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Abstract: Drivers’ lack of alertness is one of the main reasons for fatal road traffic accidents (RTA)
in Iran. Accident-risk mapping with machine learning algorithms in the geographic information
system (GIS) platform is a suitable approach for investigating the occurrence risk of these accidents
by analyzing the role of effective factors. This approach helps to identify the high-risk areas even in
unnoticed and remote places and prioritizes accident-prone locations. This paper aimed to evaluate
tuned machine learning algorithms of bagged decision trees (BDTs), extra trees (ETs), and random
forest (RF) in accident-risk mapping caused by drivers’ lack of alertness (due to drowsiness, fatigue,
and reduced attention) at a national scale of Iran roads. Accident points and eight effective criteria,
namely distance to the city, distance to the gas station, land use/cover, road structure, road type, time
of day, traffic direction, and slope, were applied in modeling, using GIS. The time factor was utilized
to represent drivers’ varied alertness levels. The accident dataset included 4399 RTA records from
March 2017 to March 2019. The performance of all models was cross-validated with five-folds and tree
metrics of mean absolute error, mean squared error, and area under the curve of the receiver operating
characteristic (ROC-AUC). The results of cross-validation showed that BDT and RF performance
with an AUC of 0.846 were slightly more accurate than ET with an AUC of 0.827. The importance
of modeling features was assessed by using the Gini index, and the results revealed that the road
type, distance to the city, distance to the gas station, slope, and time of day were the most important,
while land use/cover, traffic direction, and road structure were the least important. The proposed
approach can be improved by applying the traffic volume in modeling and helps decision-makers
take necessary actions by identifying important factors on road safety.

Keywords: driver alertness; geographic information system (GIS); machine learning algorithms;
spatial modeling

1. Introduction

According to the World Health Organization (WHO) report in 2018 on road safety,
Iran has a higher rate of road traffic fatalities per person than the global average [1]. Iran
is one of the countries in West Asia with an almost unsafe road situation. Road traffic
injuries have always been one of the leading causes of Iranians’ deaths [2]. According to
the latest statistics of the Iran road maintenance and transportation organization (IRMTO)
in 2020, from March 2019 to March 2020, 159,735 road traffic accidents (RTA) occurred in
Iran, killing 16,947 and injuring 347,307 people [3]. The high rate of RTA in Iran, along with
significant economic damage and loss of life [4,5], necessitates research into the problem.

Because RTA causes significant financial damage to countries and leads to many
people’s death every year [6], its modeling has always been a hot topic. In general, the
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available traffic accident models are in three categories of severity modeling [7–9], risk
modeling [10,11], and frequency modeling [12,13]. These models aids in the prediction of
road safety conditions by explaining the influence of several elements on accident occur-
rence [10]. Since many spatial and non-spatial factors influence traffic accidents [10,14,15],
RTA modeling requires methods to extract knowledge from multi-dimensional data. Ma-
chine learning provides suitable methods for this purpose.

Machine learning algorithms are computational methods that learn from input data
to achieve impressive results [16]. These algorithms contain two parameters: model
parameters that will be tuned in the learning process and hyper parameters that should be
tuned before modeling to improve the learning process to the highest level [17]. Machine
learning algorithms have an excellent ability to analyze complex relationships in data [18]
and gained popularity in various fields, due to their good accuracy, robustness, efficiency,
simplicity, and computation speed [19]. Accident analysis is also a field in which machine
learning has been successful [20]. Machine learning methods are practical in predicting
accident occurrence and identify nonlinear relationships between affective factors and RTA
risk better than traditional statistical algorithms [21,22]. These methods can work with
high degrees of freedom, without needing traditional hypotheses, and are more flexible
to outliers [23]. A short review of the most common machine learning applications for
accident analysis is given in Table 1. Silva et al. [24] presented more details about applied
machine learning to road-safety modeling.

Table 1. Summary of machine learning applications in accident analysis.

Paper Machine Learning Application

Farhangi et al. [10] Accident-risk modeling and mapping

Lee et al. [25] Accident severity prediction

Mestri et al. [26] Identification of accident-prone locations

Al-dogom et al. [21] Spatio-temporal analysis for accidents prediction

Fan et al. [27] Identification of accident black spots and analyzing
their characteristics

Rovšek et al. [28] Identifying the critical risk factors of accident injury severity

Taamneh et al. [29] Accident modeling and prediction

Kumar and Toshniwal [30] Characterizing road accident locations

Tao et al. [31] Creating a diagnostic model between driving violation behaviors
and accident morphologies

Zheng et al. [32] Accident frequency modeling

Wang et al. [33] Driving risk assessment using near-crash database

Beshah et al. [34] Pattern recognition and knowledge discovery from accident data

Das and Abdel-Aty [35] Combined frequency-severity accident analysis

Chang and Chen [36] Establishing the empirical relationships between accidents and
road geometric

Comparing the machine learning algorithms in modeling, we see that ensemble meth-
ods usually perform more precisely than a single algorithm. The main idea of ensemble
learning is to weigh multiple single estimators and merge them to enhance predictive
performance [37]. Ensemble learning algorithms, such as bagged decision trees (BDT),
extra trees (ET), and random forest (RF), are a series of decision trees. The benefits of
decision tree and ensemble learning make BDT, ET, and RF algorithms easy to understand
and precise [38]. However, each of these ensemble algorithms has a different structure
that improves its performance; for example, BDT helps reduce variance and error in big
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data, RF contains a large number of independent trees [39], and ET provides fast accurate
predictions [40].

One of the primary steps in road safety modeling is the identification, selection, and
preparation of influential factors. For this purpose, the geographic information system
(GIS) is a suitable platform. This system provides the most demanding tools required
to analyze RTA and road design that can be noteworthy in achieving road safety [41],
manages different types of databases [42], includes data analysis methods [43], provides
a suitable platform for big data management [10], and has been widely used as the base
platform of many road safety research so far [44]. Generally, application of GIS in road
safety analysis includes spatial modeling of accident risk [45,46], spatial and spatiotemporal
analyzing of accidents [47,48], extraction of accident hotspots [44,49], preparing accident-
risk map [10,50], identifying spatiotemporal patterns of accidents [51], spatiotemporal
clustering of road accidents [52], and exploring the relationships between affective factors
and accident rates [53,54]. Researchers often combine GIS with other analysis methods.
Machine learning is one of these methods utilized in road-safety assessments in various GIS-
based research [21], due to its popularity as a robust and data-driven family of prediction
tools [23].

