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Abstract: In this study, the spatiotemporal distributions, potential sources, and ecological risks of
Hg, Cr, and As in seawater, and Hg, As, Zn, Cd, Pb, and Cu in sediments from Daya Bay were
investigated. The five-year average concentrations of Hg, Cr, and As in seawater were 0.020 µg/L,
0.79 µg/L, and 2.08 µg/L, respectively. The five-year average concentrations of Hg, As, Zn, Cd, Pb,
and Cu in surface sediments were 0.04 mg/kg, 7.34 mg/kg, 63.81 mg/kg, 0.23 mg/kg, 25.60 mg/kg,
and 11.78 mg/kg, respectively. Annual variations in Hg, Cr, and As in seawater exhibited different
trends. HMs in sediments, such as As, Zn, Pb, and Cu, exhibited similar annual variations, whereas
Hg and Cd exhibited different annual variations. The spatial distribution of metal species in seawater
and sediments showed significant variability, and the concentrations decreased gradually from the
coast to the open sea. The comprehensive potential ecological hazard index (RI) of HMs in sediments
indicated a relatively high risk, especially for Hg and Cd contamination. The geoaccumulation
indices (Igeo) of As, Zn, Pb, and Cu suggested that these metals did not pollute Daya Bay, whereas
those of Cd and Hg indicated mild and moderate pollution. The environmental fates of HMs were
discussed based on Pearson correlation analysis, revealing that concentrations of HMs were greatly
affected by parameters, such as pH, salinity, dissolved oxygen (DO), and total organic carbon (TOC).
Principal component and factor analyses indicated that Hg, Cr, As, and dissolved inorganic nitrogen
(DIN) in water originated from similar sources, including domestic sewage and wastewater from
fishing ports, runoffs, and outlets. For sediments, it was proposed that Cu, Zn, As, Pb, and TOC
exhibited similar sources, including cage culture and waste discharge from outlets. Meanwhile,
Hg and Cd originated from other point sources, such as a harbor. The study suggests that sustainable
management and economic development be integrated to control pollutant emissions in Daya Bay.

Keywords: source apportionment; integrated pollution evaluation; multivariate statistics;
sustainable development

1. Introduction

Heavy metals (HMs) are major pollutants in marine environments because of their
persistence, high toxicity, and bioaccumulation properties [1,2]. Once HMs are introduced
into the ocean, they bioaccumulate and biomagnify in food webs, harming the ecosys-
tem and human health [3]. HMs in marine environments often originate from various
natural and anthropogenic sources, such as geologic weathering, urban runoff, domestic
sewage, and industrial and agricultural activities [4]. As a hotspot for land–sea interactions,
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bays are affected by human activity, such as wastewater discharge, land use, and land
cover transformations [5]. For instance, in Daya Bay (Huizhou, Guangdong Province,
China), marine aquaculture, nuclear power plants, petrochemical industries, and industrial
enterprises coexist and contribute to HM pollution in water and sediment [6–8].

Chen et al. and Qu et al. analyzed trends and drivers of deteriorating water quality
in Daya Bay [9,10]. Yang et al. reported that HMs in surface sediments exhibited a zonal
distribution, with a gradual decrease from nearshore to offshore [11]. Zhao et al. did not
find high levels of Cd, Cr, Cu, Hg, or Zn in sediments from Daya Bay [12]. Tang et al.
reported that Cu, Zn, As, Ni, and Cr were below the acceptable limits, while Hg, Pb, and Cd
exhibited moderate to high levels [13]. Liu et al. reported the main contaminants were Cd
and As, with their ecological risks “high” and “moderate” levels in sediments from Daya
Bay [14]. Yu et al. reported the HM concentration in sediments; however, the potential
ecological risk of HM has not been studied [15]. Yang et al. reported the concentrations and
ecological risk of HMs, ignoring the toxicities of heavy metals [16]. Although the studies
of HM geochemical characters in the sediment of Daya Bay had been conducted in recent
years, most of them focused on the contamination levels and ecological risk assessment of
surface sediment. The investigation of HMs in a long period is quite limited. A long-term
investigation of the bay may provide a clearer picture of the spatiotemporal distribution
of these pollutants. Moreover, only water quality or sediment quality were considered
for the evaluation of the environment in previous studies. Marine sediments are usually
considered as the ultimate sink for HMs in coastal waters; however, an equilibrium exists
between sediments and the overlying water. HMs in sediments partition into the water
when the equilibrium shifts [17]. With rapid industrialization and economic development in
the Daya Bay coastal area, the ecological risk of HMs in the marine environment is becoming
a serious problem. Therefore, a long-term investigation considering concentrations and
ecological risk assessment of heavy metals in both sediments and seawater in Daya Bay is
necessary and realistically significant.

