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Abstract: Identifying contributing factors of potential recharge zones is essential for sustainable
groundwater resources management in arid regions. In this study, a data matrix with 66 observations
of climatic, hydrogeological, morphological, and land use variables was analyzed. The dominant
factors in groundwater recharge process and potential recharge zones were evaluated using K-means
clustering, principal component analysis (PCA), and geostatistical analysis. The study highlights the
importance of multivariate methods coupled with geospatial analysis to identify the main factors
contributing to recharge processes and delineate potential groundwater recharge areas. Potential
recharge zones were defined into cluster 1 and cluster 3; these were classified as low potential for
recharge. Cluster 2 was classified with high potential for groundwater recharge. Cluster 1 is located
on a flat land surface with nearby faults and it is mostly composed of ignimbrites and volcanic rocks
of low hydraulic conductivity (K). Cluster 2 is located on a flat lowland agricultural area, and it
is mainly composed of alluvium that contributes to a higher hydraulic conductivity. Cluster 3 is
located on steep slopes with nearby faults and is formed of rhyolite and ignimbrite with interbedded
layers of volcanic rocks of low hydraulic conductivity. PCA disclosed that groundwater recharge
processes are controlled by geology, K, temperature, precipitation, potential evapotranspiration (PET),
humidity, and land use. Infiltration processes are restricted by low hydraulic conductivity, as well as
ignimbrites and volcanic rocks of low porosity. This study demonstrates that given the climatic and
geological conditions found in the Sierra de San Miguelito Volcanic Complex (SSMVC), this region
is not working optimally as a water recharge zone towards the deep aquifer of the San Luis Potosí
Valley (SLPV). This methodology will be useful for water resource managers to develop strategies to
identify and define priority recharge areas with greater certainty.

Keywords: groundwater recharge; infiltration; K-means clustering; PCA; Sierra de San Miguelito
Volcanic Complex

1. Introduction

Groundwater recharge is an essential part of the hydrological cycle and an essential
factor for the sustainable management of hydric resources [1–4]. Recharge feeds aquifers
and is essential to balance the demand and supply of water to develop activities, partic-
ularly in arid and semi-arid regions [5–7]. In those regions, surface water is scanty, so
groundwater is a safe resource to meet water supply needs of populations. Increased
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groundwater consumption has put pressure on natural recharge, altering the balance be-
tween recharge and discharge into aquifers [1,8,9]. The groundwater recharge process by
precipitation in arid and semi-arid zones is highly variable in space due to the extreme
climate (e.g., very high temperatures and evapotranspiration) and low rainfall of high
intensity and short duration [8–11]. Likewise, the infiltration rate of rainfall that feeds the
aquifers is conditioned to the geological structure within the basin. Conceptual understand-
ing of the geological framework in the recharge process is complex. Accurate quantitative
assessments of multiple parameters are needed to find associations and identify potential
groundwater recharge zones. Researchers have included many variables and classified
them as determining the source of recharge (rainfall, drainage, irrigation, etc.) [12–17]
and those that influence infiltration (soil, land use, slope, geology, lithology, hydraulic
conductivity, etc.) [18–25].

Multivariate statistical approaches have been robust tools for managing groundwater
resources [26,27]. These methods have been successfully applied in various disciplines [25].
Previous studies have used cluster analysis (CA) and principal component analysis (PCA)
to identify groundwater pollution sources, assess water quality, analyze groundwater
recharge processes, and conduct environmental studies [25–30].

To our knowledge, there are few studies that have applied K-means clustering algo-
rithm and PCA on variables as soil, slope, geology, vegetation, and rainfall, to identify
the dominant factors controlling the groundwater recharge [25,28]. This could be due to
the fact that in most regions there is not a suitable spatio-temporal characterization of
geophysical variables. These techniques have been applied chiefly in hydrogeochemical
investigations [31–34]. Moreover, geospatial analysis techniques have been helpful to
understand the characteristics of recharge [8,35].

The Sierra de San Miguelito Volcanic Complex (SSMVC) is located in a semi-arid
environment in the San Luis Potosi Valley (SLPV). Previous research reports that the SSMVC
is a recharge zone that feeds the deep aquifer of the SLPV [24,36,37]. Other studies mention
that the SSMVC could not be working optimally as a recharge area [38,39]. Nowadays, it
is uncertain whether the SSMVC functions as a groundwater recharge zone. Therefore, a
methodology is proposed by applying and analyzing with K-means clustering algorithm
and PCA, combined with geospatial analysis to identify main variables that determine
groundwater recharge processes and define potential recharge zones in the SSMVC.

