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Abstract: Heavy metals (HMs) in soil are some of the most serious pollutants due to their toxicity
and nonbiodegradability. Especially across large-scale areas affected by industry, the complexity
of pollution sources has attracted extensive attention. In this study, an approach based on zoning
to analyze the sources of heavy metals in soil was proposed. Qualitative identification of pollution
sources and quantification of their contributions to heavy metals in soil are key approaches in the
prevention and control of heavy metal pollution. The concentrations of five HMs (Cd, Hg, As, Pb
and Cr) in the surface soil of the Chenzhou industrial impact area were the research objects. Multiple
methods were used for source identification, including positive matrix factorization (PMF) analysis
combined with multiple other analyses, including random forest modeling, the geo-accumulation
index method and hot spot analysis. The results showed that the average concentrations of the
five heavy metals were 9.46, 2.36, 2.22, 3.27 and 1.05 times the background values in Hunan soil,
respectively. Cd was associated with moderately to strongly polluted conditions, Hg, As and Pb
were associated with unpolluted to moderately polluted conditions and Cr was associated with
practically unpolluted conditions. The mining industry was the most significant anthropogenic
factor affecting the content of Cd, Pb and As in the whole area, with contribution rates of 87.7%,
88.5% and 62.5%, respectively, and the main influence area was within 5 km from the mining site. In
addition, we conducted hot spot analysis on key polluting enterprises and identified hot spots, cold
spots, and areas insignificantly affected by enterprises, used this information as the basis for zoning
treatment and discussed the sources of heavy metals in the three subregions. The results showed that
Cd originated mainly from agricultural activities, with a contribution rate of 63.6%, in zone 3. As
originated mainly from sewage irrigation, with a contribution rate of 65.0%, in zone 2, and the main
influence area was within 800 m from the river. This element originated mainly from soil parent
materials, with a contribution rate of 69.7%, in zone 3. Pb mainly originated from traffic emissions,
with a contribution rate of 72.8%, in zone 3, and the main influence area was within 500 m from the
traffic trunk line. Hg was mainly derived from soil parent materials with a contribution rate of 92.1%
in zone 1, from agricultural activities with a contribution rate of 77.5% in zone 2, and from a mixture
of natural and agricultural sources with a contribution rate of 74.2% in zone 3. Cr was mainly derived
from the soil parent materials in the whole area, with a contribution rate of 90.7%. The study showed
that in large-scale industrial influence areas, the results of heavy metal source analysis can become
more accurate and detailed by incorporating regional treatment, and more reasonable suggestions
can be provided for regional enterprise management and soil pollution control decision making.

Keywords: source apportionment; industrial impact area; positive matrix factorization; random
forest; hot spot analysis
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1. Introduction

In recent years, with the acceleration of global industrialization, the problem of heavy
metal pollution in soil caused by industrial production has become increasingly prominent.
Heavy metals in soil have caused widespread concern worldwide due to their high toxicity
and nonbiodegradability [1,2]. Heavy metals accumulating in the soil are not only easily
absorbed by crops, severely affecting their yield and quality, but can also accumulate in
the human body through the food chain and endanger human health [3,4]. The heavy
metals in soil have two sources: soil parent materials and human activities. Especially in
industrially impacted areas, industrial waste, sewage irrigation, atmospheric dry and wet
sedimentation and other factors caused by rapid industrialization have placed substantial
pressure on the local environment [5,6]. These factors have led to a decline in the quality of
the local environment over the past few decades and ultimately to an increase in heavy
metal pollution. Studying the sources of heavy metals in soil in industrially impacted areas
is of great significance for maintaining regional environmental health.

The ideal result of the analysis of the sources of heavy metals in soil is the quantita-
tive determination of the contribution of each source to the total content of such heavy
metals and the identification of how they enter the soil. Due to the diversity of human
activities and the heterogeneity of the soil itself, it is difficult to identify the source of
heavy metals. Previous studies have focused on receptor models, with pollutants as the
research object. This type of model does not rely on the analysis of the chemical composi-
tion of the pollution source, the migration and transformation pathways of the pollutants
do not need to be specified, and the data are relatively easy to obtain and realize [7–9].
Commonly used receptor models include chemical mass balance (CMB), principal com-
ponent analysis/multilinear regression (PCA-MLR), positive matrix factorization (PMF)
and UNMIX models [10–12]. However, the judgement of the results of receptor models is
highly subjective, mostly relying on previous experience and expert assessment, and the
analytical results are difficult to verify [13–16]. The current research on receptor models
is, on the one hand, related to the applicability of the model, such as the appropriate
scale, the amount of sampled data and the appropriate research object, and on the other
hand based on the analytical process of the optimization model, usually in combination
with other methods. The advantage of this method is to make the analytical results more
accurate and to eliminate the uncertainty of subjective judgement in source identification.
In recent years, with the development of stochastic simulation technology, random forest
(RF) analysis has gradually been applied to the analysis of soil pollution sources [17–19].
This method overcomes the stringent requirements of traditional technology in terms of
data analysis, and overfitting is not a concern. It is one of the important tools used to
perform shared pollution source calculations. However, the model cannot quantitatively
identify the contributions of the pollution sources [20,21]. Therefore, it is reasonable to
make use of the respective strengths of the PMF model and RF model and apply these two
tools in the analysis of heavy metal pollution sources.