In this study, we investigated spatiotemporal variations of HMs in seawater and
sediments from Daya Bay during 2014–2019. Based on the data acquired by investigation
and the implementation of statistical analysis methods (such as principal component
analysis (PCA); factor analysis (FA); the indices of Nemerow, comprehensive potential
ecological hazard (RI), and geochemical accumulation (Igeo)), potential pollution sources
and risks in Daya Bay were proposed. The results are expected to provide a basis for
bridging the gap between economic development and the sustainable management of
Daya Bay.

2. Materials and Methods
2.1. Description of the Study Area

Daya Bay covers an area of about 600 km2 and is located north of the South China Sea
(Figure 1) (22◦30′–22◦50′ N and 114◦29′–114◦49′ E); it is surrounded by Hong Kong in the
southwest, Dapeng Cove in the west, and Red Bay in the east. Daya Bay is semi-enclosed
and is known as a habitat for many marine organisms. Three sub-basins are the important
parts of Daya Bay, i.e., Aotou Harbor and Yaling Cove in the northwest, Dapeng Cove in
the southwest, and Fanhe Harbor in the northeast. Daya Bay does not receive a discharge
from large rivers but has a relatively small drainage area from the Dan’ao, Nanbianzao,
and Baigang Rivers. Daya Bay has a broad and flat sea bottom with shoal accumulation
and a gradually increasing water depth from the north (2–4 m) to the south (10–17 m).
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Figure 1. Location of Daya Bay and a sketch map of sampling sites.

2.2. Sample Collection and Analysis

Sampling sites were decided based on various parameters, such as mariculture, nuclear
power plant, petrochemical industry, ports, and hydrological conditions around this area
in recent years. For the sampling seasons, the investigations were carried out in the flood
season. During the flood season, a large amount of industrial wastewater is taken to
the sea. Therefore, the investigation during the flood season may be useful for a better
understanding of the impact of human activities. Water samples, including surface water
and bottom water, were collected from 0.5 m below the surface and 2.0 m above the bottom
using 5 L Go-Flo water samplers at 27 sampling sites in the flood season (August) of 2015–
2019, and sediment samples (0–5 cm) were collected using a stainless-steel grab sampler
at 13 sampling sites in the same season of 2014–2019. The locations of all the sampling
sites are shown in Figure 1. Sample collection, storage, and transportation were conducted
according to the Specification for Oceanographic Survey (GB/T 12763-2007) [18]. Briefly,
water samples obtained with Go-Flo samplers were filtered through acetate membrane
filters (0.45 µm pore sizes) and transferred into glass bottles and stored at 4 ◦C until analysis.
Sediment samples were placed into pre-cleaned glass jars and frozen at−20 ◦C until further
treatment. Before analysis, sediments were freeze-dried, ground, and then sieved through
a 96 µm stainless steel sieve.

Several important chemical parameters in water (pH, suspended solids (SS), DO,
salinity, NH4

+-N, NO2
−-N, NO3

−-N, Hg, Cr, and As) and sediments (Zn, Pb, Cu, Cd,
As, pH, Eh, sulfide, TOC, and Oils) were determined according to the Specification for
Marine Monitoring (GB 17378-2007) [19]. Since no continuous data were obtained for
Zn, and the detection rates of Pb, Cu, and Cd were low in some years, Zn, Pb, Cu, and
Cd in seawater were not included in the study. For HMs in water, only dissolved parts
were analyzed. pH values were determined with a pH meter. SS samples were dried
and weighed to determine the amount. DO values were determined using the Winkler
titration method. The seawater salinity was measured with a salinometer. DIN, including
NH4

