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Abstract: The occurrence of accidents at container ports results in damages and economic losses in
the terminal operation. Therefore, it is necessary to accurately predict accidents at container ports.
Several machine learning models have been applied to predict accidents at a container port under
various time intervals, and the optimal model was selected by comparing the results of different
models in terms of their accuracy, precision, recall, and F1 score. The results show that a deep neural
network model and gradient boosting model with an interval of 6 h exhibits the highest performance
in terms of all the performance metrics. The applied methods can be used in the predicting of
accidents at container ports in the future.

Keywords: container port; machine learning; accident prediction model; neural network; random
forest; gradient boosting

1. Introduction

Most of the existing studies on the risk assessment of maritime ports have focused
on port security [1–3] and port safety [4–6]. Notably, most studies focusing on the security
considered only unusual events such as hostile attacks [7] and the smuggling of weapons [8],
and most studies pertaining to port safety focused on accidents that occurred during usual
port activities such as loading, discharging, importing, and exporting. In this regard,
research on port safety must be emphasized over that of port security.

In the maritime field, several researchers have examined safety by predicting ves-
sel accidents on the waterway [9], forecasting coastal waves [10], and examining ship
collisions [11,12], among other aspects. Moreover, although several researchers have im-
plemented risk assessment methods to identify the risk factors associated with container
ports [4–6], research regarding the prediction of container port accidents remains limited.

In a container port, several activities, including the loading, discharging, importing,
and exporting of containers are performed by port workers using equipment such as yard
tractors and container cranes. Owing to these extensive activities, container ports are prone
to accidents, such as equipment–equipment collisions, equipment–container collisions,
injuries, and container damages during discharging, loading, and moving. These accidents
may result in damages to workers, equipment, and containers, as well as in economic loss.
In particular, according to the statistics of occupational accidents in Korea [13], as shown
in Table 1, the total number of accidents occurring at all container ports in Korea led to
4 fatalities and 91 injuries in 2015 and 3 fatalities and 96 injuries in 2019; the damages
have gradually increased every year, except for in 2016. The estimated economic losses
resulting from the accidents were approximately KRW 18.8 and 20.5 billion in 2015 and 2018,
respectively. Moreover, the number of accidents involving minor injuries is considerably
larger. Therefore, predicting accidents at a container port is essential for minimizing the
economic loss in port operation and enhancing the port safety.
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Table 1. Statistics of occupational accidents and economic loss associated with container ports in
Korea (2015–2019).

2015 2016 2017 2018 2019

Accidents
Fatality 4 1 1 5 3
Injury
Total

91
94

79
80

96
97

94
99

96
99

Economic loss
(billion KRW) 18.8 17.2 20.8 20.5 NA

Source: Korea Port Logistics Association.

To predict uncommon events such as accidents, machine learning methods including
neural network models, random forest, and gradient boosting have been used. In the
transportation field, these methods have been widely applied to predict traffic accidents
on roads. Specifically, neural networks have been used to predict vehicle crash accidents
on roads [14] and the duration of traffic accidents [15]. Random forest models have
been applied to detect traffic accidents [16] and identify taxi drivers with a high risk
of accidents [17]. Gradient boosting models have been used to predict traffic accidents
on roads [18,19] and railways [20]. Moreover, several comparative studies have been
performed regarding machine learning methods, including the use of neural networks to
predict the severity associated with traffic accidents [21,22].

In the field of maritime and port logistics, machine learning methods have been
applied in certain studies to predict the risk associated with accidents. Several researchers
have applied neural networks to predict vessel accidents on the waterway [9] and risk in
maritime safety [23] and forecast coastal waves [10]. A neural network model was applied
to develop a ship collision risk model [11]. Moreover, a random forest model was applied
to predict the severity of ship collision accidents [12]. However, relatively few studies have
applied machine learning methods to predict accidents in a container port.