The combination of machine learning and GIS provides a suitable platform for road
safety analysis. Table 2 presents the recent literature on combined machine learning and GIS
in the road-safety analysis. In the field of accident modeling with GIS and machine learning,
it should be noted that influential factors on accidents might influence the occurrence
of each accident type differently, and it is essential to have models of accidents with a
specific cause [10]. In general, the causes of accident occurrence fall into several categories,
including driver, environment, road, and vehicle [10]. Drivers play an essential role in
RTA occurrence in Iran [55]. An epidemiological analysis from 1996 to 2014 revealed
that influential factors on driver alertness, including lack of attention, drowsiness, and
fatigue, had been the most common risk factors associated with RTA in Iran [56]. This
increases the necessity of investigating accidents caused by driver lack of alertness and
influential factors.

Table 2. Review of the recent literature on combined machine learning and GIS in the road-safety analysis.

Paper Aim Summary Study Area Hyper Parameters
Tuning

Afolabi et al. [57]
Proactively

predicting traffic
accident

Ensemble machine learning algorithms of
lightGBM, catboost, and lightGBM + catboost

were used to predict the occurrence of accidents
accurately at a given segment for every hour

ranging. Data processing and visualization were
performed with GIS.

Cape Town, South
Africa No

Al-Aamri et al. [58]
Mapping road

traffic crash
hotspots

The network-based analysis and KDE identified
traffic crash hotspots in GIS. Random forest was
used to classify the crash hot and cold zones and

evaluate the role of effective factors.

Muscat
Governorate, Oman No

Roland et al. [59]

Modeling and
predicting the

vehicle accident
occurrence

The multi-layer perceptron model used different
spatial attributes to inform local law enforcement
officers of high likelihood accident hotspots for

any given day. Manipulating spatial information
into desired formats was performed with GIS.

Chattanooga City,
Tennessee No

Farhangi et al. [10]
Drowsy accidents

risk modeling
and mapping

Drowsy accidents occurrence risk was modeled
with RF, SVM, and decision tree. The preparation

and preprocessing of spatial factors and
accident-risk mapping were performed in GIS.

Qazvin Province,
Iran No

Liu [60]

Classification of
the accident

severity using
large-scale data

Traffic accident severity was classified with SGD
linear, K-nearest neighbors, decision tree, RF, and
XGBoost algorithms based on various influential
factors in large-scale data. Data processing was

performed with GIS.

California State,
United States No
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Table 2. Cont.

Paper Aim Summary Study Area Hyper Parameters
Tuning

Zahid et al. [61]

Adopting machine
learning and spatial
analysis for driver

risk assessment

Driving violation hotspots along two
expressways developed in GIS and K-nearest

neighbors, SVM, and CN2 rule inducer
algorithms assessed risk based on the

characteristics of hotspots well.

Luzhou City, China No

Zhu et al. [62]

Identification of
potential traffic

accident hotspots on
accident data

First, spatial analysis in GIS was used to identify
traffic accident hotspots. Then, logistic regression
and RF algorithms identified influencing factors

on the creation of the hot spots.

Beijing city, China No

Drivers’ lack of alertness is due to pre-driving situations or the impacts of different
factors while driving [10]. Road type [63], characteristics of road geometry, driving envi-
ronment [64], time of day [65], and driving duration [66] are some of the most important
factors that influence driver performance by affecting driver alertness level while driving.
Understanding the influential factors on driver alertness makes it is possible to extract
valuable patterns between them and accident occurrence with machine learning.

Although various techniques can detect drivers’ alertness to prevent accident occur-
rence through monitoring driver psychological signals, driver behavior, and vehicle-based
parameters [67–69], they are not common yet. Hence, accident-risk mapping with machine
learning algorithms in the GIS environment is an excellent approach for achieving road
safety. This approach identifies high-risk areas even in unnoticed and remote places and
understands the role of influential factors on accidents. Identifying high-risk areas can be
helpful in planning for placing road emergency services, roadside rest areas, and warning
signs, and understanding the role of influential factors helps to predict the safety situation
in other areas. For more explanation, it should be said that the location of emergency ser-
vices is vital since driver lack of alertness increases the risk of fatal and injury accidents [70],
building roadside rest areas helps to decrease the number of accidents caused by driver lack
of alertness [71], and the existence of warning signs may increase the driver alertness [72].
Accident-risk mapping with machine learning algorithms in the GIS environment can give
better results by choosing a large study area (it makes results more generalize [73]), hyper
parameters’ tuning (it enhances the learning process of machine learning algorithms),
and focusing on RTA with a specific cause, but previous works often did not consider all
of these.

The present study aimed to evaluate tuned ensemble machine learning algorithms
of BDT, ET, and RF in accident-risk mapping caused by driver lack of alertness (due
to drowsiness, fatigue, and reduced attention) in the GIS platform. The modeling was
performed at a national scale of Iran roads to cover a large scale of factors, and the time
factor was utilized to represent drivers’ varied alertness levels. Accident-risk maps and
the kernel density estimation (KDE) were used to prioritize accident-prone locations in
the study area. The effectiveness of models’ hyper parameters tuning were evaluated, and
models’ performance was cross-validated and compared.