+-N, NO2
−-N, and NO3

−-N were analyzed using hypobromite oxidation, zinc cad-
mium reduction, and N-(1-naphthyl)-ethylenediamine dihydrochloride spectrophotometry
methods, respectively. As and Hg in water and sediment samples were tested using atomic
fluorescence spectrometry (AFS). Dissolved Cr in water was determined using graphite
furnace atomic absorption spectrometry (AAS). Cu, Pb, Zn, and Cd in sediment samples
were determined using flame atomic AAS. Sulfide, TOC, and Oils in sediment samples
were determined by methylene blue spectrophotometry, potassium dichromate volumetric
method, and UV spectrophotometry, respectively. Eh and pH values of sediments were
measured with a potentiometer and a pH meter, respectively. Prior to analysis, for dis-
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solved Cr, DDTC (C5H10NS2Na) was used as a chelating reagent, and DDTC-complex
in MIBK (CH3COCH2(CH3)2) were extracted for AAS analysis. For dissolved Hg, water
samples (100.0 mL) were treated with a mixture of H2SO4 (2.0 mL) and K2S2O8 (5.0 mL).
For As, water samples were treated with thiourea (CH4N2S) to reduce the pentavalent
arsenic to trivalent arsenic, then potassium borohydride (KBH4) was added to reduce it to
hydrogen arsenide. Sediment samples (0.2000 g) for the measurement of Hg and As were
digested with 10.0 mL of a mixture of acid (HNO3 + HCl). Sediment samples (0.1000 g)
for the measurement of Cu, Zn, Cd, and Pb were digested with a mixture of concentrated
HNO3 (1.0 mL) and HClO4 (2.0 mL). Although As is a metalloid that exhibits intermediate
properties between those of metals and non-metals, it is referred to as metal throughout
this text.

Quality assurance and quality control were evaluated using duplicates, blanks, and
standard reference materials (GBW 07333) from the National Research Center for Standard
of China. All chemicals used for the analysis were of analytical grade or above. Blanks
and duplicates were run for each batch of 10 samples. The blank values were below the
detection limits. From the values of the duplicates and reference materials, the relative
standard deviation was below 10% for HMs. The recovery of metals in standard reference
sediments was normally in the range of 87–113%.

2.3. Pollution and Ecological Risk Assessment Methods

The Nemerow pollution index (Pi) was used to evaluate the sediments as follows [20]:

Pij = Cij/Si (1)

Pijave =
1
m

m

∑
i=1

Pij (2)

Pi =
{[(

Pijmax
)2

+
(

Pijave
)2
]
/2
}1/2

(3)

where Pij is the single factor pollution index of the ith evaluation factor, Cij is the measured
concentration of the ith evaluation factor, Si is the evaluation standard of the ith evaluation
factor, m represents the number of evaluation factors, and Pijave and Pijmax refer to the
average and maximum single factor pollution indices, respectively. The Nemerow pollution
index was divided into five zones to describe pollution levels (Table 1).

Table 1. Pollution zone division for each evaluation index.

Index I II III IV V

Single-factor pollution Pij ≤ 1 1 < Pij ≤ 2 2 < Pij ≤ 3 3 < Pij ≤ 5 Pij > 5
Clean Light Mild Middle level Serious

Nemerow pollution Pi ≤ 0.7 0.7 < Pi ≤ 1 1 < Pi ≤ 2 2 < Pi ≤ 3 Pi > 3
Clean Light Mild Middle level Serious

Geochemical accumulation Igeo < 0 0 ≤ Igeo < 1 1 ≤ Igeo < 2 2 ≤ Igeo < 3 Igeo ≥ 3
Clean Light Mild Middle level Serious

Single index of
potential ecological risk

Ei
r ≤ 40 40 < Ei

r ≤ 80 80 < Ei
r ≤ 160 160 < Ei

r ≤ 320 Ei
r > 320

Low Middle Relatively high High Extremely high

Comprehensive
potential ecological risk

RI < 150 150 ≤ RI < 300 300 ≤ RI < 600 RI > 600
Low Middle Relatively high High

The pollution status of HMs in sediments was evaluated using the geochemical
accumulation index (Igeo) as follows [21]:

Igeo = log2
Ci

1.5× CBi
(4)
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where Ci is the measured concentration of element i in sediment and CBi refers to the
geochemical background value of an element. The geochemical accumulation index was
divided into five zones to describe the pollution levels (Table 1).

The ecological risk was evaluated using the potential ecological risk index (RI) as
follows [22]:

Ei
r = Ti

r × Ci
f = Ti

r ×
Ci
CBi

(5)

RI =
n

∑
i=1

Ei
r (6)

where Ei
r is the single index of the ecological risk factor, Ci

f is the accumulation factor of
metal i, Ci is the concentration of metal i in the sample, CBi is the geochemical background
value of metal i in the sediments, and Ti

r is the toxicity coefficient of metal i. RI was divided
into four zones to describe the pollution levels (Table 1).

SPSS 25 was employed to carry out factor analysis (FA) and principal component
analysis (PCA) to identify the sources of water and sediment pollution [23–25].

3. Results and Discussion
3.1. Characteristics of HMs in Seawater and Sediments
3.1.1. Seawater

The average concentrations of Hg, Cr, and As in surface water samples over five years
were 0.020, 0.78, and 2.03 µg/L, respectively. The average concentrations of Hg, Cr, and As
in bottom water samples over five years were 0.020, 0.79, and 2.13 µg/L, respectively. Only
a slight difference in HM concentration was found between the surface and bottom water
samples. The level of HM concentrations in seawater is considered class I, based on the Sea
Water Quality Standard (SWQS) of China (GB 3097-1997) [26].