The receptor model achieves dimensionality reduction through the mathematical
conversion of the concentration of heavy metals and requires a large amount of sample
data to ensure its accuracy. Therefore, this type of method is theoretically well applied in
large areas. However, a prerequisite for the application of the receptor model is that the
content of a pollutant is essentially equal to the sum of the contributions of all pollution
sources [22]. In fact, affected by soil heterogeneity, certain local human activities, such
as traffic emissions, sewage irrigation and industrial manufacturing, cannot affect the
heavy metal content in the entire study area and the degree of their influence is often
weakened in the analysis. However, their influence in local areas cannot be ignored. The
receptor model includes the maximum load element of the extraction factor as an indicator,
and the combination of existing knowledge and expert judgement is used to identify
pollution sources. As a result, only one source of pollution is often identified by the load
element. However, when the load element has multiple sources in the region, the category
of the source is not well determined. Especially across large areas, the identification
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of pollution sources becomes more difficult due to the diversity of potential sources of
heavy metals [23]. Some studies have noted that receptor models may be unsuccessful in
identifying the distribution of soil heavy metal sources because they violate the assumption
that all samples have the same source [24,25] and that the characterization of local point
sources can influence the results of these models. Although there is inevitable uncertainty
in the allocation of the contribution values of pollution sources, recent studies have shown
that some improved models or improved methods can overcome inaccuracy in source
allocation results to a certain extent [26,27]. The scale of the research area has been shown
to have important effects on source allocation [19,24,28]. However, the methods that can
be used to reduce the uncertainty in source allocation caused by scale have not attracted
sufficient attention. Wu et al. (2020) studied the sources of heavy metals in agricultural
soil based on a zoning treatment [15], but there has been no corresponding research on soil
heavy metals under industrial influence in the past.

Based on the above considerations, the main purpose of this study was to explore the
source of heavy metals in soils in large-scale industrially affected areas based on a zoning
treatment. Considering the characteristics of heavy metal pollution in industrially affected
areas, we conducted hot spot analysis on key polluting enterprises and identified hot spots,
cold spots, and areas insignificantly affected by enterprises and used this information
as the basis for zoning treatment. Then, we combined PMF and RF analysis for three
subregions to establish a quantitative relationship between the sources and sinks of heavy
metals and explored the sources of heavy metals in the subregions under different degrees
of industrial influence for regional corporate management and soil pollution prevention
measures to provide precise and reasonable suggestions. To the best of our knowledge,
this study represents the first exploration of the sources of pollutants based on a zoning
treatment in an industrially affected area.

2. Materials and Methods
2.1. Study Area and Subregions

Chenzhou city, Hunan Province (112◦53′55” E–113◦16′22” E, 25◦30′21”–26◦03′29” N),
is located in southern China, with annual rainfall of 1452.1 mm and has a mid-subtropical
monsoon humid climate. Chenzhou is rich in mineral resources and is known as the
hometown of nonferrous metals. It hosts the Shizhuyuan polymetallic mine, state-owned
Qiaokou lead-zinc mine, Manaoshan manganese mine and Dongbo lead-zinc mine. Large-
scale industrial production has caused a series of environmental problems in the area.
Regions with significant impacts from key polluting enterprises in Chenzhou city were
used as the study area, including Beihu district, Suxian district, Guiyang county, Yongxing
county, Jiahe county, Anren county and Zixing city, with a total area of 11,978 km2, and the
area within five kilometers of the study area was considered a buffer zone.

The impact of key polluting enterprises on the content of heavy metals in the soil is
closely related to the distance between sampling points and the enterprises. According
to the result of hot spot analysis on key polluting enterprises, we identified hot spots,
cold spots, and spots insignificantly affected by enterprises, and extracted the divided
attribution of the spots to grid. On the basis of the border of different attribution of the
grid, three subregions with different characteristics were thus formed.

Hot spot affected zone (Zone 1): the industrial enterprises in this region are highly
concentrated, with a large number of key polluting enterprises with a dense distribution.
The enterprises have a large impact on the soil, and sustainable development is restricted.

Insignificantly affected zone (Zone 2): the concentration of industrial enterprises in
this area is low, the distribution of key polluting enterprises is sparse and the impact on the
soil is small. Thanks to the neighboring spillover effect of industrial transfer, the speed of
industrial development is increasing rapidly, but as the degree of industrial agglomeration
increases, it may become an area experiencing rapid growth in pollution in the future.