2. Materials and Methods
2.1. Methodology

For spatial prediction of accident risk, this study was conducted in four steps. First,
a spatial dataset of accident points in the study area was created. Second, eight effective
criteria, including distance to the city, distance to the gas station, land use/cover, road
structure, road type, time of day, traffic direction, and slope, were selected for modeling.
These eight criteria values/weights were normalized in the range of [0, 1] before modeling.
Third, the K-fold method was used to train and validate three machine learning algorithms
of BDT, ET, and RF with 5-folds. In each iteration, the mean of mean absolute error (MAE),
mean squared error (MSE), and area under the curve of the receiver operating characteristic
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(ROC-AUC) metrics were calculated. The tuning process of these three algorithms was
performed with a random search method. Fourth, predicted accident risk in different time
classes was mapped in GIS. Then, using the accident-risk maps accident-prone locations
were prioritized with KDE. The steps for conducting research are summarized in Figure 1.

Figure 1. Research methodology.

2.2. Study Area

Iran, with an approximate area of 1,648,195 km2, is located between east longitude of
44◦2′50′ ′ to 63◦19′2′ ′ and north latitude of 25◦3′31′ ′ to 39◦46′37′ ′ (Figure 2). This country
with a geopolitically strategic location is a regional middle power and, its gross domestic
product rank is among the top 30 countries in the world. Iran’s climate is changeable, and
its topography is almost mountainous, despite two central salt deserts (the Dasht-e Lut
and the Dasht-e Kavir) in the middle. Iran’s population is estimated to be over 80 million
people, according to a 2016 report by the Statistical Centre of Iran [74]. Out of 291,014 km of
roads under the supervision of IRMTO, about 71% are rural roads, 13% are secondary roads,
9% are primary roads, 6% are highways, and 1% are freeways [3]. Moreover, mentioned
roads contain 379 tunnels with an approximate length of 199 km and 355,306 bridges.

2.3. Spatial Database
2.3.1. Accident Dataset

The accidents dataset was prepared by the IRMTO and included 4399 RTA records
from March 2017 to March 2019. The cause of mentioned accidents was driver lack of
alertness, and they resulted in 4889 damaged vehicles, 5158 injuries, and 797 deaths. To
train and validate algorithms, a balanced dataset on the occurrence and non-occurrence
of accident points was needed. Therefore, 4399 road points where the accident did not
occur were randomly selected as accident-free road points. These accident-free road points
and RTA records formed 8798 data records to train and cross-validate machine learning
algorithms. In each iteration of cross-validation with 5-folds, 1760 of these data records
were used. Figure 3 shows the distribution of these 8798 data records at different times of
day on Iran roads. In Figure 3, the number of accident points in map A, map B, map C, and
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map D is 203, 1684, 1490, and 1022, respectively, which formed 4399 RTA records, and the
number of free-accident road points in map E is 4399. Classification map of the number of
accidents per Iran province and distribution map of accident points for top provinces with
the most accident points are shown in Figure 4.

Figure 2. Location map of the study area.

Figure 3. Distribution map of the research data records used for training and cross-validation.
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Figure 4. Classification map of the number of accidents per Iran province (up) and distribution map of accident points for
top four regions with the most accident points (down).

2.3.2. Effective Criteria Dataset

Identification of effective criteria is a primary step in modeling. According to the
reviewed literature, related factors to road characteristics, road geometry, driving envi-
ronment, time of day, and driving duration can be considered effective on diver alert-
ness [63–66]. Experts chose eight effective criteria for spatial modeling: distance to the
city, distance to the gas station, land use/cover, road structure, road type, time of day,
traffic direction, and slope. ArcGIS 10.3 software was used to estimate spatial criteria
(Figure 5). OpenStreetMap (OSM) data in 2019 prepared the research road layer with its
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attributes. This road layer and distance analysis were used to compute distance to the city
and distance to the gas station, and road layer attributes defined road structure, road type,
and traffic direction. Detailed effective criteria are given in Table 3.

1. Distance to the city: In Iran, 60% of RTA occurs within 30 km of cities. Several
types of traffic flows occur at the city entrance/exit areas, which result in the different
performance of drivers. This causes heterogeneous vehicular traffic and, consequently,
accidents [75]. Since distance to the city correlates with high accident risk at the city
entrance/exit areas and driving duration, it was selected for modeling.

2. Distance to the gas station: Refueling the vehicle prevents a long period of driving.
Besides, most of the roadside gas stations in Iran have facilities such as supermarket,
coffee, parking, etc., and many drivers rest at these places. This prevents the driver
from losing alertness and reduces the risk of accidents. To apply this criterion, the
distance to the gas station was selected as the modeling criterion.

3. Land use/cover: The surrounding environment of the road influence the level of
driver alertness. Each land-use/cover type has a different visual diversity which
can make the road environment monotonous or absorbing. Thus, land use/cover
was selected as an effective criterion for spatial modeling. Using Landsat 8 satellite
images in ENVI 5.1 software and the maximum likelihood classification method, the
land-use/cover map was prepared. According to experts, all land-use/cover types
were weighted (Table 3). With these weights, a map of this criterion with a pixel size
of 30 × 30 m was prepared.

4. Road structure: Generally, three structure types of bridge, tunnel, and normal road
were in the study area. According to Iran’s Highway Geometric Design Code
(No. 415), each of the road constructions mentioned above has its own set of re-
quirements, such as speed limits, lighting conditions, curvature, and slope limitations,
all of which affect driving conditions [76]. Since a change in the driving situation can
influence the driver alertness, road structure type was chosen for spatial modeling.
According to experts, bridges labeled 1, normal roads labeled 0.5, and tunnels were
labeled 0 in modeling.

5. Road type: There are specific standards for the construction of any road type. These
standards define limitations for geometric road characteristics such as slope, curvature,
speed limit, and road width [76]. As the geometry and characteristics of the road
affect the level of driver alertness, the road type was chosen as an effective criterion in
modeling. To apply the effect of this criterion in modeling, experts assigned a weight
to each road type, as listed in Table 3.

6. Time of day: Time of day is an associated factor with driver alertness [65]. Accident
data records were divided into four classes (Figure 3) based on a typical circadian
rhythm with peak alertness at around 8:00 p.m. and 10 a.m. [77], and all classes were
weighted (Table 3). The detailed classes and the number of accidents per class are
listed in Table 4.