The temporal variation of HM concentrations (averages of all samples each year) in
seawater from Daya Bay is illustrated in Figure 2. The concentrations of Hg (0.022 µg/L), Cr
(1.55 µg/L), and As (3.42µg/L) were highest in 2016, 2016, and 2019, respectively. During
the five-year continuous monitoring, Hg concentrations did not change significantly. Cr
initially increased and then decreased, while As showed the opposite trend. In general, the
annual variations for the three metals in seawater exhibited different trends. The reason
for this trend may be due to the discharge by industrial enterprises around Daya Bay. In
contrast to the inland rivers and reservoirs, the water exchange pattern of Daya Bay was
complex as it exerted a significant impact on the dispersion and transport of pollutants,
thereby affecting their distributions [27].
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Hg concentrations were similar among the sampling sites (Figure 3). High As and Cr
concentrations were mainly found in coastal areas (W3, W4, W7, WS8, W10, WS23, WS25,
and WS27), which may be related to more frequent human activities near the coast. Water
pollutants from domestic, industrial, and aquaculture discharges are the primary sources
of HMs near the coast. The far coast is less affected by human activities. Daya Bay has
a strong water exchange capacity, which can effectively dilute pollutant concentrations.
Therefore, HM concentrations were significantly lower on the far coast [28].
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3.1.2. Sediments

Average concentrations each year and average concentrations over five years are
presented in Table 2. The level of HM concentrations in sediments is considered as class I,
based on the Marine Sediment Quality Standard (MSQS) of China (GB 18668-2002) [29]. Cu,
Zn, As, Pb, Cd, and Hg were approximately 0.79-, 0.98-, 0.95-, 1.28-, 3.29-, and 1.33-times
higher than their background values, respectively. Compared with other coastal areas, HM
concentrations in Daya Bay were generally at an intermediate level (Table 3).

Table 2. HM concentrations (mg/kg) of sediments in Daya Bay, background, and guideline values.

Hg As Zn Cd Pb Cu Reference

2014 a 0.10 7.62 70.81 0.27 25.25 11.33
This study2015 a 0.02 10.53 82.20 0.25 30.31 12.67

2016 a 0.02 7.84 50.94 0.38 33.84 10.41
2017 a 0.02 3.40 49.67 0.19 12.41 7.82
2018 a 0.03 7.31 65.43 0.07 26.17 16.67

Average b 0.04 ± 0.03 7.34 ± 2.55 63.81 ± 13.74 0.23 ± 0.12 25.60 ± 8.13 11.78 ± 3.26
Background
in Daya Bay 0.03 7.70 65.00 0.07 20.00 15.00 [30]

Class I c 0.2 20 150 0.50 60 35
Coefficient of

Variation d 0.75 0.35 0.22 0.52 0.32 0.28

TEL e 0.13 7.24 124 0.68 30.2 18.7 [31]
PEL f 0.7 41.6 271 4.21 112 108 [31]
a Average concentration of all samples each year. b Average concentration of all samples over five years (average ± standard deviation). c

Concentration limits of HMs for class I in MSQS of China. d Coefficient of variation (CV%) = standard deviation/average. e Threshold
effect level. f Probable effect level.

The threshold effect level (TEL) and the probable effect level (PEL) are widely used
to assess HM contamination [32]. In this study, only the As concentration was slightly
higher than the TEL, while other HMs were all lower than their TELs and PELs. This result
suggested that adverse effects from HMs on the aquatic ecosystem are not significant.
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Table 3. HM concentrations (mg/kg) of surface sediments in the Daya Bay and other coastal areas.

Location Hg As Zn Cd Pb Cu Reference

Hangzhou Bay, China 0.039 10.41 109 0.169 22.6 56.9 [33]
Bohai Bay, China 0.02 8.4 50 0.1 19.4 16.1 [34]
Beibu Gulf, China 0.06 7.82 67.30 0.16 28.00 58.30 [35]

Quanzhou Bay 0.107 5.29 186.7 0.64 66.98 60.81 [36]
Sanmen Bay 0.109 10.0 98 0.11 24 31 [37]
Yueqing Bay 0.07 16.0 139 0.189 37.5 49.7 [38]

Xiangshan Bay 0.106 12.31 120.8 0.15 38.5 36.8 [39]
The Pearl River estuary, China 0.14 22.00 145.56 0.48 50.00 47.89 [40]

Yellow River estuary 0.046 11.42 60.45 0.13 20.86 20.32 [41]
Admiralty Bay, Antarctica 0.02 5.6 59 0.4 4.8 64 [42]

Persian Gulf, Iran NA 10.84 62.5 0.8 48.3 32.1 [43]

To clarify the variations in HMs in different years, the coefficient of variation (CV%)
was estimated to range from 22% (Zn) to 75% (Hg). The CV% values of Hg and Cd were
relatively high. Different physicochemical parameters, such as pH, temperature, salinity,
and yearly discharges from aquaculture and industries, resulted in large CV% values for
Hg (75%) and Cd (52%).