2. Materials and Methods
2.1. Description of the Study Area

The SSMVC is located in central Mexico, towards the western edge of the estate of
San Luis Potosi; the study zone has an approximate extension of 149,669 ha (Figure 1).
The area is steep and irregular, and it is characterized by having slopes greater than 30◦

and an altitude between 1900 and 2870 m above sea level (masl), classifying it as a high
mountain range with plateaus [40–42]. The climate is semi-arid temperate, with an annual
temperature that ranges between 20 and 22 ◦C [42]. Annual rainfall ranges between 400 and
600 mm, while evapotranspiration (2551 mm) exceeds average rainfall (408 mm) [42–44].
The predominant native plant species are Pinus cembroides Zucc. (1832) and Quercus potosina
Trel. (1924), developed in soils classified as lithic-paralithic Leptosols in the highest parts
of the sierra [41,45]. Other types of vegetation develop in the lower parts of the sierra, such
as grasslands, chaparrals, and scrublands on soils of more significant proportion, such as
regosols, phaeozems, and planosols [46].
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Figure 1. Location map of the study area, showing the study point’s location and geology aspects.

2.1.1. Geology Settings

The geology of the SSMVC is of volcanic origin, made up of many silicic rocks from
the Oligocene and Miocene (31 to 26 million years), where the Oligocene sequence is
formed by lava flows of rhyolitic composition and ignimbrites. In contrast, the Miocene
sequence is characterized by the emission of lavas that vary from basaltic (Cabras Basalt)
to trachytes (Los Castillo Trachyte), this being the last volcanic activity in the area [47,48]
(Figure 1). Structurally, the sierra contains several normal faults with strikes from 300◦ to
340◦, and almost all have SW dip-directions ranging from 45◦ to 75◦ [49,50]. These faults
were classified as a domino system because they show uniform fault dip direction and
similar bed dip angles [50].

2.1.2. Hydrogeology Settings

The SLPV is limited to the west by the SSMVC and the east by the Sierra de Álvarez
(SA); in the valley, the existence of two aquifers has been identified: (1) a shallow aquifer
(hook) and (2) a deep aquifer (fractured volcanic), which are separated by a layer composed
of compact fine sand with low hydraulic conductivity [16,51].

The material that makes up the shallow aquifer presents textural variations towards
the SSMVC, conglomerates immersed in a clayey matrix predominate, and towards the SA
this material thins, with silts and sands predominating [52,53]. The shallow aquifer has an
approximate thickness of 5 to 40 m and a low hydraulic conductivity of ≈2 × 10−4 m/s;
due to its shallow depth, it is susceptible to seasonal effects [52,54].

Additionally, the deep aquifer is formed by fractured volcanic rock and is confined
in the center of the SLPV by a low permeable sedimentary layer, it is limited on one side
by the Sierra de San Miguelito and on the other side by the SA, and it has a low hydraulic
conductivity of the order from ≈2 × 10−4 m/s [43,46]. Its upper limit is approximately 100
to 150 m deep [39].

Between the shallow and deep aquifer is a granular layer, which is mainly composed
of Quaternary clastic materials, the thickness of which varies from 100 to 200 m. This
layer is confined in the center and is exploited by pumping wells with a depth of up to
350 m [52,55].
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2.2. Research Approach

The approach used in this research included three components: Phase I Literature
review, where the variables were selected and the data obtained from several sources; Phase
II Raw data treatment, which included the generation of thematic maps and the study
point selection; and Phase III, Multivariate statistical analysis, including PCA analysis and
K-means clustering (Figure 2).

Figure 2. Processes followed for the description of potential groundwater recharge areas.

2.2.1. Phase I Literature Review

Twelve variables were selected: altitude (masl), slope (%), temperature (◦C), soil type,
vegetation type, rainfall (mm/year), relative humidity (%), potential evapotranspiration
(PET, mm/year), land use, runoff coefficient, hydraulic conductivity (K, m/d), and geology.
The data were obtained from INEGI and Climate Forecast System Reanalysis (CFSR) in
shp, raster, and xlsx formats.
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2.2.2. Phase II Data Treatment

To realize the corresponding thematic maps, vector data in shapefile format of land
use and vegetation type and soil type were obtained from INEGI for the years 2013 and
2007, respectively. A geological map of the study area was made, taking reference from the
maps used by [43,48].

The altitude and slope variables were obtained from the Mexican Continuous of
Elevations (CEM 3.0 in Spanish) of INEGI for San Luis Potosi, extracting the level curves of
the study zone and obtaining slope ranges, generating the respective thematic maps.