Cold spot affected zone (Zone 3): there are almost no key polluting enterprises in this
area and the concentration of industrial enterprises is low. Key polluting enterprises have
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little impact on the soil environment. Most of the area is non-industrial land. Figure 1
shows the locations of sampling points in the study area and the process of zoning.
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Figure 1. Soil sampling locations in the study area, which is divided into three zones.

2.2. Sampling and Chemical Analysis
2.2.1. Soil Heavy Metal Content Data Collection

We collected samples of surface soil in the study area in 2018 and used ArcGIS 10.3 to
lay out 1347 grid cells within the area. The size of each grid was 3 × 3 km2, and GPS was
used to accurately locate 1347 sampling points. The soil samples were collected with the
plum-shaped dot method. At least six surface (0–20 cm) soil samples were collected from
each grid using a wooden shovel. After the samples were evenly mixed, no less than 2 kg of
soil was found to have been collected from each sampling point according to the four-point
method, and the samples were then placed in a bag. Relevant information on the soil
samples and the status of the surrounding land use was recorded. Weeds, gravel, animal
and plant residues and other materials were discarded from the collected soil samples,
which were mixed, air dried, and then ground in a mortar and passed through 100 mesh
(with an aperture equal to 0.15 mm) for sieving and preservation. Twenty grams of each
air-dried sample was removed, and 20 mL of degassed water was added; the mixture was
then stirred evenly and left in place for 30 min. The pH value of the aqueous extract of
the soil sample was measured according to the electric potential method [29]. The soil
samples were digested with HCL-HNO3-HF microwave airtight digestion technology. The
concentrations of Cd, Pb and Cr in the soil were determined with inductively-coupled
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plasma atomic emission spectrometry (ICP-AES), and the concentrations of Hg and As in
the soil were determined according to the atomic fluorescence method.

2.2.2. Environmental Factors

In receptor model analysis, previous knowledge of the study area is required for
the model execution and interpretation of results. According to the characteristics of soil
heavy metal migration and transformation in the study area and on the basis of existing
studies, 12 environmental factors related to the sources of heavy metals in the soil were
selected. The selected 12 environmental factors involved the vast majority of the sources of
heavy metals in soil, which could be divided into five categories: industrial, agricultural,
natural, traffic and other. The 12 environmental factors were selected on the basis of
two criteria: (1) they encompass the majority of heavy metals emitted in this region; (2)
they are differentiable by means of most of these heavy metals [15]. The amounts of
pesticides and fertilizers used were derived from the “henzhou City Statistical Yearbook
2018 and converted into annual usage per unit grid area. According to GB/T4754-2017
Classification of National Economic Industries, a total of 457 key polluting enterprises
in the study and buffer areas were divided into three categories, including 232 mining
(08 ferrous metal mining and dressing, 09 nonferrous metal mining selected industry),
211 smelting and processing (31 ferrous metal smelting and rolling processing industry,
32 nonferrous metal smelting and rolling processing industry), and 14 other industries
(chemical raw materials and chemical products manufacturing, comprehensive utilization
of waste resources, warehousing, ecological protection and environmental management).
ArcGIS 10.3 was used to calculate the shortest distance between a sampling point and
different industries. Similarly, the shortest distance between sampling points and rivers and
traffic trunk lines was calculated with ArcGIS. Elevation and land-use type were derived
from remote sensing data. Soil organic matter and agrotype data were obtained from
resource and environmental data platforms. Table 1 shows the 12 selected environmental
factors and their categories.

Table 1. Categorization of factors influencing soil heavy metals in industrially affected area.

Category Factor Category Factor

Industrial
Distance from mining

Agricultural
Pesticide usage (element mesh)

Distance from smelting and pressing Fertilizer usage (element mesh)
Distance from other industries Distance from river

Other
Land-use type Traffic Distance from traffic trunk line

pH
Natural

Agrotype
Soil organic matter Elevation

3. Data Analysis
3.1. Hot Spot Analysis

Hot spot analysis is based on local spatial autocorrelation theory, a method used to
test whether the observed value of an element is significantly correlated with the observed
value of adjacent spatial elements [30]. The Gi* statistic is calculated to reflect the locations
of clusters of high or low values of elements in space [31]. A significantly positive Gi*
indicates that the observed values of adjacent elements are clustered with high values in
space, that is, hot spots. A significantly negative Gi* value indicates that the observed
values of adjacent elements are clustered with low values in space, that is, cold points. The
outliers of high-low clusters are insignificant points. The confidence intervals used in this
study were set at 90%.
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3.2. Geo-Accumulation Index

The geo-accumulation index (Igeo) was calculated according to the following equation:

Igeo = log2(Cn/1.5Bn) (1)

where Bn is the background value of element n in Chinese soil (Hunan) and Cn is the
measured concentration of element n [32]. The classification of Igeo was Igeo < 0: practically
unpolluted; 0 < Igeo < 1: unpolluted to moderately polluted; 1 < Igeo < 2: moderately
polluted; 2 < Igeo < 3: moderately to strongly polluted; 3 < Igeo < 4: strongly polluted;
4 < Igeo < 5: strongly to extremely polluted; and Igeo > 5: extremely polluted [33].

