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Abstract: Post-tensioning has become a strong contender for manufacturing reinforced concrete (RC)
members, especially for flat slabs in large-span structures. Post-tensioned (PT) slabs can lead to
considerable material savings while reducing the embodied carbon (embodied CO2), construction
time, and life cycle maintenance and repair costs. In this research, a novel hybrid Firefly–Artificial
Neural Network (Firefly–ANN) computational intelligence model was developed to estimate the
cost effectiveness and embodied CO2 of PT slabs with different design variables. To develop the
dataset, several numerical models with various design variables, including the pattern of tendons,
slab thickness, mechanical properties of materials, and span of slabs, were developed to investigate
the sustainability and economic competitiveness of the derived designs compared to benchmark
conventional RC flat slabs. Several performance measures, including punching shear and heel
drop vibration induced by human activity, were used as design constraints to satisfy safety and
serviceability criteria. The economic competitiveness of PT slabs was more evident in larger spans
where the cost and embodied CO2 emissions decreased by 39% and 12%, respectively, in PT slabs
with a 12-m span length compared to conventional RC slabs. Sensitivity analysis also confirmed
that the cost and embodied CO2 emissions were very sensitive to the slab thickness by 86% and
62%, respectively.

Keywords: post-tension; reinforced concrete; slab; embodied carbon; sustainability; green construction;
human-induced vibration; artificial neural network; firefly algorithm; model

1. Introduction

Post-tensioned concrete is a type of prestressed concrete where the concrete is strength-
ened via an arrangement of reinforcement held in tension. Steel cables, called post-
tensioning tendons, are placed in plastic sleeves and positioned inside the concrete form-
work before the concrete is poured. Once the concrete is poured and has gained sufficient
strength, the cables are pulled at either end (tensioned) and anchored on the outer edges of
the concrete. Using the post-tension (PT) technique, the behavior of reinforced concrete
(RC) structural members in tension can be greatly enhanced, allowing the construction
of longer spans and more slender structural components. Applying this technique in flat
concrete slabs reduces the building height and results in substantial savings in conven-
tional steel rebar reinforcement. Such savings in material consumption permit reducing
the embodied carbon (embodied CO2) emissions and the overall construction cost, thus
providing a sustainable design solution for the construction industry. Embodied CO2 is the
carbon footprint of a material. It considers how much greenhouse gas (GHG) is released
throughout the supply chain and is often measured from cradle to (factory) gate, or cradle
to site (of use).
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Previous research has reported the following advantages of PT slabs over conventional
reinforced flat slabs [1–4]: (i) More economical design with a very high tensile strength;
(ii) larger spans and greater slenderness resulting in reduced dead load; (iii) enhanced
performance with respect to deflections and cracking and deflections under permanent
load; (iv) higher punching shear strength achieved through an appropriate layout of the
post-tension tendons; and (v) considerable reduction in construction time as a result of the
earlier striking of real formwork slabs.

There is a dearth of research on the sustainable assessment of PT slabs. In general
terms, sustainable construction means building with renewable and recyclable resources
and materials, or through new technologies, e.g., post tensioning. Therefore, to address sus-
tainability considerations, in this manuscript, the focus will be climate change (decreasing
CO2 emissions) because of its current importance for sustainability. The existing limited re-
search has mainly addressed structural considerations. In 1990, Foutch et al. [5] pointed out
the advantages of using PT RC slab solutions according to design strength considerations.
Previous research has confirmed that prestressing substantially improves the resistance of
flat concrete slabs to punching shear [6–8]. From the sustainability perspective, the research
conducted by Dane Miller [9] confirmed that by increasing the span length in PT slabs from
6.67 to 13.3 m, the consumption of concrete and steel reinforcement can be decreased by
21.5 and 34.4%, respectively. A study by Abdelrahman [10] has shown that PT concrete
slabs generally contain 30 to 50% less steel reinforcement than conventional RC flat slabs
when designed for equivalent load, span, and durability performances.