The thematic maps generated were made with QGIS v. 3.4.0 Madeira, which allows
handling and analyzing spatial information as well as superimposing thematic layers.
Cartographic information was used under the WGS84 datum coordinate system at a scale
of 1:250,000. Thematic layers of land use and vegetation, soil type, altitude, geology, and
slope were overlapped to define the study points (Figure 3). Through the map overlap,
attributes of each entity were intersected, allowing the identification of points with different
characteristics as well as their spatial distribution. A total of 66 points were selected
considering this criterion (Figure 1).

Figure 3. Scheme of the map overlapping procedure for the study points selection.

Data of rainfall, relative humidity, and temperature were employed. The data sets
were downloaded from the CFSR for nine reference points close to the study area over
a 34-year period (1979 to 2013). PET was calculated through Thornthwaite method [56]
based on the mean temperature and astronomical duration of the day for a specific lati-
tude (See Supplementary Materials, Table S1). An interpolation was carried out with the
Inverse Distance Weighting (IDW) method, considering the average values obtained at
each reference point. The values of climatic variables were obtained for each study point.
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The runoff coefficient was determined, considering the Prevert Coefficient [57] (See
Supplementary Materials, Table S2), which encompasses three conditions: land use, soil
texture, and terrain slope. This coefficient was supplemented with the Chow Coefficient [58]
(See Supplementary Materials, Table S3) because Prevert does not consider land use for
urban areas. For the determination of K, data from previous studies in the SSMVC were
taken [59,60], as well as values reported in hydraulic conductivity tests carried out in similar
geological units and considering characteristics such as slope, altitude, proximity to the
fault zone and fractures, etc. [61–67]. The values employed were transformed into meters
per day (m/d). The runoff coefficient and K values were obtained for each study point.

2.2.3. Phase III Multivariate Statistical Analysis

A data matrix with 66 study points and 12 variables was integrated. Those qualita-
tive variables were transformed into quantitative variables through coding to facilitate
their handling.

The optimal results in applying multivariate statistical techniques require a univari-
ate and multivariate normal distribution and homogeneity of variances (homoscedastic-
ity) [26,27,68–70]. The univariate and multivariate normal distribution was verified by
Shapiro-Wilk’s test [71] and Royston’s test [72], respectively. A non-normal distribution
was observed on the data matrix in both tests. A logarithmic transformation (natural
logarithm) was applied to the original data matrix to achieve a normal-like distribution.
The Kolmogorov-Smirnov (K-S) test evaluated the adjustment of the transformed variables
to the normal log distribution, being favorable (p-value < 0.05).

The database was scaled through standardization to achieve the optimal conditions
for multivariate analysis. Standardization reduces the difference in variances in vari-
ables and prevents dissimilarity measures like the Euclidian distance obtained from being
affected [27,73]. Each variable was standardized to their corresponding Z scores, which
were calculated by Equation (1):

Zi =
(Xi −mean)

S
(1)

where Zi is the standardized Z score, Xi is the value for each variable, and mean and S are
the mean value and the standard deviation of each variable, respectively.

The Kaiser Meyer Olkin (KMO) and Bartlett’s sphericity tests were applied to assess
the precision and suitability of the data for PCA. KMO is used to measure the adequacy of
the sampling, designating the portion of shared variance. A value close to 1 commonly
indicates that PCA may be useful [26,27,74]. In this study, a valid KMO value of 0.77
was obtained (See Supplementary Materials, Table S4). Bartlett’s sphericity test allows to
validate that the analyzed variables are adequately correlated; small values (p-value < 0.05),
as were obtained in this study, indicate a great relationship between variables.

Correlation analysis is used to measure and establish the interrelation between two
variables [75]. Based on the results obtained in the Shapiro-Wilk test, the most appropriate
correlation method was selected [75,76]. Due to the variables presented a non-normal
distribution (p-value < 0.05) (See Supplementary Materials, Table S5), the Spearman corre-
lation method was employed. In this work, the criteria established by [27] were used; a
value of r greater than 0.7 indicates a high correlation, and a value of r between [0.5, 0.7]
denotes a moderate association.