7. Traffic direction: Traffic flow affects the level of driver alertness [78]. Drivers are used
to getting visual information about traffic situations, and this behavior is associated
with their alertness level [63]. In general, there are two types of traffic direction
(one-way and two-way) that make different conditions both for traffic flow and visual
traffic situations. In modeling, one-way roads were labeled 1, and two-way roads
were labeled 0.

8. Slope: Road geometry is significantly affected by the terrain slope. Increasing the
slope makes the road geometry more varied [10]. Moreover, changing the slope make
drivers careful to control their speed [45]. These led to the choice of slope as an
effective criterion in modeling. The global multi-resolution terrain elevation data
(GMTED 2010), with a resolution of 225 m, were used to obtain slope values.
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Figure 5. Estimated spatial criteria in the study area.

Table 3. Detailed effective criteria in spatial modeling.

Criterion Value/Weight

Distance to the city Normalized in the range of [0, 1]

Distance to the gas station Normalized in the range of [0, 1]

Land use/cover

Bare land and desert = 1
Rock, salt land, and sand dune = 0.8

Agriculture, and range = 0.6
Wetland = 0.4

Forest and shoreline = 0.2
Urban = 0

Road structure
Bridge = 1

Normal road = 0.5
Tunnel = 0

Road type

Freeway = 1
Highway = 0.65

Primary road = 0.3
Secondary road = 0

Time of day

05:00–06:00 = 1
24:00–05:00, 06:00–07:00, and 13:30–16:00 = 0.66

07:00–08:00, 10:00–13:30, 16:00–17:00, and 21:00–24:00 = 0.33
08:00–10:00, and 17:00–21:00 = 0

Traffic direction One-way = 1
Two-way = 0

Slope Normalized in the range of [0, 1]
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Table 4. Detailed time classes.

Class Time Number of Accidents

While circadian alertness is
dangerously low 05:00–06:00 203 (4.62%)

While circadian alertness is
slightly impaired

24:00–05:00, 06:00–07:00, and
13:30–16:00 1684 (38.28%)

While circadian alertness
is reduced

07:00–08:00, 10:00–13:30,
16:00–17:00, and 21:00–24:00 1490 (33.87%)

While circadian alertness is at
peak level 08:00–10:00, and 17:00–21:00 1022 (23.23%)

2.4. Methods
2.4.1. Data Preprocessing

One of the preprocessing approaches in machine learning where the data are scaled or
transformed to make modeling features contribute equally is normalization [79]. Before
applying predictive models, using Equation (1), we normalized all features in the range of
[0, 1].

XNormalized =
(X− XMin)

(XMax − XMin)
(1)

In Equation (1), Xmin and XMax are the minimum and maximum values of the feature,
respectively.

2.4.2. Bagged Decision Trees Algorithm

Bagging is an ensemble machine learning algorithm that helps to enhance the unstable
models’ performance when data are high-dimensional [80]. In ensemble learning, a group
of estimators is used; that is, each estimator creates its data model for prediction, and at
the end, samples are predicted by voting or averaging between models’ predictions [81].
Bagging can use different estimators as the base predictive model, but the decision tree is
often chosen. Each algorithm is trained with a random subset of samples in this ensemble
algorithm [82].

2.4.3. Extra Trees Algorithm

The decision tree is a practical machine learning algorithm [83]. This method is
popular due to its high learning speed, lack of domain knowledge, interaction with mul-
tidimensional datasets, and construction of understandable models [10]. A decision tree
structure is top-down, with a root, nodes, branches, and leaves [84]. The extra tree and
classic decision tree are different in the way they are built. In the extra tree algorithm, to
obtain the best divisions for separating the samples of a node into two groups, random
splits are drawn, and the best division among them is chosen [40].

2.4.4. Random Forest Algorithm

RF is a supervised machine learning algorithm that makes its data model with ensem-
ble learning technique. The base estimators in this ensemble algorithm are decision trees
trained with randomly selected samples and sample features [85]. This learning technique
has performed well in large-scale problems or where the number of variables is more than
observations [86]. In RF, all trees contribute to the result, and samples are predicted by
averaging or voting between trees’ predictions [10].

2.5. Validation
2.5.1. K-Fold Cross-Validation

The K-fold cross-validation method helps to understand how the prediction of a model
will generalize to independent data. This method clarifies the effectiveness of a predictive
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model in practice [87]. K-fold subdivides the data into K subsets. One of the data subsets
is utilized for validation in each iteration, while the other K-1 data subsets are used for
training. This approach is made for K times; therefore, all data are used for training and
validation. In the end, the average of all K validation times shows the final estimate [88].

2.5.2. Validation Metrics

The performance of three machine learning algorithms was assessed using MAE, MSE,
and ROC-AUC metrics. MAE is the mean absolute error between the actual values and the
estimated values. This metric is not sensitive to significant errors [10]. MAE is a suitable
metric for the evaluation of average model performance. MSE equals to mean squares of
errors between the actual values and the estimated values. This metric punishes outliers
and does not apply mistakes with the same weight [89]. MAE and MSE are defined with
Equations (2) and (3), respectively.

MAE =
1
n

n

∑
i=1
|yi − ŷi| (2)

MSE =
1
n

n

∑
i=1

(y i − ŷi)
2 (3)

In Equations (2) and (3), yi is the predicted value, ŷi is the actual sample value, and n
is the number of samples.

The y-axis of the ROC curve represents sensitivity, whereas the x-axis represents speci-
ficity. The contrast between the sensitivity and specificity in several cutting points evaluates
the model performance [10]. The sensitivity and specificity are probabilistic metrics in
the range of [0, 1], computed using Equations (4) and (5), respectively. The probability
of a correct prediction of positive and negative samples is measured by sensitivity, and
specificity, respectively [90]. The area under the ROC curve is called AUC and detects the
probability of a correct prediction of a random sample. AUC is in the range of [0, 1], and
the higher AUC shows the better model performance [91].