Meanwhile, previous research on sustainable structural design in the open literature
has mainly considered structural systems comprising composite or RC materials fabricated
using two or more heterogeneous materials. In particular, considerable research has been
conducted to optimize the design of RC flat slabs. For instance, optimization of the cost
and mechanical strength requirements specified in design codes for concrete flat slabs was
investigated by Sahab [11] using the genetic algorithm (GA) approach and compared with
the traditional strength-based design approach. The environmental impact of one-way
RC flat slabs was evaluated by Ferreiro-Cabello et al. [12] using a deep-learning-based
optimum design model. The design variables in the proposed model were limited to four
geometrical parameters, while the mechanical properties of structural materials remained
constant. Lee et al. [13] suggested that a more reliable, eco-friendly optimum design can be
attained if material strength is set as one of the design parameters. They claimed that such
a strategy would enhance the possibility of a reduction in embodied CO2 emissions.

Overall, existing pertinent studies primarily address the structural design consid-
erations of PT slabs, while no systematic research exploring the sustainability and cost-
effectiveness of PT slabs compared to conventional concrete flat slabs could be retrieved in
the open literature. Meanwhile, international standards such as ACI 318-18 [14] generally
satisfy the static serviceability related to vertical deflection limitations, which does not
adequately address serviceability issues pertaining to the human-induced vibration of flat
concrete [15]. This research aims to determine the environmental and cost advantages that
are achievable through the application of post-tensioned slabs compared to conventional
RC slabs. A total of 68 PT and 9 conventional RC flat slab models for residential buildings
with different geometries and span lengths were developed. To satisfy the criteria of safety
and serviceability, punching shear and vibrations induced by human activity were defined
as the design constraints. In addition, in the present study, a novel hybrid Firefly–Artificial
Neural Network (Firefly–ANN) model was developed to estimate the cost and embodied
CO2 emissions of PT slabs made with different designs variables. The study examines
the ratio of concrete, steel, and tendon in the distribution of cost and embodied CO2
emissions of PT slabs. In addition, the sensitivity of the overall cost and embodied CO2
emissions to the geometrical and mechanical parameters was investigated. The findings
should be useful for engineers to accurately assess PT RC flat slabs’ embodied carbon and
cost performance, which can contribute to green design and more sustainable reinforced
concrete structures.
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2. Problem Statement

Reducing CO2 emissions in the construction sector has been pursued in various ways
since buildings yield significant amounts of CO2 emissions over their entire life cycle,
including the manufacturing of building materials, transporting, construction, operation,
and decommissioning. Previous research indicated that the construction, operation, and
demolition stages are responsible for approximately 13%, 85%, and 2% of CO2 emissions,
respectively [16–18].

Several researchers have explored the impact and significance of the construction
phase concerning CO2 emissions [19–21]. Buildings use a wide range of construction mate-
rials, and the manufacturing of each material consumes energy and emits CO2. González
and Navarro [22] recommended using low-environmental-impact materials to decrease
CO2 emissions by up to 28% in the construction phase. Rattanashotinunt et al. [23] pro-
posed approaches that use recycled industrial by-products and reduce the manufacturing
process to lower raw material extraction and consumption over the construction phase.
Similarly, high-strength steel reinforcement and concrete would be effective techniques for
reducing CO2 emissions of reinforced concrete (RC) structures. For instance, Tae et al. [24]
concluded that using high-strength concrete resulted in lowering the number of reinforce-
ment rebars in RC structures and extending the life span of buildings. Moreover, Cho
and Na [25] posited that using high-strength reinforcing rebars in RC structures decreased
CO2 emissions.

Concrete is the world’s most-consumed construction material. The manufacture of
ordinary Portland cement (OPC) is responsible for the majority of CO2 emissions of RC
structures representing around 5 to 8% of the world’s greenhouse gas (GHG) emissions [26].
In recent decades, manufacturing eco-efficient concrete using industrial by-products has
received increasing attention. The manufacturing of sustainable concrete has resulted in
CO2 savings since OPC is partially replaced with industrial by-products, including ground
blast furnace slag (GBFS), a by-product of the steel industry, or fly ash (FA), a by-product
of coal-fired power plants. Tatiana García-Segura et al. [27] investigated the quantified
GHG emissions as a function of the cement used over the concrete life cycle and examined
whether the reduction in the production emissions of “green” concrete compensates for the
reduced CO2 capture and durability. They concluded that partially replacing OPC with
FA decreased the material emission factor. However, more significant reductions were
achieved using GBFS, where the quantity of OPC that could be replaced was higher. In
addition, they pointed out that green mixture designs with high rates of OPC replacement
attained a decreased service life by around 10% due to the higher rate of carbonation.