In Korea, most studies associated with analyzing and predicting accidents have been
conducted in road transportation fields, considering the characteristics of vehicles and
pedestrians [24–27]. Most studies on container ports in Korea were focused on analyzing the
safety factors related to loading and unloading activities [28], developing risk assessment
methods based on the type of accidents occurring in the port [29,30], and examining the
influence of education on the risk factors of accident occurrences in the ports [31]. Research
on the prediction of accidents that occur in activities associated with the port is relatively
limited.

Therefore, in this study, the accidents that can occur in a container port are predicted
by applying machine learning methods, including a neural network model, random forest
model, and gradient boosting model to a historical dataset of accidents that occurred at a
container port in Busan, Korea.

2. Methods and Dataset
2.1. Methods
2.1.1. Neural Network Model

A neural network is a machine learning model that has been widely applied in
prediction applications. The basic element of a neural network model is the processing
node [32]. In the model, each processing node performs two functions: (1) To sum the input
values of the node; (2) To pass this information through an activation function to generate
an output. All the processing nodes in a neural network are arranged in layers, and each
layer is interconnected to the following layer. There is no interconnection among the nodes
in the same layer. In general, a neural network model has an input layer that functions as a
distribution structure for the data being used as the input, and this layer is not involved in
any type of processing. The input layer is followed by the hidden layer, which consists of
one or more processing layers. The final processing layer is the output layer.
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The intersections between the nodes have a certain weight. When a value is passed
through the input layer, the value is multiplied by the weight and summed to derive the
total input nj to the unit, as shown in Equation (1).

nj = ∑
i

wjioi (1)

where wji is the weight of the interconnection from the input unit i to another unit j, and
oi is the output of i. The total input calculated using Equation (1) is transformed by the
activation function to produce an output oj of j.

For a neural network, the parameters must be set by the users. These parameters
include the number and type of hidden layers, number of nodes in each hidden layer,
activation function for the output, weight initialization method, optimization algorithm,
learning rate of the optimization algorithm, batch size (i.e., number of training samples
used in one iteration), and number of epochs (one epoch is defined as the period in which
an entire training dataset passes once through the neural network).

Neural networks are trained by searching for the optimal set of weights for the
mapping function from the inputs to the outputs with the given dataset by initializing and
updating the weights. In this study, a neural network with the adaptive moment estimation
(Adam) optimizer is applied through the Keras Python package [33].

2.1.2. Random Forest Model

Random forests represent an ensemble machine learning technique. A random forest
model employs an advanced decision tree analysis method to overcome overfitting issues,
which is a drawback of decision tree analyses [34]. In the learning process, a random forest
model generates classification trees by selecting subsets of the given dataset and randomly
selecting subsets of variables for prediction. The number of trees is set in advance, and the
average results for each tree are derived as the final outputs, based on the results generated
in each tree. The learning process of random forests using bootstrap sampling consists of
the following steps: (i) generate trees and datasets from the training dataset by sampling
the bootstrap, (ii) train a basic sorter for the trees, (iii) combine the basic sorter (i.e., tree)
into one sorter (i.e., random forest), and (iv) derive the final results of prediction by the
majority voting rule. The observed values in the random forest that are not included in the
learning process are considered out-of-bag (OOB) values, and they are used in the model
validation. OOB values are used to estimate the predicted values and classify variables
that cause anomalies. The number of times OOB values are selected in all trees varies for
each tree, and the expected values are different for each tree. The probability of correctly
predicting the OOB values for each observation in the original category, i.e., category k,
can be calculated using Equation (2).

Probk(xi) =
∑ j ∈ OOBi−I

[
y
(
xi, Tj

)
= k

]
|OOBi|

, for k (2)

where i is an indicator that is set as 1 and 0 when the value in the parenthesis is true and
false, respectively. y

(
xi, Tj

)
is the predicted category, and Tj is the jth decision tree among

the generated trees T, in the forest. OOBi represents a group of decision trees that are not
used in the learning process and are bagged as an observed variable. If a set of decision
trees does not include xi, the ratio of the number of decision trees predicting xi to category
k is Probk(xi). For a random forest, the Gini importance is computed and used to indicate
the importance of the independent variables. At each node τ within the binary trees t of
the random forest, the optimal split is found using the Gini impurity i(τ), which indicates
how well a potential split separates the samples of the two categories in a particular node.

