on Sobol Index

Sobol’ indices for normal and lognormal distributions are listed in Table 4. It was
found that the random variable distributions slightly affect the results of Sobol’ indices.
The normal and lognormal distributions provided almost similar results in Sobol’ indices.
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Table 4. Results of Sobol’ indices.

Sobol’ Index Normal Distribution Lognormal Distribution

c 0.5275 0.5455
ϕ 0.1939 0.2011
kh 0.1875 0.1663
γ 0.0214 0.0218
β 0.0225 0.0229

B/H 0.0011 0.0014

6. Conclusions

This paper aimed to study probabilistic stability of soil slopes subject to seismic forces.
The method of upper-bound limit analysis combined with the classical pseudo-static
analysis was employed to compute the critical slope height by using the three-dimensional
rotational horn-type mechanism. This combination is widely accepted in engineering
design. The three-dimensional slope probability analysis framework was performed by
adopting the method of SPCE-MCS, which led to a more economical estimation of failure
probability of a slope. The influences of the variables’ uncertainty degrees, correlation
coefficient, and distribution types were investigated particularly.

The uncertainty degrees significantly influenced the results of PDF curves and the
assessed failure probabilities. The authors found that the failure probability was depen-
dent not only on the variability of input parameters, but also on slope geometry. It was
interesting to see that there exists a critical value of the normalized critical slope height. For
example, a higher uncertainty level led to a shorter and wider shape of PDFs and larger
failure probabilities at γuH/c < 14, over which a higher variability of model parameters
results in a lower failure probability.

The increasing of COV of an individual input parameter resulted in an increase of
its Sobol’ index, with simultaneous declining of other input variables. The ranking of the
Sobol’ index in terms of importance was dependent on the COV of input parameters, and
this may change as the level of uncertainty varies. The horizontal seismic coefficient was
the second most important variable compared to the soil shear strength parameters.

The correlation between the soil Mohr–Coulomb shear strength parameters resulted in
a narrower and higher PDF curve and led to smaller failure probabilities at γuH/c < 14. The
impact of considering the correlation coefficient was similar to the lower uncertainty levels.

The normal distribution tended to give lower and wider curves of PDFs and higher
failure probabilities, especially when γuH/c < 10. In the global sensitive analysis, normal
distributions and lognormal distributions give almost the same solutions of Sobol indices.

Anthropic activities, such as blasting vibrations, injections, and hydraulic fracturing,
would induce ground shaking and pose damage to geotechnical structures. However,
the variability of anthropic activities is rather high, resulting from different construction
techniques and operating skills. Thus, a topic worthy of a future study is to extend the
presented simulations to evaluate the influence of human-induced seismicity on dynamic
slope stability analysis in a probabilistic framework.

In this study, the soil masses were considered as homogeneous and isotropic material
for simplicity. However, the shear parameters of soils show spatial variability in reality, and
it has a significant impact on slope stability, for example, the fluctuation scales. The spatial
variability of soil parameters can be well represented by random fields. The influence of
fluctuation scales on seismic slope stability will be considered in future studies.
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Appendix A

f
(
θ0, θh, r′0/r0, b/H, kh

)
=

g5(θ0, θh, r0
′/r0) + g6(θ0, θh, b/H)

g1(θ0, θh, r0′/r0) + g2(θ0, θh, b/H) + khg3(θ0, θh, r0′/r0) + khg4(θ0, θh, b/H)
(A1)

H/r0 = e(θh−θ0) tan ϕ sin θh − sin θ0 (A2)