For different years, the concentrations of Hg (0.10 mg/kg), As (10.53 mg/kg), Zn
(82.20 mg/kg), Cd (0.38 mg/kg), Pb (33.84 mg/kg), and Cu (16.67 mg/kg) in sediments
were highest in 2014, 2015, 2015, 2016, 2016, and 2018, respectively. The temporal variations
in HM sediment concentrations are presented in Table 2. As, Zn, Pb, and Cu exhibited
similar annual variations. Although the lowest concentrations of these metals in sediments
occurred in 2017, the concentrations increased in 2018 possibly due to annual differences
in industrial wastewater and domestic sewage discharge around the bay. Compared to
those of As, Zn, Pb, and Cu, Hg and Cd exhibited different annual variations. The highest
concentration of Hg occurred in 2014, which was followed by a significant decrease in
2015; it remained constant from 2015 to 2018. Except for the highest concentration of Cd
found in 2016, the concentration generally exhibited a decreasing trend. Different annual
trends for HMs in sediments suggest that the variation in the annual concentration may
be influenced by various factors, such as hydrological and meteorological conditions and
discharges from different sources.

The spatial distribution profiles of HMs in sediments from Daya Bay are shown in
Figure 4. Generally, the lowest HM concentrations were found in the southeast coastal
area, whereas the highest concentrations occurred in the northern coastal area. The spatial
distribution of HMs in Daya Bay is influenced by point sources, upwelling flow off the
Guangdong coast [44], and clockwise circulation patterns of currents. The distributions
of Pb and Zn displayed a similar pattern, with high concentrations at the northern sites.
Extremely high concentrations of Pb and Zn occurred in Fanhe Harbor (WS23), which is
surrounded by cage aquaculture. Yang et al. also found increased Pb and Zn concentrations
in sediments from cage aquaculture areas [45,46]. High Pb concentrations were recorded
near a nuclear power plant (WS1), which is an important source of HMs in Daya Bay [47].
High Pb concentrations were also recorded in Dapeng Cove (WS27), which is an area
known to exhibit cage aquaculture. High concentrations of As were recorded in the
eastern (WS24 and WS25) and western (WS11 and WS12) areas of the bay, with the highest
concentration being observed at Fanhe Harbor. The concentrations of Cd and Cu exhibited
a decreasing profile from north to south. The highest concentrations of Cd and Cu were
recorded at the Yaling Cove (WS12), which was heavily affected by local runoff. The highest
Hg concentration was recorded in Gangkou Harbor (WS25) possibly due to the domestic
sewage discharge. Low HM concentrations were recorded at WS14 and WS19, with the
outfall of the first sewage pipeline nearby; this result indicated that the HMs in sediments
were not affected by the outfall.
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3.2. Factors Influencing HMs in the Aquatic Environment

The concentration of HMs in water is significantly affected by the water environment.
Owing to the continuous exchange of material and energy in water columns, the physical
and chemical conditions, such as salinity, DO, pH, and SS are constantly changing in
seawater and affecting the concentration of HMs and other pollutants. In this study, pH
was negatively correlated with HM concentrations (Table 4). Since pH affects the chemical
properties and existing forms of HMs in seawater, higher pH causes the metal ions in
solution to react with OH- and form hydroxide micro-precipitates, thereby causing a reduc-
tion in HM concentration in seawater [48]. However, at a lower pH, HM complexes are
easily desorbed from sediments or SS into seawater, thereby increasing HM concentrations
in seawater. There was a positive correlation between salinity and three HMs (p < 0.01),
implying that HMs in seawater are affected by salinity. The results show that the release
rate mainly depends on the chemical speciation of HMs, as well as on the concentration of
complex ions in seawater. The higher salinity normally results in a higher concentration of
the complex ions, which can induce a greater release of HMs from SS and sediments into
water [49].