Let pk = nk
n represent the fraction of nk samples from category k = {0, 1} among the

total n samples at node τ. The Gini impurity i(τ) can be calculated using Equation (3).

i(τ)= 1− p2
1−p2

0. (3)
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The change in i(τ), ∆i, which can be attributed to the splitting and transmission of the
samples to two subnodes τl and τr (with sample fractions pl =

nl
n and pr =

nr
n , respectively)

based on a threshold tθ for variable θ, can be calculated using Equation (4).

∆i(τ)= i(τ)−pli(τl)−pri(τr) (4)

In the search for all variables θ available at the node and all possible thresholds tθ, the
pair {θ, tθ} leading to the maximum ∆i is determined. The change in the Gini impurity
resulting from the optimal split, ∆iθ(τ, T), is recorded and accumulated for all nodes τ in
all trees T in the forest for all θ values, as shown in Equation (5).

IG(θ) = ∑
T

∑
τ

∆iθ(τ, T) (5)

The Gini importance IG indicates how often a particular variable θ is selected for a
split and the contribution of this value to the classification problem.

This study adopts the scikit-learn package in Python, an open-source programming
language software that provides a user-customizable random forest model [35].

2.1.3. Gradient Boosting Decision trees

Gradient boosting decision trees are decision tree models that can prevent overfitting
and demonstrate an enhanced prediction accuracy [36]. In gradient boosting decision trees,
F(x) is assumed to be an approximation function of the output y based on a set of input
variables x. The squared error function is applied as the loss function L to estimate the
approximation function, as indicated in Equation (6).

L(y, F(x)) = [y− F(x)]2 (6)

Assuming that the number of splits is J for each regression tree, each tree partitions the
input space into J disjoint regions R1m, . . . , Rjm and predicts a constant value bjm for region
Rjm. In this case, each decision tree exhibits the additive form, as indicated in Equation (7).

hm(x) =
J

∑
j=1

bjmI(x ∈ Rjm) (7)

I =
{

1 if x ∈ Rjm
0 otherwise

Using the training data, the gradient boosting model iteratively constructs M decision
trees h1(x), . . . , hM(x). The updating approximation function Fm(x) and gradient descent
step size ρm can be defined using Equation (8) and (9).

Fm(x)= Fm−1(x)+ρm

J

∑
j=1

bjmI(x ∈ Rjm) (8)

ρm = argmin
ρ

N

∑
i=1

L(y i, Fm−1(xi)+ρ
J

∑
j=1

bjmI(x ∈ Rjm)) (9)

With a separate optimal γjm for each region Rjm, bjm can be discarded. Equation (8)
can be expressed as Equation (10):

Fm(x)= Fm−1(x) +
J

∑
j=1

γjmI(x ∈ Rjm) (10)
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and the optimal γjm can be calculated using Equation (11).

γjm = argmin
γ

∑
x∈Rjm

L(y i, Fm−1(xi)+γ) (11)

= argmin
γ

∑
x∈Rjm

(∼
yi − γ

)2

where
∼
yi = −

[
∂L(yi,F(xi))

∂F(xi)

]
Fm(x)=Fm−1(x)

Gradient boosting decision trees build the model sequentially and update it by min-
imizing the expected value of the loss function. To avoid overfitting and increase the
prediction accuracy, a learning rate strategy is applied. The learning rate is used to scale
the contribution of each tree model by introducing a factor ξ (0 < ξ ≤ 1), as indicated
in Equation (12).

Fm(x)= Fm−1(x)+ξ·
J

∑
j=1

γjmI
(
x ∈ Rjm

)
, 0 < ξ ≤ 1 (12)

In Equation (12), a smaller ξ corresponds to a higher learning rate. Through the
learning rate strategy, the overfitting issue can be avoided by reducing the impact of an
additional tree. A smaller learning rate leads to a higher reduction in the loss function
value. However, a larger number of trees may be added to the model. In this case, another
parameter C, which refers to the number of splits, can be used for fitting each decision
tree. This parameter represents the depth of variable interaction in a tree. Increasing C
can help capture more complex interactions among variables and exploit the strength of
gradient boosting decision trees. Depending on the value of the learning rate and C, the
optimal number of trees can be identified by examining how well the model fits the test
dataset. The performance of gradient boosting decision trees depends on the combination
of the learning rate and tree complexity. In this study, the gradient boosting model is
applied through the scikit-learn package in Python, which provides a user-customizable
model [35].