L/r0 = cos θ0 − cos θhe(θh−θ0) tan ϕ −
[
e(θh−θ0) tan ϕ sin θh − sin θ0

]
cot β (A3)

f1 =
1
2

[
e(θ−θ0) tan ϕ +

r′0
r0

e−(θ−θ0) tan ϕ

]
(A4)

f2 =
1
2

[
e(θ−θ0) tan ϕ −

r′0
r0

e−(θ−θ0) tan ϕ

]
(A5)

f3 =
sin θ0

sin θ
− 1

2

[
e(θ−θ0) tan ϕ +

r′0
r0

e−(θ−θ0) tan ϕ

]
=

sin θ0

sin θ
− f1 (A6)

f4 =
sin(θh + β)

sin(θ + β)
e(θh−θ0) tan ϕ − 1

2

[
e(θ−θ0) tan ϕ +

r′0
r0

e−(θ−θ0) tan ϕ

]
=

sin(θh + β)

sin(θ + β)
− f1 (A7)

g1 = 2
∫ θB

θ0

[(
f 2
2 f3/8− f 3

3 /4− 2 f1 f 2
3 /3− f3 f 2

1 /2 + 2 f1 f 2
2 /3

)√
f 2
2 − f 2

3

+
(

f 4
2 /8 + f 2

2 f 2
1 /2

)
arcsin

(√
f 2
2 − f 2

3 / f2

)]
cosθdθ

+2
∫ θh

θB

[(
f 2
2 f4/8− f 3

4 /4− 2 f1 f 2
4 /3− f4 f 2

1 /2 + 2 f1 f 2
2 /3

)√
f 2
2 − f 2

4

+
(

f 4
2 /8 + f 2

2 f 2
1 /2

)
arcsin

(√
f 2
2 − f 2

4 / f2

)]
cosθdθ

(A8)

f5 =
1

3
(
1 + 9 tan2 ϕ

) [(3 tan ϕ cos θh + sin θh)e3(θh−θ0) tan ϕ − (3 tan ϕ cos θ0 + sin θ0)
]

(A9)

f6 =
1
6

L
r0

(
2 cos θ0 −

L
r0

)
sin θ0 (A10)

f7 =
1
6

e(θh−θ0) tan ϕ

[
sin(θh − θ0)−

L
r0

sin θh

][
cos θ0 −

L
r0

+ cos θhe(θh−θ0) tan ϕ

]
(A11)

g2 =
b
H
( f5 − f6 − f7)

[
sin θhe(θh−θ0) tan ϕ − sin θ0

]
(A12)

g3 = 2
∫ θB

θ0

[(
f 2
2 f3/8− f 3

3 /4− 2 f1 f 2
3 /3− f3 f 2

1 /2 + 2 f1 f 2
2 /3

)√
f 2
2 − f 2

3

+
(

f 4
2 /8 + f 2

2 f 2
1 /2

)
arcsin

(√
f 2
2 − f 2

3 / f2

)]
sinθdθ

+2
∫ θh

θB

[(
f 2
2 f4/8− f 3

4 /4− 2 f1 f 2
4 /3− f4 f 2

1 /2 + 2 f1 f 2
2 /3

)√
f 2
2 − f 2

4

+
(

f 4
2 /8 + f 2

2 f 2
1 /2

)
arcsin

(√
f 2
2 − f 2

4 / f2

)]
sinθdθ

(A13)

f8 =
1

3
(
1 + 9 tan2 ϕ

) [(3 tan ϕ cos θh − cos θh)e3(θh−θ0) tan ϕ − (3 tan ϕ sin θ0 − cos θ0)
]

(A14)

f9 =
1
3

L
r0

sin2 θ0 (A15)
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f10 =
1
6

e(θh−θ0) tan ϕ H
r0

sin(θh + β)

sin β

[
2 sin θhe(θh−θ0) tan ϕ − H

r0

]
(A16)

g4 =
b
H
( f8 − f9 − f10)

[
sin θhe(θh−θ0) tan ϕ − sin θ0

]
(A17)

g5 = −2 sin2 θ0
∫ θB

θ0
cos θ
sin3 θ

√
f 2
2 − f 2

3 dθ

−2e2(θh−θ0) tan ϕ sin2(θh + β)
∫ θh

θB

cos(θ+β)

sin3(θ+β)

√
f 2
2 − f 2

4 dθ
(A18)

g6 =
b

2H

{
sin2 θ0

sin2 θB
− 1 +

[
1− sin2(θh + β)

sin2(θB + β)

]
e2(θh−θ0) tan ϕ

}[
sin θhe(θh−θ0) tan ϕ − sin θ0

]
(A19)
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