3.3. Receptor Model

The PMF model is a factor analysis receptor model proposed by Paatero [34]. The
model decomposes the sampled data matrix (X) into a factor contribution matrix (G), factor
component matrix (F) and residual matrix (E) [35]:{

Xn×m = Gn×p × Fp×m + En×m
G ≥ 0, F ≥ 0

(2)

where n is the number of samples, m is the type of chemical substances measured and p is
the number of factors (the number of main sources).

The PMF model is based on the weighted least squares method for limiting and
iterative calculations and uses the concentration and uncertainty data of the sample to
weight each point so that the objective function Q is minimized. The objective function Q
is defined as follows [36]:

Q =
n

∑
i=1

m

∑
j=1

( xij−∑
p
k=1 gik fkj

uij

)2

=
n

∑
i=1

m

∑
j=1

(
eij

uij

)2

(3)

where xij is the content of the jth (j = 1, 2, ..., m) element in the ith (i = 1, 2, ..., n) sample, gik
is the relative contribution of source k to the ith sample, uij is the uncertainty of the content
of the jth element in the ith sample, fkj is the content of the jth element in the source, and
eij is the residual. If a chemical element’s concentration was lower than or identical to the
relative method detection limit (MDL), the calculation of uncertainty was expressed as

Unc =
5
6
×MDL (4)

Otherwise, it was calculated as

Unc =

√
(r× c)2 + MDL2 (5)

where c denotes the concentration of a chemical element and r denotes the RSD. We applied
PMF software (ver. 5.0, USEPA) for source apportionment.

3.4. Random Forest Algorithm

Developed from CART analysis, which produces a single tree, RF analysis combines a
forest of uncorrelated trees created with the CART procedure [37]. Each tree is constructed
with a randomly selected subset of training data. Classification and regression form the
core of RF model analysis. The Gini importance of regression forests is a well-known
variable importance metric used in CART tree and RF analysis. However, because of the
bias of impurities in selecting split variables, the resulting variable importance metrics are,
of course, also biased [38,39]. The permutation-based mean squared error (MSE) reduction
approach suggested by Breiman (2002) has been employed as the state-of-the-art method
of variable importance assessment by many authors [40–42]. Therefore, this permutation-
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based MSE reduction was also adopted as the RF importance criterion in the present study.
We applied the random forest library of R 3.1.2 for RF analysis.

In addition, some parameters of the model needed to be set. mtry was the number of
variables extracted from each decision tree, which was 1/3 of the number of all variables
in the regression model [43]. The total number of covariate factors in this study was 12,
so the number of node variables was set as four. On the basis of the number of samples,
the number of decision trees was set as 500. In addition, parameters such as the minimum
node size were set according to the default value of the model.

4. Results and Discussion
4.1. Heavy Metal Contamination Characteristics
4.1.1. Descriptive Statistics of the Heavy Metals

Descriptive statistics for Cd, Hg, As, Pb, Cr and basic soil properties are summarized
in Table 2. The average contents of the five elements in the whole area exceeded the
background values in Hunan province soils [32] by 9.46, 2.36, 2.22, 3.27 and 1.05 times,
respectively. The coefficient of variation (C.V.) values of Cd, As, and Pb exceeded 1,
reflecting a wider extent of variability in relation to their means, which may be attributed
to the outliers from human inputs [44]. The C.V. values of Hg and Cr were small, reflecting
that the degree of data dispersion was low. For the three subregions, the average contents
of Cd, As and Pb were in the order of zone 1 > zone 2 > zone 3, indicating that the content
of the three elements had a great relationship with the degree of influence of key polluting
enterprises. The average Hg and Cr contents were relatively stable, indicating that key
polluting enterprises had little influence on the contents of these two elements.

Table 2. Descriptive statistics of heavy metal concentrations in soil from different zones.