2.1.4. Synthetic Minority Oversampling Technique (SMOTE)

Despite their importance in analyzing the risk to safety, accident data are usually
a minority class owing to their relative unavailability. Therefore, if oversampling to
the minority class is not performed, the results from machine learning models may be
skewed to the majority class (i.e., non-accident data), leading to the inferior performance
of the models. SMOTE is an oversampling method that can be used to overcome this
imbalanced data issue [37]. In this method, a minority class is oversampled by creating
synthetic samples. SMOTE generates synthetic samples in the following order: 1) Consider
the difference between the feature vector (sample) and its nearest neighbor; 2) Multiply
this difference by a random number between 0 and 1; 3) Add this value to the feature
vector under consideration. Through this process, SMOTE effectively enables the enhanced
generalization of the minority class. Because SMOTE can address the imbalanced data issue,
several studies on the predicting of uncommon events such as accidents have applied this
method to enhance the model performance [38–40]. This study uses time-series datasets,
in which the amount of historical data of accidents is small. Consequently, the datasets
contain accident data as a minority class, which leads to an imbalanced data issue. To
address this problem, SMOTE is applied to the dataset in the model training phase.

2.2. Dataset

Three datasets were aggregated and used in the analysis: (1) An operation dataset
for 2017, 2018, and 2020, formulated at container port A in Busan, Korea; (2) A historical
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dataset of the accidents that occurred at container port A in 2017, 2018, and 2020, formulated
at container port A; (3) Weather observation dataset for Busan for 2017, 2018, and 2020,
collected by the Korea Meteorological Administration [41]. Notably, because the data for
2019 are missing in the second dataset, the analysis was performed using the data for 2017,
2018, and 2020.

The first dataset contained information regarding the movements of containers (i.e.,
loading, discharging, importing, and exporting) and equipment (e.g., yard trucks and
container cranes). The second dataset contained information of the accidents, including the
time at which an accident occurred and type of accident (i.e., injury, collision, etc.). The
weather dataset included data of the temperature, humidity, wind speed, and precipitation.

Tables 2, A1 and A2 present the results of the basic statistical analysis of the datasets.
As shown in Table 2, at container port A, 26, 39, and 78 accidents occurred in 2017, 2018,
and 2020, respectively. Therefore, the number of accidents has increased from 2017 to 2020.
Tables A1 and A2 present the results for the third and first datasets, respectively. These
datasets are integrated into a single time-series dataset. Five datasets are generated accord-
ing to the intervals of 1 h, 3 h, 6 h, 12 h, and 24 h.

Table 2. Basic statistical analysis of the accidents that occurred in container port A.

Year Month Number of
Accidents Year Month Number of

Accidents Year Month Number of
Accidents

2017

1 1

2018

1 4

2020

1 7
2 1 2 1 2 2
3 1 3 4 3 1
4 2 4 2 4 7
5 3 5 4 5 4
6 2 6 1 6 4
7 2 7 4 7 7
8 3 8 4 8 8
9 2 9 3 9 10

10 3 10 2 10 7
11 3 11 5 11 9
12 3 12 5 12 12

Total 26 Total 39 Total 78

Source: Busan Container Port A, Republic of Korea.