Sensitivity =
TP

TP + FN
(4)

Specificity =
TN

TN + FP
(5)

The number of correctly predicted positive samples is TP, the number of incorrectly
predicted positive samples in FP, the number of correctly predicted negative samples is TN,
and the number of incorrectly predicted negative samples in FN [92].

3. Results

With the Python scikit-learn library in Anaconda software, we created BDT, ET, and
RF algorithms. In this stage, according to experts, the most important hyper parameters
for each algorithm were selected to be tuned by using the random search method [93] with
100 iterations.

3.1. Accident-Risk Mapping

Table 5 shows the hyper parameters used for the optimization of BDT, ET, and RF
algorithms. In this table, the base estimator is the decision tree, max_samples is the ratio
of samples needed for training each tree. Moreover, max_features for BDT is the ratio
of features needed for training each tree, and for ET and RF, it is the ratio of features to
consider when looking for the best split. Furthermore, min_samples_split is the minimum
number of samples required to split an internal node, min_samples_leaf is the minimum
number of samples needed to be at a leaf node, and max_depth is the maximum depth of
trees. RF used the most estimators. The minimum and the mean tree depth of this ensemble
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algorithm were 23 and 28.93, respectively. The number of estimators of the ET algorithm
was four less than RF, and its trees often had more depth than the other two algorithms.
The minimum and the mean tree depth of the ET algorithm were 27 and 31.08, respectively.
BDT was made of the least estimators, and its trees usually had less depth. The maximum,
minimum, and mean depth of the BDT trees were 45, 19, and 26.19, respectively.

Table 5. Calculated hyper parameters for spatial risk models.

Method Hyper Parameters

BDT
Number of base estimators: 74 Max_features: 1

Max_samples: 0.4694 Bootstrap: True

ET

Number of base estimators: 96 Max_features: 0.3535
Min_samples_split: 2 Max_depth: 41
Min_samples_leaf: 1 Bootstrap: False

Max_samples: 1

RF

Number of base estimators: 100 Max_features: 0.3535
Min_samples_split: 3 Max_depth: 61
Min_samples_leaf: 1 Bootstrap: True
Max_samples: 0.7959

Using the k-fold method with 5-folds, we cross-validated the predictive models.
Overall, RF, ET, and BDT with slight differences had the most negligible errors, respectively.
For RF, mean MAE of train data, mean MAE of test data, mean MSE of train data, and mean
MSE of test data were 0.159, 0.313, 0.042, and 0.160, respectively. Based on the ET algorithm,
the mean MAE of train data was 0.188, the mean MAE of test data was 0.319, the mean MSE
of train data was 0.057, and the mean MSE of test data was 0.164. Correspondingly, 0.195,
0.312, 0.064, and 0.161 were similar MAE and MSE values for the BDT algorithm. Very
small standard deviation (SD) values were observed for MAE and MSE values of spatial
risk models. This indicated that models’ performance had no significant dependency to
train and test data distribution.

Spatial prediction of accident risk caused by driver lack of alertness was performed
with BDT, ET, and RF algorithms in the range of [0,1]. Very low risk (0–0.2), low risk
(0.2–0.4), medium risk (0.4–0.6), high risk (0.6–0.8), and very high risk (0.8–1) were used
to classify these predictions into five classes with equal intervals. Figures 6–8 present
the mapped accident risk by BDT, ET, and RF, respectively. Four different risk maps are
given in these figures; each relates to a circadian alertness condition (Table 4). Map A, map
B, map C, and map D indicate when circadian alertness is at its peak, reduced, slightly
impaired, and dangerously low, respectively. In all prepared maps, the mean of estimated
accident risk increases as circadian alertness goes from peak level to slightly impaired.
However, the mean of calculated accident risk when circadian alertness is dangerously low
is unacceptable. By merging the prepared risk maps, areas that had the highest accident
risk at all times of day were identified. The Khalij Fars, Zanjan-Gahzvin, Tabriz-Zanjan,
Amirkabir, Saveh-Hamedan, Tehran-Saveh, and Karaj-Ghazvin freeways had the highest
accident risk in all estimated risk maps, respectively.

3.2. Identification and Prioritizing of Accident-Prone Locations

By applying the KDE on accident-risk maps, the most significant accident-prone
locations were identified. Accordingly, we first merged the accident-risk maps to obtain
the mean accident risk at each road point. Then we applied the KDE and classified the
results into two classes with the natural junks method. Overall, 237 points were identified
in the study area, as shown in Figure 9. These points must be given priority in taking the
necessary steps.
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Figure 6. Estimated accident-risk maps, using BDT algorithm.

3.3. Correlation between Accident Risks at Different Times of Day

To understand how estimated accident risk changed at different times of day, the
Pearson coefficient was calculated. Figure 10 shows the correlation between accident risk
in four risk maps of BDT, ET, and RF models. High correlation values indicate that also
time factor changes the accident risk, but it does not change the accident occurrence pattern
significantly. Map D had the lowest correlations with other maps. Completely different
traffic and light conditions at 05:00–06:00 compared to other times of day might cause this.

3.4. Spatial Features’ Importance

The Gini method [94] evaluated the importance of features in the spatial risk models
(Figure 11). The features’ importance in these tree models was similar. Distance to the
gas station (0.214), distance to the city (0.207), road type (0.200), and slope (0.199) had
significantly higher scores than the average score (0.125); time (0.9) was close to the average
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score, and traffic direction (0.053), land use/cover (0.032), and road structure (0.005) had
remarkably lowest scores.

Figure 7. Estimated accident-risk maps, using ET algorithm.

3.5. Models Validation

Cross-validation of the study was performed with MAE, MSE, and ROC-AUC metrics.
Figure 12 shows MAE and MSE values of train and test data. Although RF almost had the
lowest errors, no large difference was observed in the errors of test data between all three
risk models.

Using the 1760 data records and five-folds, we drew ROC graphs for cross-validation
of accident-risk models (Figure 13). For plotting the ROC graphs, accident points were
labeled positive (1), and other accident-free road points were labeled negative (0). The ratio
of positive samples to negative samples in this cross-validation was 0.5125, 0.4790, 0.4994,
0.5011, and 0.5023, respectively. The detailed results of all ROC graphs are listed in Table 6.
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Figure 8. Estimated accident-risk maps, using RF algorithm.