Table 4. Pearson correlation (PC) coefficient matrix of HMs, salinity, dissolved oxygen (DO), suspended solids (SS), pH, and
inorganic nitrogen (DIN) in seawater from Daya Bay.

pH Salinity DO SS DIN Hg Cr As

pH 1 0.180 ** 0.599 ** 0.02 −0.325 ** −0.135 * −0.138 * −0.142 *
Salinity 1 −0.305 ** 0.279 ** 0.097 0.312 ** 0.327 ** 0.322 **

DO 1 0.033 −0.391 ** 0.1 0.108 0.102
SS 1 0.155 ** 0.120 * 0.111 0.126 *

DIN 1 0.266 ** 0.261 ** 0.288 **
Hg 1 0.901 ** 0.922 **
Cr 1 0.958 **
As 1

* Correlation is significant at the 0.05 level (two-tailed). ** Correlation is significant at the 0.01 level (two-tailed).

There was a positive correlation between SS and the Hg and As concentrations
(p < 0.05), suggesting that SS may adsorb Hg and As. Therefore, the distribution of
these two HMs is highly related to the SS concentration in the water. There was no cor-
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relation between DO and HMs, indicating that HMs were less affected by DO. There
was a significant positive correlation between inorganic nitrogen and the Hg, As, and Cr
concentrations, suggesting that they may originate from common pollution sources.

Pearson correlation analysis of HMs, total organic carbon (TOC), sulfide compounds,
oils, and pH in surface sediments was carried out (Table 5). Sulfide was weakly correlated
with Cu (p < 0.05), and TOC was significantly correlated with Cd (p < 0.01) and Hg and
Zn (p < 0.05), suggesting that these HMs are associated with organic matter and sulfide.
The complexation of HMs by organic matter plays an important role in the distribution
patterns of HMs in Daya Bay. Apart from Hg and Cd, As was significantly correlated with
Zn and Pb (p < 0.01) and weakly correlated with Cu (p < 0.05), indicating that they had
similar sources, as reported in other studies [50]. Hg and Cd were not correlated with other
HMs, indicating that Hg and Cd had different sources.

Table 5. Pearson correlation (PC) coefficient matrix of HMs, sulfide, oils, redox potential (Eh), pH, and total organic content
(TOC) in the sediments of Daya Bay.

Sulfide TOC Oils Hg As Zn Cd Pb Cu Eh pH

Sulfide 1
TOC 0.689 ** 1
Oils 0.162 0.058
Hg 0.184 0.269 * 0.085 1
As −0.033 0.179 −0.119 0.001 1
Zn 0.166 0.303 * 0.067 0.104 0.474 ** 1
Cd 0.105 0.325 ** −0.178 0.145 0.067 −0.125 1
Pb −0.079 −0.014 0.072 0.048 0.403 ** 0.451 ** 0.145 1
Cu 0.254 * 0.033 0.206 0.097 0.300 * 0.462 ** −0.156 0.586 ** 1
Eh 0.104 0.011 0.134 −0.176 0.088 0.073 −0.144 0.131 0.187 1
pH −0.023 −0.171 0.024 0.152 −0.192 −0.272 * −0.011 −0.037 −0.018 0.026 1

* Correlation is significant at the 0.05 level (two-tailed). ** Correlation is significant at the 0.01 level (two-tailed).

3.3. Pollution Assessment of HMs in Sediments

Pollution assessments of HMs in sediments have been carried out widely based
on several ecological risk indices, such as the Nemerow pollution index, Ei

r, RI, and
Igeo [20,35,43,51]. The Nemerow pollution index was used to assess HM pollution in sedi-
ments over different years. The Nemerow pollution index exceeded 1 in 2018, indicating
that HM pollution was “mild” in 2018. The Nemerow pollution index was in the range of
0.7–1 in 2014, 2015, and 2016, indicating that pollution was acceptable during these periods.
The Nemerow Pollution Index was also low (i.e., a “clean” condition) in 2017. For the
surface sediments, over 80% of the sampling sites were considered “clean”, with a small
fraction between the “clean” and “mild” pollution levels.

The five-year averages of Ei
r for HMs in surface sediments are shown in Figure 5. The

average Ei
r values for HMs were ranked in the following order: Hg (399.69) > Cd (107.71)

> As (9.53) > Pb (6.40) > Cu (3.93) > Zn (0.98) > Cr (0.89). The risk levels are presented in
Table 1. The average Ei

r values for Hg and Cd were 399.69 and 107.71, corresponding to
the extremely high-risk level and relatively high-risk level, respectively. Meanwhile, Hg
and Cd accounted for the largest proportion due to the higher toxicity coefficients of Hg
(40) and Cd (30) than those of the other HMs [52]. The Ei

r values of other HMs were less
than 40, indicating a low-risk level.