Statistics Cd Hg As Pb Cr

Local background values 0.098 0.091 14 29.7 71.4
Screening values 0.3 2.4 30 120 200

Whole area (n = 1347)

Minimum 0.09 0.04 3.15 19.14 17.22
Mean 0.93 0.22 31.12 97.00 75.09

Maximum 49.53 4.45 575.33 8547.76 208.76
C.V. 2.09 0.86 1.27 3.13 0.45

Exceeded Rate (%) 85.08 0.01 34.74 12.77 0.01

Zone 1 (n = 232)

Minimum 0.29 0.09 10.31 38.73 20.40
Mean 2.16 0.24 55.67 260.09 84.76

Maximum 49.53 0.83 575.33 8547.76 178.44
C.V. 2.01 0.39 1.26 2.71 0.30

Exceeded Rate (%) 99.57 0.00 64.66 41.81 0.00

Zone 2 (n = 573)

Minimum 0.16 0.06 5.90 25.18 18.00
Mean 0.82 0.24 32.27 74.42 77.78

Maximum 5.18 4.45 327.69 453.86 192.65
C.V. 0.67 1.06 1.05 0.67 0.42

Exceeded Rate (%) 94.24 0.01 37.00 11.69 0.00

Zone 3 (n = 542)

Minimum 0.09 0.04 3.15 19.14 17.22
Mean 0.51 0.18 19.39 51.05 68.09

Maximum 2.61 1.18 87.79 240.52 208.76
C.V. 0.66 0.60 0.62 0.40 0.53

Exceeded Rate (%) 69.19 0.00 19.56 1.48 0.01

According to the National Environmental Quality Standards for Soils of China [45],
the screening values are considered threshold values for soil environment risk. When
the pollutant content is higher than the screening values, further monitoring measures
should be taken. Among the heavy metals studied, Hg and Cr had almost no over-standard
points. The exceeded rate of Cd was the highest, with a value of 90% in zone 1 and zone 2,
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indicating that pollution by Cd in these areas was relatively severe, and further monitoring
and risk assessment measures are needed.

4.1.2. Pollution Assessment

The Igeo value has been widely employed to estimate the degree of metal contami-
nation risk in soil, and it can be used to identify the degree of anthropogenic pollution by
different elements. Figure 2 shows the Igeo values of the five evaluated elements in the
whole area and three subregions. In the whole area, the average values of Igeo were in the
descending order of Cd > Hg > Pb > As > Cr. The average Igeo value of Cd exceeded 2,
with a ranking of moderately to strongly polluted, which suggests that human activities
are the main reason for the increase in the Cd content in the soil. The average Igeo values
for Hg, As and Pb were between 0 and 1, which indicates an uncontaminated to moder-
ately contaminated level. The average Igeo value for Cr was below 0, with a ranking of
practically unpolluted, which suggests that Cr originated primarily from natural sources.
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In the three subregions, the average Igeo values for the five elements all decreased
from zone 1 to zone 3. It is notable that the average Igeo values for Hg in zone 1 and As
in zone 3 were below 0 (−0.28 and −0.37, respectively), indicating that As in zone 3 and
Hg in zone 1 originated from natural sources. The average Igeo values for Cr in the three
subregions were all below 0, indicating that Cr was mainly derived from the soil material
across the whole study area.

4.1.3. Difference Analysis

Independent-sample tests (Kruskal-Wallis H) were conducted to determine whether
the mean element concentrations differed among the three subregions. The p values for all
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heavy metals were all lower than 0.05. According to the results, the concentrations of all
elements in the three subregions significantly differed, indicating that key polluting enter-
prises had dissimilar effects on the increased heavy metal contents in the three subregions.
It is reasonable to partition processing based on the hot spot analysis of the key polluting
enterprises, as mentioned above.

4.2. Source Apportionment by PMF

EPA PMF 5.0 was broadly applied to calculate the contributions of pollution sources.
Figure 3 shows the results of the PMF model. The number of factors extracted according
to PMF was the number of pollution sources, and the element loading on each factor was
the contribution rate of the pollution source to the element. The results showed that four
factors were extracted from the whole area, zone 2 and zone 3, while three factors were
extracted from zone 1.
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Igeo analysis is used to distinguish whether heavy metals mainly originate from
natural or anthropogenic sources. The factor with the dominant loading of unpolluted
heavy metals was identified as from natural sources, then anthropogenic sources were
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further screened according to local anthropogenic activities. On the condition that some
sources have similar source profiles, the factor was identified as mixed sources.

Among these 15 factors, five elements were allocated to different pollution sources, and
there were significant differences in source profiles among the different regions. According
to the Igeo analysis, Cr in the whole area, Hg in zone 1 and As in zone 3 were found
to mainly originate from natural sources, and F4 in the whole area, F3 in zone 1, F4 in
zone 2 and F2 in zone 3 were determined as natural sources, and the contents of heavy
metals were affected by soil parent materials. The extracted source profiles of Cd and Pb in
zone 1 and zone 2 were very similar, indicating that Cd and Pb in these two areas had the
same sources.