Cluster analysis aims to classify a sample into small groups based on similarities
between units and differences between groups [26,73,77]. The K-means algorithm was used,
which divides the data into a number of clusters specified by the user and characterized
by centroids [73,78]. In each repetition, the occurrences are assigned to the closest groups
based on the Euclidean distance between instances and centroids (Equation (2)), such that
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the squared error between the empirical means of a group and the points in the groups is
minimized [77,78].

d
(
Zp, Zq

)
= ‖Zp − Zq‖2 =

√√√√√√√
D

∑
i

j = 1

(
Zpj − Zqj

)
(2)

where d is the distance, Zp is the point in the space representing a given object, Zq is cluster
q, Zpj is known as the jth attribute of the pth instance, Zqj is the jth attribute of the qth
cluster, and D is known as the total number of attributes. The K-means grouping was
formulated as the sum of the squared errors [26,77,79], as shown in Equation (3):

K =
k

∑
l=1

∑
x∈Cl

‖x−ml‖2 (3)

where X = {x1, ....., xn} is the data, ml = ∑ x ∈ Cl
x

n1
is known as the centroid of cluster Cl,

1 ≤ 1 ≤ K, n1 is the number of data objects in the cluster, and K is the number of clusters.
The main purpose of the PCA is to explain the variance within a data set while

reducing the dimensionality of its structure [25,26,80]. PCA was carried out to transform
the original correlated variables into a smaller set of uncorrelated variables called the
principal components (PCs) [69,81,82]. PCs are expressed as loadings, which indicate the
relative contribution of a given variable to each of the extracted PCs [81]. The principal
component (PC) is expressed by Equation (4) according to [83]:

Zij = ai1x1j + ai2x2j + ai3x3j + · · ·+ aimxmj (4)

where Z is the component score, a is the component loading, x is the estimated value of
the variable, i is the component number, j is the sample number, and m is the total number
of variables.

The PCs were chosen based on the eigenvalues (>1) and the cumulative percentage of
the dataset variance.

The software RStudio v. 1.3.959 (Copyright RStudio Inc., Boston, MA, USA) was
employed to perform data pretreatment, descriptive statistics, correlation matrix, K-means
clustering algorithm, and PCA.

3. Results and Discussion
3.1. Correlation among Variables

In this study, Spearman’s rank correlation (r) was applied to measure and determine
the inter-variables relationships. The results obtained from Spearman’s correlation analyses
are shown in Table 1.
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Table 1. Spearman’s rank correlation matrix for the variables studied.

Variables Altitude Slope Temp Soil Vegetation Rainfall Relative
Humidity PET Land Use Runoff

Coefficient K Geology

Altitude 1
Slope 0.12 1
Temp 0.05 −0.34 1
Soil 0.16 −0.2 0.48 1

Vegetation −0.15 −0.06 0.07 0 1
Rainfall −0.12 0.28 −0.75 −0.12 0.07 1
Relative

humidity 0.06 0.32 −0.89 −0.45 −0.11 0.66 1

PET 0.03 −0.38 0.93 0.39 0.14 −0.82 −0.88 1
Land use 0.01 0.43 −0.82 −0.61 −0.06 0.52 0.86 −0.78 1

Runoff
coefficient 0.3 0.62 −0.11 0.31 −0.29 0.27 0.09 −0.27 0.05 1

K 0.48 0.27 −0.3 −0.05 −0.09 0.22 0.4 −0.31 0.32 0.32 1
Geology −0.44 −0.53 0.52 0.45 0.16 −0.18 −0.59 0.53 −0.69 −0.30 −0.41 1

Note: Coefficients greater than 0.5 and minor than −0.5 are underlined.
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Temperature and PET have the highest correlation coefficient (0.93). This could be due
to increase air temperature during the last years in the study zone [84]. Previous research
has reported similar correlations between temperature and evapotranspiration [85,86].
This could be attributed to high temperatures increasing evaporative demand, inducing
humidity deficits and evaporative stress which will result in an increase in evapotran-
spiration that is partly dependent on climate [87]. This could be explained by intensive
irrigation practices and urban sprawl in the study zone. However, temperature showed a
high inverse correlation with relative humidity (−0.89), suggesting that with the increase
of temperature, the humidity decreases and vice versa at high humidity, the temperature
declines [88,89]. Studies reported by [52] have demonstrated that a low level of humidity
is related to high temperature levels in the SSMVC. Similar studies have documented that
the changes in climatic conditions, such as an increase in temperature, are associated with
greater soil humidity deficits. This can decrease the magnitude of groundwater recharge
affecting water availability [90].

A high positive correlation between relative humidity and land use (0.86) was obtained;
this could be explained by the agricultural irrigation practices that have been intensified,
including large areas of land [91–93]. PET obtained a high inverse correlation of −0.88
and −0.82 with humidity and rainfall, respectively; this reveals that the humidity and
precipitation decrease when the PET increase and vice versa. This can be due to the
evapotranspiration exceeding the average annual rainfall [51–53]. In semi-arid regions,
approximately 90% of the rainfall is lost through evapotranspiration [94]. Additionally,
the impact of climatic characteristics on groundwater recharge is indirectly determined
by the PET on soil humidity. For example, a drier soil could delay groundwater recharge
and make it difficult [95]. In previous studies in other countries, researchers reported that
high evapotranspiration rates were principally related to decreases in humidity [96]. A
negative association (−0.75) between temperature and rainfall can be attributed to elevated
temperatures (40 ◦C) in the SLPV, causing a rise in evaporation and, consequently, a
decrease in rainfall [44,52].