The average RI values for the sampling sites were ranked as follows: WS27 (834.92)
> WS25 (735.41) > WS18 (643.58) > WS22 (577.16) > WS24 (520.7) > WS12 (515.15) > WS1
(485.09) > WS23 (477.88) > WS14 (466.29) > WS16 (449.78) > WS8 (427.37) > WS11 (377.22)
> WS19 (356.64) (Figure 5). According to Figure 5, the RI value in Daya Bay was mainly
influenced by Hg and Cd concentrations, which contributed more than 90% of the RI. Daya
Bay generally exhibits a relatively high risk. W27, W25, and W18 showed high RI values
(>600) and were classified as high risk (Figure 5). The RI values of the other sites were
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between 150 and 300, indicating a relatively high risk. Due to the high toxicity and high
proportion of RI, Hg, and Cd played a very important role in the ecological risk evaluation
in Daya Bay. Tang et al. [13] also found that Cd and Hg pose a very high risk in Daya Bay.
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r (represented by different colored blocks) and RI for HMs in

sediments for each sampling site.

The Igeo values of HMs are shown in Figure 6. The Igeo values of As, Zn, Pb, and Cu
were below zero, suggesting that Daya Bay was not polluted by these metals. For Cd, the
Igeo value was between 1 and 2, suggesting “mild” pollution. For Hg, the Igeo value was
between 2 and 3, indicating “moderate” pollution. The pollution status of Daya Bay as
per the Igeo values is consistent with the results provided by the potential ecological risk
index (Ei

r).
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3.4. Source Apportionment of HMs

Water parameters were evaluated using Kaiser–Meyer–Olkin (KMO) and Bartlett’s
sphericity tests (Table 6). The KMO and Bartlett’s results were 0.702 and 1638.451 (p < 0.05),
respectively, indicating that principal component analysis (PCA) was suitable for reducing
dimensionality. Based on the factor analysis, three main components with eigenvalues
greater than 1 were determined, accounting for 77.525% of the total variance.

Table 6. PCA results of HM concentrations in seawater.

F1 F2 F3

pH −0.090 0.833 0.044
Salinity 0.250 −0.284 0.666

DO 0.198 0.888 −0.106
SS 0.022 0.087 0.883

Inorganic nitrogen 0.267 −0.606 0.104
Hg 0.953 −0.059 0.107
Cr 0.967 −0.057 0.106
As 0.973 −0.068 0.113

Eigenvalue 2.97 1.95 1.28
Variance contribution rate 37.16 24.35 16.02

Cumulative variance contribution rate 37.16 61.50 77.56

Hg, Cr, As, and DIN were highly correlated with the first component, accounting for
37.16% of the total variance. pH and DO were highly correlated with the second component,
accounting for 24.35% of the total variance. Salinity and SS were highly correlated with
the third component, accounting for 16.02% of the total variance. As of 2020, the Daya
Bay petrochemical zone is the largest in China, producing 2 million tons of petroleum and
2 million tons of ethylene per year. Furthermore, 89 projects have been launched in the
petrochemical zone, and 63 land-based outlets along the coast of Daya Bay are established,
of which 20 are located around the petrochemical zone [53]. The discharge from these
outlets into the sea, including domestic sewage and industrial wastewater, might result
in an increase in HM concentrations in seawater. Aotou and Xiayong are the two main
fishing ports in Daya Bay. Due to the lack of environmental protection measures, the water
environment around fishing ports has deteriorated in recent years, and the water quality
has not met environmental protection requirements [54]. The main factors affecting the
water environment quality of the fishing port are ballast water, tank washing water, and
domestic sewage, which might be attributed to HM pollution.

Moreover, the Dan’ao River is the largest river in this area flowing into the sea,
starting from Danshui town, Huiyang, and finally flowing into the Baishou Cove. With
the economic development of Huiyang, a large amount of urban domestic sewage and
industrial wastewater from the electronics and electroplating industries flows along the
riverbank into the Dan’ao River, and industrial wastewater usually carries a large number
of HMs, such as Cu, Hg, and Cr [45]. In this study, DIN significantly correlated with Hg, As,
and Cr (Table 3). Meanwhile, considering the distribution of HMs (Figure 4), the sources
of HMs in the first component of the PCA analysis are mainly industrial wastewater and
domestic sewage containing nitrogen. Therefore, HMs in seawater might be influenced
by anthropogenic inputs, including domestic sewage and industrial wastewater from the
petrochemical zone, fishing ports, and rivers.