3. Results

The data of 2017 and 2018 were used for the model training, and the data of 2020 were
used for testing the models. As described in Section 2.1.4, SMOTE was applied to the dataset
for training to overcome an imbalanced data issue and enhance the model performances.
From the training and testing datasets, hourly weather data (i.e., temperature, precipitation,
wind speed, and humidity) from the third dataset and hourly operation data for terminal
A (i.e., number of ships in berth, number of containers loaded/unloaded from the ships,
number of containers imported/exported from the port, number of trucks entering/exiting
the port, and number of container cranes/yard equipment/yard trucks in operation) were
used as the input variables. The occurrence of accidents (or lack thereof) in the time
intervals was used as the output variable. Moreover, as described in Section 2, the model
hyperparameters were the learning rate, max depth, max features, min samples leaf, min
samples split, n-estimator, and subsample. Tables 3–5 list the values of hyperparameters
for each model that can enhance the model performance.
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Table 3. Values of hyperparameters for the deep neural network model.

Hyperparameter Value or Method

Optimizer Adam
Loss Binary cross-entropy

Callbacks Early stopping
Batch size 128

Epochs 100
Monitor Val loss

Table 4. Values of hyperparameters for the random forest model.

Hyperparameter Definition Values

Max depth Maximum depth of decision trees 5
Min samples leaf Minimum samples in a leaf node 18
Min samples split Minimum samples in a node to be considered for splitting 12

N-estimator Number of decision trees in the random forest 100

Table 5. Values of hyperparameters for the gradient boosting model.

Hyperparameter Definition Values

Learning rate Impact of each tree on the final outcome 1.0
Max depth Maximum depth of decision trees 5

Max features Number of features to consider while searching for the best split 0.25
Min samples leaf Minimum samples required in a leaf node 18
Min samples split Minimum samples to be considered for splitting 12

N-estimator Number of sequential trees to be modeled 100
Subsample Fraction of observations to be selected for each tree 0.90

To determine the model accuracy in the training process, a 10-fold cross-validation
method was applied to the training dataset. Specifically, every model in this study was
trained 10 times with 10 datasets for each time interval. The results of the cross validations
for the models are presented in Tables 6–8.

As shown in Tables 6–8, the average accuracies of the models in the training phase
were higher than 90%, except for the accuracy of the deep neural network with a 24 h
interval. This finding shows that the model performance is acceptable in terms of its
accuracy. In the testing phase, the model performance was evaluated using the test data.
The model performance indicators, specifically, the accuracy, precision, recall, and F1 score,
were calculated using Equations (13)–(16), respectively.

Table 6. Results of cross-validation for deep neural network model (accuracy).

1 h 3 h 6 h 12 h 24 h

1 0.98 0.94 0.94 0.93 0.84
2 0.99 0.94 0.93 0.91 0.72
3 0.98 0.92 0.92 0.86 0.90
4 0.97 0.96 0.91 0.86 0.69
5 0.98 0.94 0.88 0.83 0.69
6 1.00 1.00 0.99 0.97 0.91
7 1.00 1.00 0.94 0.96 0.95
8 1.00 0.99 0.99 0.99 0.99
9 1.00 1.00 0.99 0.98 0.94

10 1.00 1.00 0.98 0.98 0.97

Average 0.99 0.97 0.95 0.93 0.86
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Table 7. Results of cross-validation for the random forest model (accuracy).

1 h 3 h 6 h 12 h 24 h

1 0.96 0.97 0.94 0.90 0.90
2 0.92 0.93 0.93 0.93 0.93
3 0.93 0.95 0.92 0.92 0.93
4 0.92 0.94 0.94 0.98 0.96
5 0.93 0.93 0.95 0.94 0.96
6 0.97 0.96 0.96 0.94 0.93
7 0.91 0.89 0.91 0.92 0.92
8 0.93 0.91 0.93 0.94 0.95
9 0.93 0.94 0.92 0.93 0.95

10 0.93 0.96 0.95 0.94 0.93

Average 0.93 0.94 0.94 0.93 0.93

Table 8. Results of cross-validation for the gradient boosting model (accuracy).