An inverse association of−0.82 and−0.78 was observed by land use with temperature
and PET, respectively; this suggests that land use changes have altered the spatio-temporal
temperature patterns [97,98]. It has likewise been observed that the evapotranspiration
increased. Previous studies have attributed the land use and land cover change to in-
creased evapotranspiration. This is due to anthropogenic activities and climate change.
Some researchers have reported that land use and land cover change have greater effect
on the hydrological cycle and, consequently, groundwater recharge dynamics [95,96,99].
Moreover, land use is negatively correlated with geology (−0.69) and soil type (−0.61); this
could be because geology plays a significant role in the current land use. The local geology
defines the soil type and processes in soils, and has an important impact on chemical
and hydraulic characteristics [100]. The movement of water is determined by soil texture
and composition. For example, sandier soils tend to have high groundwater recharge
rates, while clayey soils tend to have restricted water movement [101]. Therefore, water
infiltration into the soil is influenced by soil hydraulic properties, precipitation rate, and
the initial water content of the soil [102]. This could provide vital information on potential
groundwater recharge areas [103].

A moderate positive correlation between rainfall and humidity (0.66) was observed;
low levels of humidity belonging to low rainfall (350 to 400 mm/year) in the study area
could explain it [52]. Previous investigations in other regions obtained similar associations
of 0.46 and 0.59 between rainfall and humidity [104,105].

Slope and runoff coefficients showed a moderate positive correlation (0.62); this could
be due to the irregular steep slope, which favors greater runoff in the study zone, indicating
that the runoff increase would decrease infiltration and vice versa [106–108]. This could
be explained by steep slopes tending to decrease groundwater recharge due to the runoff
flowing rapidly. Meanwhile, plains tend to improve groundwater recharge, because higher
retention time contributes to rainwater infiltration of soils [109].
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Moderate inverse associations of −0.59 and −0.53 were observed by geology with
humidity and slope, respectively; this could be related to the presence of potential ground-
water recharge zones. The SSMVC is characterized by faults and fractures, which could
favor water infiltration [110]. Similar studies have considered largely geologic features
to identify recharge potential zones [111]. This is due to the recharge involving complex
interplay factors during the infiltration process from vadose zone and saturate zone.

3.2. Cluster Analysis

Cluster analysis by the K-means clustering algorithm was applied to identify and
define groups of sampling points based on their similarities and differences. The results
obtained by the spatial cluster analysis are shown in Figure 4. Three principal groups were
found with different characteristics related to their potential groundwater recharge.

Figure 4. Spatial distribution map of groups using K-means clustering.

3.2.1. Cluster 1

The first class (Cluster 1) is located in northeastern and southeastern parts of the
SSMVC. Cluster 1 includes 23% of the total points analyzed (Figure 4) and showed low
potential for groundwater recharge. The first group showed gentle slopes (0–5%) in most
of the land (Table 2); this can be linked to lower runoff coefficients (0.20) observed in
Cluster 1 (Table 3). Similar studies have reported that gentle slopes would have more
contact time between water and soil layer, decreasing runoff and increasing surface in-
filtration [106–108,112]. Moreover, surface crusts favor the redistribution of water and
its accumulation, which supports vegetation conservation [113]. This can contribute to
groundwater recharge in the study zone. However, the occurrence of recharge is limited by
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the structure geologic, where group 1 was defined by ignimbrites and volcanic rocks of
low porosity and hydraulic conductivity (Table 2). However, high hydraulic conductivity
values (0.297 m/d) can be related to fractures or faults zones located in the southeastern
and central parts, which could increase the hydraulic conductivity [61,63,114]. Therefore,
diversities in the hydraulic properties and composition of superficial deposits could affect
the subsurface dynamics of recharge to deeper aquifers [115–117]. Additionally, it found
that natural grassland is the principal dominant vegetation of cluster 1 (Table 2). Previ-
ous researches have associated natural grassland and altitudes higher than 2300 masl to
potential groundwater recharge [24]. Cluster 1 was characterized by an average altitude
of less than 2300 masl (Table 3). This explains its low potential for groundwater recharge.
The results are supported by similar studies, showing that the steep slopes with shallow
rooted grasslands decrease surface runoff and favor infiltration, thus leading to an increase
in groundwater recharge rates [118,119].