KMO and Bartlett’s sphericity tests were performed to confirm that PCA is suitable for
the evaluation of HMs in sediments (Table 7). Three components, accounting for 74.73% of
the total variance with eigenvalues higher than 1, were extracted. PC1, PC2, and PC3 were
correlated with As, Zn, Cu, Pb, Cd, and Hg. As, Zn, Cu, and Pb were highly correlated with
the first component, accounting for 39.28% of the total variance, with loadings greater than
0.71. Cd was highly correlated with the second component, accounting for 19.62% of the
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total variance, with a loading of 0.96. Hg was highly correlated with the third component,
accounting for 15.84% of the total variance, with a loading of 0.97.

Table 7. PCA results of HM concentrations in sediments.

Component
Initial Eigenvalue Extract the Sum of the Squares

of the Load
The Composition Matrix

after Rotation

Eigenvalue % of
Variance

Accumulate
% Eigenvalue % of

Variance
Accumulate

% HM 1 2 3

1 2.36 39.28 39.28 2.36 39.28 39.28 Pb 0.81 0.19 0.03
2 1.18 19.62 58.89 1.18 19.62 58.89 Zn 0.77 −0.19 0.10
3 0.95 15.84 74.73 0.95 15.84 74.73 Cu 0.77 −0.27 0.17
4 0.74 12.26 86.99 As 0.71 0.20 −0.18
5 0.45 7.52 94.51 Cd −0.01 0.96 0.10
6 0.33 5.49 100.00 Hg 0.04 0.10 0.97

The results of PCA, PC, and spatial distributions indicated that Cu, Zn, Pb, As, and
TOC have common sources, whereas Cd and Hg have different sources. High concen-
trations of HMs were mainly observed at Fanhe Harbor and Yaling Cove, which were
surrounded by cage aquaculture. Normally, the TOC content is high in sediments from
the cage aquacultural areas [55]. Significant positive correlations between the HMs (Cd,
Hg, and Zn) and TOC (Table 5) indicated that cage culture might be one of the pollution
sources in this study. Meanwhile, discharge from the Dan’ao River and a nearby industrial
area was proposed as another source of these metals. The concentrations of As, Zn, Pb,
and Cu in sediments are often closely related to waste discharge from outlets [56]. There
were dozens of outlets distributed along the coast of Daya Bay. Except for some enterprises
discharging sewage through the discharge pipeline, wastewater from other industrial
enterprises was discharged directly into the sea. The annual discharge of wastewater
from the petrochemical industry in Daya Bay was estimated at 9.2 × 106 m3. The main
pollutants were HMs, ammonia, and petroleum [53]. Therefore, the source of the HMs
in the sediments might have been influenced by wastewater discharge from the outlets.
According to the high potential ecological risk index and Igeo values of Hg and Cd, Hg and
Cd may also be influenced by anthropogenic inputs that are different from the sources
of Cu, Zn, Pb, and As. Considering the high CV% values of Hg (75%) and Cd (52%) and
high concentrations of Hg and Cd found in Gangkou and Aotou Harbors, pollution of Hg
and Cd might be attributed to the point sources near the harbors. However, more detailed
research is required to assess these sources.

4. Conclusions

HMs in seawater and surface sediment samples in Daya Bay were investigated. The
levels of HM concentrations in seawater were relatively low and regarded as class I, based
on the SWQS of China. No significant increase in the interannual trend was observed for
HMs in seawater. The levels of HM concentrations in sediments were regarded as class I,
based on the MSQS of China. Compared with other coastal areas, HM concentrations in
Daya Bay were generally at an intermediate level.

Based on the data acquired and the statistical analysis methods, potential pollution
sources and risks in Daya Bay were proposed. Pearson correlation analysis revealed that
the concentrations of HMs were greatly affected by other parameters, such as pH, salinity,
DO, and TOC. The potential ecological risk index (Ei

r) of HMs in sediments indicated a
relatively high risk, especially for Hg and Cd. The geoaccumulation indices (Igeo) of As, Zn,
Pb, and Cu indicated no pollution in Daya Bay, whereas those of Cd and Hg indicated mild
and moderate pollution. The principal component, factor analyses, and spatial distribution
indicated that Hg, Cr, As, and DIN in water originated from common sources, including
domestic sewage and wastewater from fishing ports, runoffs, and outlets. For sediments,
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the same sources, including cage aquaculture and waste discharge from outlets, were
proposed for Cu, Zn, As, Pb, and TOC.

The present study showed that the HMs in Daya Bay were mostly attributed to
anthropogenic activities. Further research on more accurate source apportionment of
HMs should be carried out. This study also suggests that effective measures should be
taken to control pollutant emissions to achieve sustainable environmental and economic
development.
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