4.3. Qualitative Identification of Pollution Sources

Through descriptive statistical analysis, Igeo analysis and PMF model analysis, the
reasons for the increase in heavy metal content and spatial variability were gradually clari-
fied. However, there is still no appropriate conclusion regarding the types of anthropogenic
sources. Moreover, the above analysis was essentially a discussion of the sink of heavy
metals. The analysis of the causes of soil heavy metal content accumulation and spatial
variation on the basis of the receptor model was largely based on existing knowledge and
expert judgement and did not establish a clear quantitative relationship between source and
sink. Therefore, there was greater uncertainty in source identification. An RF regression
model was used to construct a quantitative relationship between heavy metal sources and
sinks. The importance of environmental factors to source contributions was calculated
according to the RF regression model, and the types of pollution sources were determined.
The contribution of the pollution sources to each sample can be easily determined by the
factor score derived from the PMF model. For the RF model, MSE reduction was used as
the measure of the importance of an environmental factor in pollution sources. Figure 4
shows the percentage weights of 12 environmental factors in regard to 15 pollution sources.
The interpretability percentages of the spatial variation of Cd, Hg, As, Pb and Cr according
to the constructed model were 94.43, 90.85, 91.41, 96.11 and 96.39%, respectively, with all
showing extremely significant levels.
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The higher the weight an environmental factor is, the greater the influence of the factor
on pollution source contribution. The environmental factors that affect the contributions of
pollution sources have roughly two characteristics. First, because it is affected by the spatial
heterogeneity of the soil, the degree of influence of various environmental factors presents
an unstable state, and the differences among regions are significant. Second, the main
influencing factors of an element in different regions vary, indicating that the sources of a
single element in different regions are not completely identical. Therefore, it is necessary to
explore the sources of heavy metals through partition processing.

Across the whole area, the main influencing factors of the spatial variability in the
four pollution source contributions were the distance from mining, distance from mining,
fertilizer usage and agrotype. Combined with the results of the PMF model analysis,
it can be seen that the long-term accumulation of Cd, Pb and As in the soil should be
taken seriously because of the industrial waste discharged by the mining industry, with
contribution rates of 87.7, 88.5 and 62.5%, respectively. This result is consistent with those
from related studies [10,46–48]. Similarly, fertilizer usage and agrotype were the most
significant factors affecting Hg and Cr, with contribution rates of 66 and 90.7%, respectively.
The content of Cr had a strong relationship with the soil parent materials, confirming that Cr
mainly originated from natural sources. Many studies have shown that an important source
of Hg in soil is agricultural activities such as the use of mercury-containing fertilizers and
livestock manure [49,50]. The results from these studies are consistent with the conclusion
from the current study.

In zone 1, the main influencing factors of the spatial variability in the three pollution
source contributions were distance from mining, distance from mining, and agrotype.
Combined with the results of the PMF model analysis, it can be seen that Cd, Pb and As
mainly originated from industrial waste discharged from mining operations in zone 1, with
contribution rates of 81.8, 68.6 and 66.3%, respectively. Hg and Cr mainly originated from
the soil parent materials, with contribution rates of 92.1 and 95.8%, respectively.

In zone 2, the main influencing factors of the spatial variability in the four pollution
source contributions were fertilizer usage, distance from river, distance from mining, and
agrotype. Similarly, Cd and Pb mainly originated from industrial waste discharged from
mining, with contribution rates of 90.7 and 89.8%, respectively. As mainly originated
from sewage irrigation in rivers, with a contribution rate of 65.0%. Hg mainly came from
fertilizer usage, with a contribution rate of 77.5%, while Cr mainly originated from the soil
parent materials with a contribution rate of 73.3%.

In zone 3, the main influencing factors of the spatial variability in the four pollution
source contributions were fertilizer usage, agrotype, distance from traffic trunk line and
soil organic matter. Obviously, Cd mainly came from the use of Cd-containing chemical
fertilizers, with a contribution rate of 77.5%. Pb mainly originated from traffic sources,
with a contribution rate of 72.8% and As mainly came from soil parent materials, with a
contribution rate of 69.7%. The influence of soil organic matter on the content of heavy
metals was multifaceted. In addition to that of soil organic matter, the effects of elevation,
fertilizer usage and agrotype were also significant. The main load elements of factor 4
were Hg and Cr. Therefore, it was inferred that factor 4 was a mixed source composed of
agricultural sources and natural sources, and the contribution rates to Cr and Hg were 74.2
and 51.3%, respectively.

To compare the results of the zoned and nonzoned apportionments, combined with the
operation results of the two models, the influence degrees of the different environmental
factors on the content of five elements were calculated. For the calculation of partition
processing, the method proposed by Wu 2020 was used as a reference. Based on the results
of the calculated contributions from each zone, the contributions of the major sources for
the entire area were calculated by weighting the sum of the area proportion of each zone in
relation to the whole study area [15]:

Gk = ∑ gmk
Am

A
(6)
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where Gk is the contribution of the kth source factor to the whole area, gmk is the contribution
of the kth source factor to the mth zone, Am is the area of the mth zone, and A is the area of
the whole study area. Figure 5 shows the importance of the different environmental factors
to the five elements in the case of partitioning and not partitioning. The red bars denote
partitioned and the blue bars denote nonpartitioned. The most significant influencing
factors of the five elements were basically identical, but the weights of some environmental
factors were quite different in the two cases of partitioning and nonpartitioning. Compared
with those extracted for the zonal treatment, the pollution sources extracted without
zonal treatment had the most significant comprehensive impact in the whole study area.
However, in our analysis, it was found that this pollution source did not actually have
the greatest impact on all regions. For Cd, compared with nonzonal processing, zonal
processing highlighted the importance of agricultural activities for Cd enrichment. Studies
have shown that the application of Cd-containing fertilizers is an important source of Cd
in agricultural soils [51]. In addition, the consideration of specific zones highlighted the
importance of soil organic matter and elevation for Hg accumulation. For As, the zonal
treatment highlighted the importance of soil parent materials and sewage irrigation. The
arsenic-containing wastewater discharged from mining operations enters the river and
then causes soil pollution through river water irrigation, which often occurs in areas with
developed mining industries [52]. It is obvious that the zonal treatment highlighted the
importance of traffic sources to Pb accumulation, while the influence of traffic sources was
not significant in the nonzonal treatment. A study by Choi et al. [53] showed that the wear
of tires and brakes in cars, as well as exhaust emissions, can lead to Pb accumulation in
the soil near roads. For Cr, in addition to the influence of agrotype, the zonal treatment
highlighted the influence of soil organic matter.

4.4. Dependence of Heavy Metals on Major Environmental Factors

According to the results of the PMF and RF analyses, the main influencing factors of
the content of the five evaluated heavy metals in each region were selected to discuss the
dependence between the content of heavy metals and the main anthropogenic influencing
factors. Figure 6 shows the dependence of the five heavy metals on their main influencing
factors in the different regions.

The main influences of the mining industry on Cd, Pb and As occurred within 5 km
of the surrounding area. At distances greater than 5 km, the degree of influence should
gradually stabilize. The industrial waste gas discharged by the mining industry is one
of the important ways to accumulate heavy metals in soil. Heavy metals mainly enter
the soil by means of atmospheric dry and wet sedimentation. Heavy metal pollutants
in the atmosphere are affected by many factors during their migration, including wind,
turbulence, weather patterns and geography [54]. In addition, the temperature of gas
and the height of its emissions also affect how far it travels [55]. Relevant data show that
the influence of industrial waste gas on the content of heavy metals in the surrounding
soil drops to the background value at 5km [56], which is basically consistent with the
conclusions obtained.
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Figure 5. Variable importance of the individual factors for the partitioned and nonpartitioned soil heavy metal concentrations
(the red bars denote partitioned and the blue bars denote nonpartitioned). (a) Variable importance of the individual factors
for the concentration of Cd, (b) Variable importance of the individual factors for the concentration of Hg, (c) Variable
importance of the individual factors for the concentration of As, (d) Variable importance of the individual factors for the
concentration of Pb, (e) Variable importance of the individual factors for the concentration of Cr.
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There was a turning point in the influence of fertilizer usage on Cd and Hg. Only
when the annual usage per unit grid area reached 330 tons and 350 tons, respectively,
did its influence become significant. The influence of rivers on As tended to be stable at
800 m. Within 800 m, there was a significant negative correlation with the distance between
the sampling point and the river. The influence range of agricultural sources on heavy
metals in soil are greatly influenced by external human intervention. For example, the
type of fertilizers and pesticides, and the amount of water in rivers, can also influence the
accumulation of heavy metals in soil. The influence of traffic sources on Pb tended to be
stable at 500 m. Within 500 m, there was a significant negative correlation with the distance
between the sampling point and traffic trunk line. Factors affecting the distribution pattern
of soil heavy metals on side of the road mainly include traffic flow, vehicle type, green
belt area and local natural conditions. Due to different influencing factors, the distribution
and influence range of heavy metals on side of the road are quite different. Zechmeister
et al. studied the accumulation of heavy metals in nine roads in Austria and found that the
content of most heavy metals decreased exponentially with the distance from the road and
dropped to the background value within 250 m. The influence range of roads with a large
traffic flow in a single part may reach 1000 m [57].
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Pollution of soil by heavy metals is a complex problem that intersects with nature and
society, and industrial emissions are very important factors affecting the concentration of
heavy metals in soil. Reducing the pollution of soil by heavy metals as a result of industrial
activities is the only means for the sustainable development of industry. To reduce soil
heavy metal pollution, it is necessary to identify the sources of heavy metals in detail and
then use these key influencing factors to reduce the soil pollution through effective policy
measures. Through zonal treatment in large-scale areas influenced by industry, not only
can the major environmental factors affecting heavy metal concentrations be identified but
also the secondary pollution sources at a local scale can be identified to clarify the multiple
sources of heavy metals in complex environmental systems. This study represents the first
approach based on zonal treatment to explore the sources of heavy metals in soils under
industrial influence.