Table 2. Descriptive statistics for the groups found from K-means clustering analysis for the categori-
cal variables.

Categorical Variables

Variable Class 1 (n = 15) 2 (n = 32) 3 (n = 19)

Slope

0–5 86.67 84.38 36.84
5–10 13.33 15.63 36.84
10–30 0 0 21.05
>30 0 0 5.26

Soil

Regosol 73.33 28.13 10.53
Phaeozem 20 0 78.95
Planosol 0 65.63 0
Leptosol 0 3.13 10.53
Fluvisol 6.67 0 0

Vegetation

Crassicaule
shrubland 6.67 9.38 5.26

Chaparral 0 0 42.11
Oak 0 0 10.53

Natural
grassland 93.33 90.63 21.05

Pine 0 0 21.05

Land use
Bare ground 100 21.88 100
Temporary

farming 0 78.13 0

Geology

Rhyolite 0 12.50 57.89
Ignimbrite 100 21.88 36.84

Basalt 0 0 5.26
Alluvium 0 62.50 0

Lutite 0 3.13 0
Note: Data are represented in percentage (%).
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Table 3. Descriptive statistics for the groups found from K-means clustering analysis for the numerical variables.

Numerical Variables

Variable Unit
1 (n = 15) 2 (n = 32) 3 (n = 19)

Min Max Mean SD Min Max Mean SD Min Max Mean SD

Altitude masl 1900 2200 2046.67 74.32 2000 2300 2100 71.84 1900 2800 2368.42 260.45
Temp ◦C 13.30 13.41 13.60 0.07 13.40 13.70 13.58 0.07 13.30 13.60 13.42 0.09

Rainfall mm 500 520 513.33 6.17 440 520 501.25 18.27 490 520 514.21 9.61
Relative

humidity % 58 59 58.3 0.46 56 58 56.41 0.80 57 59 58.21 0.79

PET mm 668 677 671.27 2.01 671 678 675.47 20.06 668 675 670.47 2.20
Runoff

coefficient - 0.15 0.4 0.20 0.09 0.15 0.6 0.31 0.09 0.30 0.88 0.44 0.15

K m/d 0.005 0.864 0.297 0.37 6.39 ×
10−9 0.54 0.07 0.13 0.004 0.864 0.44 0.34

Min = minimum, Max = maximum, SD = indicates standard deviation, n = indicates number of analyzed points by cluster.
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3.2.2. Cluster 2

The second class (Cluster 2) is located southwest and northwest of the SSMVC. Cluster
2 comprises 48% of the total number of points studied (Figure 4) and showed a high po-
tential for groundwater recharge. The geological setting of Cluster 2 is mostly of alluvium
(Table 2), which tends to increase hydraulic conductivity [28,67]. Groundwater recharge is
significantly influenced by lithology based on natural topography, slope, faults, fracture
extension, interbedded strata type, and their sequence stratigraphic in which highly com-
pacted layers reduce the recharge [120]. Gentle slopes of 0–5% and low runoff coefficients
were identified (Tables 2 and 3); this could increase of infiltration and the presence of
groundwater recharge areas. However, the lowest values (mean = 0.07 m/d) of hydraulic
conductivity were observed. Meanwhile, mean values of K of 0.29 m/d and 0.44 m/d
were found in Clusters 1 and 3, respectively (Table 3); this may be due to the predom-
inant soil types being planosols, soils with low hydraulic conductivity [46,121]. When
soils are flooded during the rainy season, the water is employed in irrigation practices
(Table 2). Although studies have reported that agricultural zones have high groundwater
recharge potential [28,122], they are also associated with climatic patterns such as tempera-
ture, humidity, precipitation, and evapotranspiration. Therefore, high evapotranspiration
rates and planosol soil type could limit the superficial infiltration, hindering the natural
recharge towards the deep aquifer. In semi-arid environments, the occurrence of efficient
recharge is determined by several soil properties, like the porosity, drainage patterns,
slope, class of soils, and weather. Therefore, it is essential to understand the groundwater
resource condition, their occurrence, movement, and surface–groundwater interactions in
drylands [115,123].