The greatest AUC for BDT was 0.850, with a standard error of 0.00906 and a 95%
confidence range of 0.826 to 0.861, according to Table 6. The highest observed AUC for
ET was 0.846, with a standard error of 0.00903 and a 95% confidence interval of 0.828
to 0.862. Correspondingly, 0.851, 0.00886, and 0.834 to 0.868 were similar values for RF.
On average, RF, BDT, and ET with slight differences were the most accurate models,
respectively. SD values were also calculated to understand models’ accuracy to train and
test data distribution. No significant dependency was observed for all models.

3.6. Evaluation of Hyper Parameters Tuning

The accuracy of BDT, ET, and RF algorithms was validated with ROC-AUC before
and after hyper parameters tuning to understand the effectiveness of model optimization
with the random search method. Table 7 indicates the results of ROC-AUC for ensem-
ble algorithms before hyper parameter tuning. It is clear that hyper parameters tuning
improved the models’ accuracy, but improvement is not significant. It can be concluded
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that random search is a limited method for tuning hyper parameters, and more effective
strategies should be used for this purpose.

Figure 9. Most significant risky accident-prone locations in the study area.

Figure 10. Calculated Person coefficient between estimated accident risk at different times of day.

Figure 11. Features’ importance in spatial risk models.
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Figure 12. Cross-validation of risk models by MAE and MSE of train and test data.

Figure 13. Validation of risk models by AUC-ROC, using 5-fold validation.
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Table 6. Detailed results of AUC-ROC for risk models, using 5-fold validation.

Model Fold Number AUC Standard Error 95% Confidence Interval Mean AUC SD

BDT

1 0.844 0.00906 0.826 to 0.861

0.846 0.002
2 0.844 0.00917 0.826 to 0.860
3 0.845 0.00904 0.828 to 0.862
4 0.850 0.00886 0.832 to 0.866
5 0.846 0.00906 0.828 to 0.862

ET

1 0.833 0.00937 0.815 to 0.850

0.840 0.005
2 0.838 0.00937 0.820 to 0.855
3 0.839 0.00918 0.821 to 0.856
4 0.846 0.00903 0.828 to 0.862
5 0.844 0.00913 0.826 to 0.860

RF

1 0.842 0.00912 0.824 to 0.859

0.847 0.003
2 0.847 0.00912 0.829 to 0.863
3 0.845 0.00907 0.827 to 0.861
4 0.851 0.00886 0.834 to 0.868
5 0.848 0.00899 0.830 to 0.864

Table 7. Detailed results of AUC-ROC for risk models, using 5-fold validation without hyper parameters tuning.

Model Fold Number AUC Standard Error 95% Confidence Interval Mean AUC SD

BDT

1 0.825 0.00965 0.806 to 0.842

0.827 0.002
2 0.819 0.00970 0.800 to 0.836
3 0.841 0.00916 0.823 to 0.857
4 0.827 0.00978 0.809 to 0.845
5 0.832 0.00958 0.813 to 0.849

ET

1 0.842 0.00928 0.825 to 0.859

0.828 0.006
2 0.830 0.00954 0.812 to 0.847
3 0.825 0.00961 0.807 to 0.843
4 0.846 0.00902 0.828 to 0.862
5 0.828 0.00957 0.810 to 0.846

RF

1 0.830 0.00941 0.812 to 0.848

0.845 0.004
2 0.851 0.00884 0.833 to 0.867
3 0.826 0.00967 0.807 to 0.843
4 0.833 0.00943 0.815 to 0.850
5 0.846 0.00903 0.828 to 0.863

4. Discussion

In this study, eight effective criteria were used for spatial modeling of accident risk
caused by driver lack of alertness. Three ensemble-tree-based machine learning algorithms
with different structures, including BDT, ET, and RF trained with actual accident points.
They estimated the accident risk on Iran roads when typical circadian alertness is at peak
level, reduced, slightly impaired, and dangerously low.

Based on the results derived from the ROC curves, RF, BDT, and ET algorithms with
slight differences had the most accurate predictions, respectively. No significant difference
between AUC values in cross-validation with five-folds for all risk models was observed.
Calculated values of SD for AUC showed that created risk models had no significant
dependency to train and test data distribution. The reason for the above can be found
in the way how trees of each algorithm are built. Despite the RF that uses a subset of
sample features for splitting a tree node and dividing samples into two groups, in the
BDT, all sample features are used for this purpose. Therefore RF has a more independent
structure and usually performs better than BDT [95]. Unlike BDT and RF that use the
bootstrap technique for developing each decision tree, the ET algorithm fits trees on the
whole samples [96]. In the ET algorithm, to create a tree node, an attempt is made to select
the best feature for separating the samples into two groups [40]. Therefore, ET is tied to
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provide trees with more depth to cover all samples, leading to its lower accuracy and
higher SD value in the cross-validation with ROC-AUC.

By describing the structure of BDT, ET, and RF algorithms, MAE and MSE values
can be discussed. ET is flexible to train data and use all samples for building each tree.
Therefore, its error of train data in each iteration of cross-validation was equal, and zero
values of SD showed that samples’ distribution did not affect the training process of the ET
algorithm. However, as BDT and RF trees do not learn with all samples, they had some
errors in all iterations. In the case of test data, ET had more significant errors than BDT
and RF that shows BDT and RF are more generalized to new data. Eventually, much lower
MSE values than MAE indicated that no outlier was in predictions.

In general, all three algorithms performed at the same level of accuracy. It is ob-
served in previous works that tee-based ensemble learning algorithms had almost similar
performance in accident modeling [13,97]. Overall, it can be concluded that tree-based
ensemble algorithms are helpful in the field of road safety analysis even when working
with large-scale data, as they result in a robust prediction with reduced variance [97].