1 h 3 h 6 h 12 h 24 h

1 0.99 0.97 0.96 0.94 0.86
2 0.91 1.00 1.00 0.98 0.98
3 1.00 1.00 0.99 0.97 0.97
4 0.89 1.00 1.00 0.99 0.96
5 1.00 1.00 0.99 0.97 0.96
6 0.96 1.00 0.99 0.98 0.95
7 1.00 1.00 0.99 0.97 0.89
8 0.96 0.99 0.99 0.95 0.92
9 0.84 1.00 0.98 0.98 0.92

10 1.00 0.99 0.98 0.94 0.83

Average 0.96 0.99 0.99 0.97 0.92

Accuracy =
True Accidents + True NoAccidents

True Accidents + True NoAccidents + False Accidents + False NoAccidents
(13)

Precision =
True Accidents

True Accidents + False Accidents
(14)

Recall =
True Accidents

True Accidents + False NoAccidents
(15)

F1 score = 2× Precision× Recall
Precision + Recall

(16)

Table 9 summarizes the results of implementing the models over the testing dataset.
All the models exhibit the highest accuracy for the 1 h interval. As the time intervals
increase, the accuracies decrease, although the precision, recall, and F1 score increase. For
the deep neural network model, random forest model, and gradient boosting model, the
accuracy for the 1 h interval is approximately 98.2%, 90.4%, and 98.3%, respectively, which
decreases to approximately 76.5%, 76.8%, and 62.3% for the 24 h interval, respectively. The
gradient boosting model exhibits the highest increase in the precision, recall, and F1 score
as the time interval increases (i.e., from 1.4%, 1.3%, and 1.4% for the 1 h interval to 20.2%,
39.1%, and 26.6% for the 24 h interval, respectively). The second-largest increase pertains
to the deep neural network model (i.e., from 2.3%, 2.6%, and 2.4% for the 1 h interval to
17.7%, 21.9%, and 19.6% for the 24 h interval, respectively), and the lowest increase pertains
to the random forest model (i.e., from 1.1%, 11.5%, and 2.1% for the 1 h interval to 18.2%,
9.4%, and 12.4% for the 24 h interval, respectively).
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Table 9. Testing results for all models.

Model Time
Intervals Accuracy (%) Precision

(%) Recall (%) F1 Score (%)

Deep neural
network

1 h 98.2 2.3 2.6 2.4
3 h 93.6 4.2 6.5 5.1
6 h 90.9 7.4 6.7 7.0

12 h 81.4 10.0 11.1 10.5
24 h 76.5 17.7 21.9 19.6

Random
forest

1 h 90.4 1.1 11.5 2.1
3 h 91.3 2.7 6.5 3.8
6 h 86.9 4.7 8.0 5.9

12 h 83.6 11.3 9.7 10.4
24 h 76.8 18.2 9.4 12.4

Gradient
boosting

1 h 98.3 1.4 1.3 1.4
3 h 90.0 3.9 11.7 5.8
6 h 85.1 8.7 20.0 12.1

12 h 76.6 13.3 25.0 17.4
24 h 62.3 20.2 39.1 26.6

4. Discussion

The results presented in Section 3 show that all the considered models exhibit different
performances in predicting accidents in terms of their accuracy, precision, recall, and F1
score under various time intervals. As shown in Table 9, the precision, recall, and F1 score
of the models increase as the time intervals increase, whereas the accuracy decreases. In
addition to the accuracy, the precision, recall, and F1 score are important measures of
the model performance. Higher precision, recall, and F1 score values correspond to a
higher model performance. In comparison, a model with an accuracy of at least 85% is
considered to have a high performance. Several studies that have applied machine learning
methods to predict the accidents indicated that the highest accuracy of the existing models
in predicting accidents was 85% [42–44]. Therefore, in terms of the precision, recall, and F1
score, as well as the accuracy, the models using the input data with a time interval of 6 h
exhibit a reasonable performance. For the 6 h interval, the deep neural network exhibits an
accuracy, precision, recall, and F1 score of 90.9%, 7.4%, 6.7%, and 7.0%, respectively. The
corresponding values for the random forest model are 86.9%, 4.7%, 8.0%, and 5.9%. The
corresponding values for the gradient boosting model are 85.1%, 8.7%, 20.0%, and 12.1%.
The gradient boosting model exhibits the best F1 score of 12.1%, followed by the deep
neural network (11.2%). Therefore, the gradient boosting model and deep neural network
model are preferable for predicting the accident occurrence at a container port.