3.2.3. Cluster 3

The third class (Cluster 3) is situated south and northeast of the study zone. Cluster 3
includes 29% of the total number of points sampled (Figure 4) and showed low potential for
groundwater recharge. The highest altitude (2368 masl) was observed in Cluster 3, whereas
lower altitudes of 2046 and 2100 masl were observed in Clusters 1 and 2, respectively
(Table 3). Cluster 3 is characterized by high slopes between 10 and 30 % and slopes greater
than 30%, while lower slopes were determined in Cluster 1 and Cluster 2 (Table 2). Previous
investigations disclosed that steep slopes increase the surface runoff, hindering the contact
between water and soil surface [106–108]; this can be linked to the highest runoff coefficient
(mean = 0.44) obtained in Cluster 3, while lower values of 0.20 and 0.31 were found in
Clusters 1 and 2, respectively (Table 3). The geological structure is mostly formed of
rhyolite and ignimbrite (Table 2). These formations are made up of interbedded layers of
volcanic rocks of low porosity and hydraulic conductivity. However, the highest hydraulic
conductivity (mean = 0.44 m/d) was identified, whereas lower K of 0.29 and 0.07 m/d was
observed in group 1 and group 2 (Table 3). This can be linked to fractures or faults in the
study area, which increases the K. Studies have documented the variations in hydraulic
properties influencing overall aquifer dynamic, defining referential flow directions, and
modifying their storage capacity [61,63,65].

Three different vegetation types (chaparral and oak-pine forest) were identified in
Cluster 3 (Table 2) and are associates with groundwater recharge [24]. Previous studies
in the SSMVC have reported that the surface infiltration reaches a depth of 50 cm. This
is explained by the interactions between pine forest and volcanic rock [41,43]. Therefore,
the surface infiltrations rates are limited by the vegetation type and rock type and hinder
the natural recharge. Studies reported that deep rooted ecosystem, such as the eucalypt
forests, could decrease groundwater recharge. Meanwhile, steep slopes such as such as
the ones in this group with shallow rooted grasslands reduce surface runoff and promote
infiltration [118,119].
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3.3. Principal Component Analysis

PCA was applied to reduce the high-dimensional dataset to a small dataset with most
of the information of the initial dataset. PCA was performed on a dataset consisting of
66 observations and 12 variables. Four components (PCs) were defined, accounting for
77.88% of the total variance in the dataset. The results are shown in Table 4 and Figure 5.

Table 4. Summary of the PCA loadings on the variables.

Variables
Principal Component Matrix

PC1 PC2 PC3 PC4

Altitude 0.328 0.444 −0.259 0.644
Slope 0.520 0.570 0.140 −0.278
Temp −0.909 0.185 −0.136 0.104
Soil −0.491 0.395 0.440 0.306

Vegetation −0.107 −0.415 0.588 0.280
Rainfall 0.568 −0.156 0.704 0.127

Relative humidity 0.936 −0.141 −0.004 0.030
PET −0.928 0.073 −0.102 0.103

Land use 0.916 −0.181 −0.099 −0.057
Runoff coefficient 0.140 0.783 0.363 −0.317

K 0.530 0.206 −0.056 0.452
Geology −0.798 −0.138 0.317 −0.075

Eigenvalue 5.293 1.642 1.395 1.017
Variability (%) 44.106 13.683 11.626 8.471

Cumulative (%) 44.106 57.789 69.415 77.886
Note: Coefficients greater than 0.5 and minor than −0.5 are underlined.

Figure 5. Principal Component Analysis (PCA) plot of the variables.
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The first component explains 44.10% of the total variance. PC1 has a robust negative
loading of −0.92, −0.90, and −0.79 on PET, temperature, and geology, and high positive
loading of 0.93, 0.91, 0.56, 0.53, and 0.52 on humidity, land use, precipitation, hydraulic
conductivity, and slope. PC1 suggests that the occurrence of infiltration processes is
determined by hydraulic conductivity, rainfall, and humidity in the SSMVC. Potential
groundwater recharge zones are controlled by geological formations, high levels of PET, and
temperature. In previous studies, researchers have recognized water deficits that caused
low infiltration rates [11,15]. This is warranted by the high levels of evapotranspiration
and temperature observed in the SSMVC. Previous studies have reported that the recharge
depends on the nature and hydraulic properties of the vadose zone. This is due to the fact
that the unsaturated layers are often defined by the permeability and porosity features
which vary from point to another. Thus, groundwater recharge is governed by subsurface
geology. In addition, the occurrence of fractures and faults are linked to increase of water
movement (high hydraulic conductivity) to saturated zone [111]. However, variation of
natural recharge process associated with PET and temperature is due to the groundwater
recharge being controlled, in part, by precipitation and evaporation, itself dependent on
temperature [124,125]. A high association between humidity and land use can be due to
a large area of agricultural fields in the study zone. Studies have demonstrated that the
zones with high groundwater recharge potential are located in areas with dense vegetation
cover coupled with flat relief and consolidated and structured soils [126].