The mean of estimated accident risk in all prepared risk maps was also calculated to
validate them. An acceptable rising trend was observed in all estimated risk maps when
circadian alertness decreased, but while circadian alertness was dangerously low, mean
accident risk was less than expected. This is because traffic volume at 05:00 to 06:00 is
low, and usually, professional drivers, who can drive longer with high alertness, drive
at this time of day [98,99]. This is because, only at 05:00 to 06:00, circadian alertness is
considered dangerously low, and at this time of day, traffic volume is low. Low traffic
volume results in low accident frequency, and since BDT, ET, and RF only learned based
on the accident points data, mean accident risk at 05:00 to 06:00 was predicted to be low.
However, freeways that often have high traffic volume at all hours of the day had a high
level of accident risk in all prepared maps. This means driver alertness decreases more
rapidly on freeways [100].

Using the estimated accident-risk maps, the most significant accident-prone locations
were prioritized with KDE. Compared to previous methods that considered only the
spatial density of accident points [101,102], the result of this approach is more reliable and
generalizable because the accident-prone locations are obtained according to the impact of
various factors on the occurrence of accidents.

On average, distance to the gas station, distance to the city, road type, slope, time of
day, traffic direction, land use/cover, and road structure were the most important modeling
features. Distance to the city and distance to the gas station had similar importance. In line
with previous research [10], distance-based factors are often good features in modeling, as
they include an extensive range of values, and driving duration is associated with distance.
Besides, roadside gas stations in Iran often provide suitable facilities for drivers to rest,
and this increased the importance of distance to the gas station criterion. This finding
is in line with previous work, which confirmed the influence of roadside rest areas in
reducing the accident risk [71]. Any road type has its design standards. Road type defines
the geometric, traffic, structure, and many characteristics of the road [76], so this criterion
affects a wide range of road attributes, and its high importance was expected. The slope
was the next important modeling feature. In designing any road, earthworks are dependent
on terrain slope [10]. Therefore, slope influences the road characteristics directly, which is
an effective factor for driver alertness [64]. Alertness is controlled by the body clock and has
different levels at different times of day [103]. Therefore, the time of day was an essential
feature in this modeling. However, RTA frequency that affected the learning process of the
created risk models is associated with traffic volume, and different traffic volume situations
in times of day influenced the importance of this criterion. Traffic direction and road
structure did not have a good range of values to help the predictions, and their importance
obtained low. The low impact of the traffic situation on driver alertness was observed in
other research, too [65]. Land use/cover was another low important modeling feature,
while many land-use/cover types were observed in the study area. This observation is in
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line with Ahlström et al.’s [104] experimental finding that visual characteristics of road
environment have little impact on driver alertness.

5. Conclusions

This study aimed to use three machine learning algorithms for spatial modeling of
accident risk caused by drivers’ lack of alertness. Accident risk was mapped with BDT,
ET, and RF algorithms on Iranian roads in different circadian alertness situations. The
performance of created risk models was cross-validated by different metrics. Validation
results showed that all three algorithms, namely BDT, ET, and RF, had similar performance
and no significant difference was in their accuracy. Nevertheless, in a strict comparison,
BDT had faster training due to its easier tuning, the training process of ET had less
dependency to samples distribution, and RF was more accurate. The hyper parameters
tuning was performed with the random search method and increased the accuracy of
machine learning algorithms slightly. It is recommended that the effectiveness of other
optimization methods on accident-risk modeling be investigated in future works.

The mean estimated accident risk in different circadian alertness situations was inves-
tigated. It can be said that traffic volume was the limitation of this study. Contrary to what
was expected, dangerously low alertness at 05:00 to 06:00 did not result in higher accident
risk due to special traffic conditions. As a result, RTA risk modeling using accident points
without normalization of accident frequency with traffic volume might decrease the quality
of prediction and features’ importance evaluation.

Freeways are identified as the riskiest road types when the driver is not alert. The
risk of accidents on freeways was predicted to be high at all times of day, and Khalij Fars,
Zanjan-Gahzvin, Tabriz-Zanjan, Amirkabir, Saveh-Hamedan, Tehran-Saveh, and Karaj-
Ghazvin freeways had the highest estimated accident risk, respectively. In general, risk
mapping of RTA by clarifying the impact of different factors on road safety, identifying
risky areas, and prioritizing accident-prone locations can help decision-makers to take
necessary actions.

Author Contributions: Conceptualization, F.F. and S.V.R.-T.; data creation, F.F.; formal analysis, F.F.;
funding acquisition, S.-M.C.; investigation, F.F. and S.V.R.-T.; methodology, F.F. and A.S.-N.; project
administration, S.-M.C.; resources, A.S.-N.; software, F.F.; supervision, A.S.-N.; validation, F.F. and
S.V.R.-T. and A.S.-N.; visualization, F.F.; writing—original draft, F.F.; writing—review and editing,
S.V.R.-T., A.S.-N. and S.-M.C. All authors have read and agreed to the published version of the
manuscript.

Funding: This research was supported by MSIT (Ministry of Science and ICT), Korea, under the ITRC
(Information Technology Research Center) support program (IITP-2021-2016-0-00312) supervised by
the IITP (Institute for Information and communications Technology Planning and Evaluation).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data during the current study are not publicly available due to integrity
and legal reasons but are available from the corresponding author on reasonable request.