In this study, accident data for container port A for three years was used in the
analysis. In Korea, the accident data for each container port is collected and managed
by the container terminal operator of that port, and there is no legal organization that
manages the overall accident data for all container ports nationwide. The accident data
for each container port is classified as confidential, and so it is not fully available to the
public, except for occupational accidents that are compensated by insurance, whereas the
terminal operating data for the port is partially available. Moreover, it is difficult to obtain
data because accidents are considered to be a sensitive issue in port operations, and so the
terminal operator rarely provides it. This makes it difficult to collect a sufficient amount
of accident data at container ports nationwide. As a result, this study used an accident
dataset of limited size that was available for analyzing whether accidents occurred or not,
rather than focusing on the types of accident that occurred.

5. Conclusions

This study adopts machine learning methods to predict the accidents that can occur in
a container port. Time-series datasets with various time intervals are applied, and the model



Sustainability 2021, 13, 9137 10 of 14

performance is evaluated based on these intervals. According to the results, as the time
interval increases, the accuracy in predicting accidents decreases and the precision, recall,
and F1 score increases. In terms of all the indicators, the models using the dataset with a
6 h interval exhibit the highest performance. Under the same time interval, the gradient
boosting model and deep neural network model are the best in predicting accidents at the
container port. These results demonstrate that machine learning methods can be applied to
predict accidents at container ports.

Nevertheless, this study involves certain limitations that must be addressed in future
work. The operation dataset of the container port and weather dataset are considered as
independent variables affecting the occurrence of accidents. However, other variables, such
as the accident type, cause, and time of incidence, can also directly affect the occurrence
of accidents. Accident data for container ports, especially in Korea, are of significance,
and can affect the port operation. However, although the annually aggregated statistics of
accidents are available [13], it is difficult to collect an adequately large dataset including the
raw data from the port. The accident dataset from container port A contains accident types,
including vehicle collision, container damage, injury, and death. However, considering the
total number of accidents (i.e., 26 accidents in 2017, 39 accidents in 2018, and 78 accidents
in 2020), it is difficult to specify the accidents by type. Therefore, in this study, the number
of accidents is considered as the output variable. In future work, by categorizing adequate
accident data according to the accident type (i.e., injury, collision, and container damage,
among other events), it may be possible to predict the accident type, analyze the factors
affecting the accidents, and assess the risks in a container port. Moreover, accidents at a
container port happen during work in any environment. Operational data for a container
terminal is stored as an hourly dataset, and shows the changes in working status at the port
well. However, these data and accident data together cannot provide enough information
about the situation in which an accident occurred, because the accident data contains
reasons for the occurrence (i.e., carelessness during working, rough driving, and so on) and
the hourly aggregated operations dataset cannot describe the dynamic situation in which
the accident happened. Therefore, to analyze accidents with their causes, the dynamic
operating situation at the container port when the accident happened should be considered,
rather than the hourly aggregated data. In a future study, with disaggregated operational
data and accident data for a container port, it may be possible to not only predict accident
occurrence but also to analyze accident risk.
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Appendix A. Basic Statistical Analysis of the Dataset Associated with Container Port
A in Korea

Table A1. Basic statistical analysis of the weather dataset pertaining to Busan, Korea.

Year Month
Average

Temperature
(°C)

Average
Precipitation

(mm)

Average Wind
Speed
(m/s)

Average
Humidity

(%)

2017

1 4.1 0.0 3.3 46.1
2 5.5 0.0 3.5 44.7
3 8.9 0.1 3.1 52.8
4 14.9 0.1 3.8 63.4
5 19.0 0.1 3.3 63.1
6 21.2 0.1 2.9 70.3
7 26.0 0.2 3.5 82.2
8 27.0 0.1 2.9 73.6
9 22.6 0.5 2.8 68.9
10 18.1 0.2 2.9 67.6
11 11.3 0.0 2.9 49.4
12 3.5 0.0 3.0 40.0