The second component describes 13.68% of the variance of the dataset. PC2 has a
fit, positive loading of 0.78 and 0.57 on runoff coefficient and slope. This indicates that
the hillslopes have a significant function in the rainfall-runoff processes, determining the
infiltration rates; thus, groundwater recharge [106–108]. It observed a suite of cluster anal-
yses where gentle slopes in Cluster 1 and Cluster 2 were linked to lower runoff coefficients.
Meanwhile, high slopes in Cluster 3 were related to the highest runoff coefficient. In
previous studies, researchers have highlighted that suitable slope and elevation delineated
by basin and depressions are crucial for recharge. This is due to the runoff being larger over
zones of steeper slopes, leaving no time for infiltration. Thus, it is probable that recharge is
decreased as runoff flows faster and does not allow infiltration [109,127,128].

The third component explains 11.62% of the total variance. PC3 has a robust positive
loading of 0.70 and 0.58 on precipitation and vegetation. This reveals the strong influence
of precipitation and vegetation on the increase in evapotranspiration. Previous studies
have reported that the surface soil layers are recharged by rainfall and lose water by
high evapotranspiration rates [39,53]. It observed that the infiltration rates were defined
by high precipitation (514.21 mm) and vegetation type [41,43]. Previous investigations
have described that landslides and floods in the study zone could be attributed to high
runoffs [46]. It is well known that the temperature and precipitation can have meaning-
ful effects on groundwater recharge [129,130]. Particularly the recharge is significant in
semi-arid regions where rainfall is variable and evapotranspiration frequently exceeds pre-
cipitation [109,131]. In addition, previous studies have found a high association between
recharge and both climate and land cover [125]. Some researchers have documented that
variations in groundwater recharge are strongly related to vegetation types [129].

The fourth component explains 8.47% of the variance of the data. PC4 has a robust
positive loading of 0.64 on altitude. Similar investigations in other countries have reported
that the potential groundwater recharge zones are determined by low altitudes [132].
However, it observed that the altitudes of up to 2800 masl caused increased runoff and
decreased soil infiltration rate. This indicates that the groundwater recharge is controlled by
altitude, such as in Cluster 3, where the highest altitude and runoff coefficient was found.

4. Conclusions

The results obtained from correlation analysis indicated that climatic variables such as
temperature, humidity, precipitation, and evapotranspiration determine the groundwater
recharge process, while land use and geology define potential recharge zones. A high
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correlation between temperature and evapotranspiration (0.93), humidity (−0.87), and
rainfall (−0.75) was observed. This is explained by an increase in the temperature during
the last years in the study zone, which has altered the spatio-temporal rainfall patterns.
Moreover, land use showed a robust negative association with local geology (−0.69) and
soil type (−0.61). This could be due to the fact that the local geology determines the soil
type and soil processes and has a meaningful influence on the hydraulic conductivity,
which provides primary information on potential recharge zones.

Statistical methods such as K-means clustering and PCA were usefully applied to
identified main factors that determine recharge processes and potential groundwater
recharge areas. The K-means algorithm recognized three clusters. The first group showed
a low potential for groundwater recharge. This cluster was located in the southeastern
and central parts. This group is characterized by gentle slopes (0–5%) in most of the land
and lower runoff coefficients (0.20), as well as low porosity and hydraulic conductivity.
However, it was possible to identify high hydraulic conductivity values (0.297 m/d), which
can be related to fractures or faults zones. The second group disclosed a potential for
groundwater recharge due to its geology and land use, but it is limited by h climatic factors.
This cluster was located in the north and northwest portions. The geological setting of this
group is mostly of alluvium, which tends to increase hydraulic conductivity. The third
cluster revealed low potential for water recharge. This group is situated in the south and
northeast parts. This cluster is characterized by the highest altitude (2368 masl), high slopes
(>30%), which can be linked to the highest runoff coefficient (0.44) observed in Cluster 3.
The geological structure of this cluster is mostly formed of rhyolite and ignimbrite of low
porosity. However, it had the highest hydraulic conductivity (0.86), which can be related to
fractures found in the study area.

Four components identified in the principal component analysis are responsible for
77.88% of the total variance in the data matrix, and were found to be the main variables
controlling groundwater recharge: geology, K, temperature, precipitation, PET, humidity,
and land use. Infiltration processes are restricted by low hydraulic conductivity, as well as
ignimbrites and volcanic rocks of low porosity in the study area.

Given the climatic and geological conditions shown in this study, the SSMVC is not
working optimally as a water recharge zone towards the deep aquifer of the SLPV. The
methodology used in this study will be useful for water resource managers to develop
strategies to define priority recharge areas and safeguard the sustainable management of
water resources.
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