In this paper, through the combination of the PMF model and RF model, the quanti-
tative relationship of the sources and sinks of heavy metals was established, and various
sources of heavy metals in the soil under the influence of industry were revealed, including
industrial waste discharged by the mining industry, irrigation, fertilizer, transportation
and soil parent materials. Notably, sewage irrigation, traffic discharge and fertilizers were
identified as new local artificial sources in the study area based on the zonal treatment,
and these sources were not identified as independent factors on the basis of basic source
apportionment alone. The results showed that zonal treatment based on the unique geo-
graphical characteristics of the study area was particularly powerful for providing valuable
information about the sources of heavy metals in soil.

Theoretically, all the factors that can affect spatial heterogeneity can be regarded as the
basis for partitioning, but different partitioning methods naturally have different research
applications. In the industrial influence area, industrial discharge is the primary source of
anthropogenic heavy metal pollution in soil and has the most significant influence on the
spatial heterogeneity of such pollution. Therefore, it is most suitable to discuss the sources
of pollution in the industrial influence area with the spatial distribution of key polluting
enterprises as the basis of division. It has been proven that the spatial differences in heavy
metal content in soil are very obvious in different subregions.

Of course, some uncertainties still exist in this study. In terms of the selection of
environmental factors, although the 12 selected environmental factors involve various
sources of heavy metals, it is not known whether some other special pollution sources
exist in practice, which will cause some deviation in the quantitative identification of the
sources and sinks of pollution sources. In the process of using the RF model, we assume
that there is a simple linear relationship between environmental factors and heavy metal
content, while there may be a limit on the impact of environmental factors on heavy metals
in reality. When this limit is exceeded, the relationship between the environmental factors
and heavy metal content is no longer linear. Moreover, there may be interactions between
environmental factors.

The results showed that Cd, Pb and As were mainly affected by the mining industry,
while they originated from different pollution sources (Cd and Pb originated from the same
pollution source, while As was derived from another pollution source). This indicates
that these three heavy metals were affected differently by the mining industry in different
geographical locations (Cd and Pb were affected by the same location of the mining
industry). In zone 3, among the four pollution sources extracted in the research results, F4
was a mixed source of natural sources and agricultural sources, and the main load elements
were Hg and Cr. While Hg mainly originated from fertilizer usage, Cr was mainly affected
by the soil parent materials, indicating that in zone 3, the high-value area for fertilizer
usage was the same as the high-background-value area for Cr, and thus these two elements
were extracted into the same source in the operation result. However, there is still no clear
solution regarding how pollution sources affect the heavy metal content in detail. For
example, why there is a turning point in the influence of fertilizer usage on Cd and Hg and
how soil parent materials affect heavy metal contents needs further study and discussion.



Sustainability 2021, 13, 511 16 of 18

5. Conclusions

This study focused on application values obtained from partition computing in relation
to receptor model source apportionment. Based on the spatial distribution of key polluting
enterprises, the study area was divided into three subregions with different characteristics,
and the concentrations, pollution levels and pollution sources of five heavy metals in the
subregions were discussed. The results of the study showed that the average concentrations
of the five heavy metals were 9.46, 2.36, 2.22, 3.27 and 1.05 times the background values in
Hunan soil. Igeo was applied to assess the soil status in each subregion. The order of the
heavy metal Igeo values was Cd > Hg > Pb > As > Cr, with Cd associated with moderately
to strongly polluted conditions, Hg, As and Pb associated with unpolluted to moderately
polluted conditions, and Cr associated with practically unpolluted conditions. The Igeo
values of the five heavy metals in the three subregions were not completely identical, and
they all decreased to a certain extent from zone 1 to zone 3.

The analysis of heavy metal sources showed that the mining industry is the most
significant anthropogenic factor affecting the content of Cd, Pb and As in the whole area,
with contribution rates of 87.7, 88.5 and 62.5%, respectively, and the main influence area
was within 5 km from the mining site. In addition, Cd originated mainly from agricultural
activities, with a contribution rate of 63.6%, in zone 3. As mainly originated from sewage
irrigation, with a contribution rate of 65.0%, in zone 2, and the main influence area was
within 800 m from the river. As mainly originated from soil parent materials, with a
contribution rate of 69.7%, in zone 3. Pb mainly originated from traffic emissions, with a
contribution rate of 72.8%, in zone 3, and the main influence area was within 500 m from
the traffic trunk line. Hg was mainly derived from soil parent materials with a contribution
rate of 92.1% in zone 1, from agricultural activities with a contribution rate of 77.5% in zone
2, and from a mixture of natural and agricultural sources with a contribution rate of 74.2%
in zone 3. Cr was mainly derived from the soil parent materials in the whole area, with a
contribution rate of 90.7%. By using the receptor model to analyze pollution sources over a
large scale, the results of heavy metal source analysis can be more accurate and detailed
through regional treatment, and more reasonable suggestions can be provided for regional
enterprise management and soil pollution prevention and control.
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