2018

1 1.9 0.1 3.1 44.7
2 3.8 0.1 3.4 41.8
3 9.9 0.3 3.9 63.1
4 14.5 0.2 4.1 62.4
5 17.9 0.2 3.9 72.5
6 21.5 0.4 3.1 75.2
7 26.7 0.2 3.0 77.8
8 27.9 0.2 3.6 74.8
9 22.0 0.4 3.0 76.2
10 16.5 0.2 2.0 61.8
11 12.4 0.1 2.3 57.1
12 5.7 0.1 2.9 48.5

2020

1 6.4 0.2 3.0 56.3
2 7.1 0.1 3.0 55.2
3 10.4 0.1 3.5 57.0
4 12.6 0.1 3.7 53.0
5 17.9 0.1 3.1 72.3
6 22.4 0.4 3.0 73.5
7 22.1 1.1 2.7 87.2
8 27.0 0.5 4.0 82.4
9 22.0 0.3 3.6 73.9
10 17.3 0.0 2.7 58.0
11 12.4 0.1 2.8 52.0
12 4.4 0.0 2.9 42.7

Source: Average values are calculated based on data collected from the Korea Meteorological Administration Weather Data Service
(data.kma.go.kr).
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Table A2. Basic statistical analysis of the operation dataset pertaining to container port A.

Year Month

Average
Num-
ber of
Ships

in
Berth

Average
Num-
ber of
Con-

tainers
Un-

loaded

Average
Num-
ber of
Con-

tainers
Loaded

Average
Num-
ber of
Con-

tainers
Im-

ported

Average
Num-
ber of
Con-

tainers
Ex-

ported

Average
Num-
ber of
Trucks
Enter-

ing

Average
Num-
ber of
Trucks
Exiting

Average
Num-
ber of
Opera-

tion
Con-

tainer
Cranes

Average
Num-
ber of

Operat-
ing

Yard
Equip-
ment

Average
Num-
ber of

Operat-
ing

Yard
Trucks

2017

1 5 83 80 76 79 66 68 7 32 39
2 5 84 82 81 87 72 76 7 34 38
3 5 91 83 87 92 76 80 8 34 40
4 5 94 89 88 91 76 78 8 34 42
5 5 91 88 85 88 74 76 8 34 41
6 5 94 89 86 92 75 79 8 34 42
7 5 92 90 83 87 72 75 8 34 43
8 5 88 84 83 85 73 74 8 33 40
9 5 91 90 89 90 79 79 8 33 42

10 5 87 81 76 81 66 70 8 33 41
11 5 98 100 96 96 84 84 10 35 50
12 5 102 93 90 91 78 80 9 36 51

2018

1 5 90 94 86 91 76 79 9 35 48
2 5 94 90 86 87 75 76 9 35 48
3 6 92 91 88 89 78 79 9 36 48
4 5 102 100 90 91 79 81 10 36 50
5 5 100 96 89 93 78 81 10 37 50
6 6 103 100 92 95 81 83 11 37 53
7 6 100 95 93 97 83 86 10 36 52
8 6 93 89 86 92 77 82 10 36 47
9 6 95 94 86 89 76 78 10 36 50

10 6 99 94 94 100 83 88 10 37 50
11 5 102 96 96 101 85 88 10 39 51
12 5 99 89 89 94 78 83 9 37 49

2020

1 5 80 82 83 88 72 75 8 36 46
2 5 85 85 80 83 70 72 8 37 48
3 5 92 89 84 90 74 79 9 36 51
4 5 92 85 84 87 74 76 9 38 48
5 5 87 83 81 84 71 73 8 37 46
6 5 91 82 81 90 72 78 8 38 46
7 5 89 84 78 88 69 77 9 38 47
8 5 88 85 74 81 66 71 9 36 48
9 6 89 86 90 88 79 78 10 36 51

10 5 94 87 85 93 76 82 10 38 51
11 6 100 94 89 94 79 83 10 39 54
12 5 97 88 93 95 82 84 10 39 53

Source: Busan Container Port A, Republic of Korea.
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