Acknowledgments: We would like to thank the Plan and Budget Office of Iran Road Maintenance
and Transportation Organization (IRMTO), which provided a platform for our research.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. WHO Global Status Report on Road Safety 2018. Available online: https://www.who.int/publications-detail/global-status-

report-on-road-safety-2018 (accessed on 17 June 2018).
2. Bhalla, K.; Naghavi, M.; Shahraz, S.; Bartels, D.; Murray, C.J. Building national estimates of the burden of road traffic injuries in

developing countries from all available data sources: Iran. Inj. Prev. 2009, 15, 150–156. [CrossRef]
3. IRMTO Statistical Yearbook of the Road Maintenance and Transportation Organization 2020. Available online: http://rmto.ir/

Pages/SalnameAmari.aspx (accessed on 16 February 2021).

https://www.who.int/publications-detail/global-status-report-on-road-safety-2018
https://www.who.int/publications-detail/global-status-report-on-road-safety-2018
http://doi.org/10.1136/ip.2008.020826
http://rmto.ir/Pages/SalnameAmari.aspx
http://rmto.ir/Pages/SalnameAmari.aspx


Sustainability 2021, 13, 10239 21 of 24

4. Behnood, H.R.; Haddadi, M.; Sirous, S.; Ainy, E.; Rezaei, R. Medical costs and economic burden caused by road traffic injuries in
Iran. Trauma Mon. 2017, 22. [CrossRef]

5. Sargazi, A.; Sargazi, A.; Jim, P.K.N.; Danesh, H.; Aval, F.; Kiani, Z.; Lashkarinia, A.; Sepehri, Z. Economic burden of road traffic
accidents; report from a single center from south Eastern Iran. Bull. Emerg. Trauma 2016, 4, 43.

6. Gorea, R. Financial impact of road traffic accidents on the society. Int. J. Ethics Trauma Vict. 2016, 2, 6–9. [CrossRef]
7. Lee, J.; Chae, J.; Yoon, T.; Yang, H. Traffic accident severity analysis with rain-related factors using structural equation modeling—A

case study of Seoul City. Accid. Anal. Prev. 2018, 112, 1–10. [CrossRef] [PubMed]
8. Hazaa, M.A.; Saad, R.M.; Alnaklani, M.A. Prediction of Traffic Accident Severity using Data Mining Techniques in IBB Province,

Yemen. Int. J. Softw. Eng. Comput. Syst. 2019, 5, 77–92. [CrossRef]
9. Chen, M.-M.; Chen, M.-C. Modeling road accident severity with comparisons of logistic regression, decision tree and random

forest. Information 2020, 11, 270. [CrossRef]
10. Farhangi, F.; Sadeghi-Niaraki, A.; Nahvi, A.; Razavi-Termeh, S.V. Spatial modeling of accidents risk caused by driver drowsiness

with data mining algorithms. Geocarto Int. 2020, 1–15. [CrossRef]
11. Driss, M.; Benabdeli, K.; Saint-Gerand, T.; Hamadouche, M. Traffic safety prediction model for identifying spatial degrees of

exposure to the risk of road accidents based on fuzzy logic approach. Geocarto Int. 2015, 30, 243–257. [CrossRef]
12. Bhowmik, T.; Yasmin, S.; Eluru, N. Do we need multivariate modeling approaches to model crash frequency by crash types? A

panel mixed approach to modeling crash frequency by crash types. Anal. Methods Accid. Res. 2019, 24, 100107. [CrossRef]
13. Zhang, X.; Waller, S.T.; Jiang, P. An ensemble machine learning-based modeling framework for analysis of traffic crash frequency.

Comput.-Aided Civ. Infrastruct. Eng. 2020, 35, 258–276. [CrossRef]
14. Al-Radaideh, Q.A.; Daoud, E.J. Data mining methods for traffic accident severity prediction. Int. J. Neural Netw. Adv. Appl. 2018,

5, 1–12.
15. Erdogan, S.; Yilmaz, I.; Baybura, T.; Gullu, M. Geographical information systems aided traffic accident analysis system case study:

City of Afyonkarahisar. Accid. Anal. Prev. 2008, 40, 174–181. [CrossRef] [PubMed]
16. El Naqa, I.; Murphy, M.J. What is machine learning? In Machine Learning in Radiation Oncology; Springer: Berlin/Heidelberg,

Germany, 2015; pp. 3–11.
17. Yang, L.; Shami, A. On hyperparameter optimization of machine learning algorithms: Theory and practice. Neurocomputing 2020,

415, 295–316. [CrossRef]
18. Witten, I.H.; Frank, E. Data mining: Practical machine learning tools and techniques with Java implementations. Acm Sigmod Rec.

2002, 31, 76–77. [CrossRef]
19. Ardabili, S.; Mosavi, A.; Várkonyi-Kóczy, A.R. Advances in Machine Learning Modeling Reviewing Hybrid and Ensemble. In

Engineering for Sustainable Future; Springer: Berlin/Heidelberg, Germany, 2019; pp. 215–227.
20. Hegde, J.; Rokseth, B. Applications of machine learning methods for engineering risk assessment—A review. Saf. Sci. 2020,

122, 104492. [CrossRef]
21. Al-Dogom, D.; Aburaed, N.; Al-Saad, M.; Almansoori, S. Spatio-temporal analysis and machine learning for traffic accidents

prediction. In Proceedings of the 2019 2nd International Conference on Signal Processing and Information Security (ICSPIS),
Dubai, UAE, 30–31 October 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–4.

22. Wang, C.; Liu, L.; Xu, C.; Lv, W. Predicting future driving risk of crash-involved drivers based on a systematic machine learning
framework. Int. J. Environ. Res. Public Health 2019, 16, 334. [CrossRef] [PubMed]

23. Ziakopoulos, A.; Yannis, G. A review of spatial approaches in road safety. Accid. Anal. Prev. 2020, 135, 105323. [CrossRef]
24. Silva, P.B.; Andrade, M.; Ferreira, S. Machine learning applied to road safety modeling: A systematic literature review. J. Traffic

Transp. Eng. 2020, 7, 775–790.
25. Lee, J.; Yoon, T.; Kwon, S.; Lee, J. Model evaluation for forecasting traffic accident severity in rainy seasons using machine learning

algorithms: Seoul city study. Appl. Sci. 2020, 10, 129. [CrossRef]
26. Mestri, R.A.; Rathod, R.R.; Garg, R.D. Identification and removal of accident-prone locations using spatial data mining. In

Applications of Geomatics in Civil Engineering; Springer: Berlin/Heidelberg, Germany, 2020; pp. 383–394.
27. Fan, Z.; Liu, C.; Cai, D.; Yue, S. Research on black spot identification of safety in urban traffic accidents based on machine learning

method. Saf. Sci. 2019, 118, 607–616. [CrossRef]
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