Life Cycle Assessment (LCA) is a tool that can be used to identify ways to decrease
the environmental impact of a product or process and to inform decision makers of the
consequences of changes to the product or process. LCA encompasses all aspects of
a process or product from “cradle to grave”, including material extraction, transport,
production, maintenance, and removal or recycling. The LCA of concrete consists of
different stages including raw material extraction, cement production, and use stage, as
shown in Figure 1 [28]. An LCA of concrete would demonstrate reduced CO2 emissions
from cement production, as well as concrete’s service life and recyclability [29]. OPC
is mainly composed of calcium silicate minerals. The raw materials are extracted and
transported to the manufacturing facility to be crushed and ground before entering a large
rotary kiln where materials reach temperatures of more than 1400 ◦C. Gypsum is added to
the clinker to adjust the setting time.

In the open literature, there is currently no systematic research examining the LCA
of PT slabs. Conventional concrete consumes a large quantity of cement, which emits
high amounts of CO2 into the atmosphere. Although PT slabs consume relatively lower
materials and attain better durability performance, the cost effectiveness and embodied
CO2 benefits associated with slabs with different bay lengths have not received enough
attention. This research intends to identify the variation of cost and embodied CO2 emission
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versus the mechanical properties and geometry of PT slabs so that designers can estimate
and manage the final design output.
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3. Methods
3.1. Influential Variables and Dataset

In this research, both conventional and PT-reinforced concrete flat slabs were designed
based on the provisions of the ACI 318-18 using the same design parameters. In total,
68 PT and 9 conventional RC flat slab models for residential buildings with different
geometry and span lengths were developed. Figure 2 illustrates the area and geometry of
all investigated design cases. The slab models were initially designed in SAFE 2016, the
academic version [30], and the outcomes were verified and confirmed by industrial partner
specialists in PT floor design [31]. In each design case, the CO2 and cost were compared
and comprehensively analyzed in relation to the main design parameters and variations in
material composition and governing constraints of the derived designs.

The compressive strength of concrete ( f ′c) and slab thickness (tc) were considered
as the design variables related to concrete, while the yield strength ( fy) and diameter of
the steel reinforcement (ds) were the design variables related to steel. The tendon pattern,
either distributed or bonded, was set to be a tendon variable. Tendons are normally made
of seven wires made of high-strength steel, wound together and placed inside a plastic
duct. At each end, a PT anchor is installed, and these are fitted in pockets embedded into
the slab edge. When the strands are stressed, the wires will stretch—about 100 mm for a
15 m strand—to apply about 146 kN of load. After stressing, the tendon is cut off and the
pocket in which the anchors are located is filled with grout for corrosion protection.

Various slab design cases were produced by combining these design variables. The
ranges of the design variables were selected in compliance with the practical values rec-
ommended in industrial practice. Table 1 illustrates the details and ranges of the above-
mentioned design variables.
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Figure 2. Geometry of studied RC flat slab design cases.

Table 1. Design variables.

Material Design Variables Typical Values

Concrete
Thickness of slab, tc 110–340 mm

Compressive strength, f ′c 24, 35, 50 MPa

Steel reinforcement
Yield strength, fy 300, 400, 500 MPa

Size of reinforcement bars (ds ) 10–16 mm

Tendon
Distributed pattern -

Bonded pattern -

The current strength-based approaches for RC flat slabs attempt to maximize economic
effectiveness through satisfying the strength requirement recommended by design codes
using a minimal size of the structural member and thus a minimal quantity of materials. The
calculation of embodied CO2 emissions concerned in the current research for each design
case was characterized by the major processes associated with raw material extraction
and material production stages in compliance with ICE [32]. The data for embodied CO2
emissions and cost were based on the results of an input–output life cycle assessment (LCA)
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analysis and the data frequently used in the existing literature that reflect the accepted
practice in the construction industry [33–35]. The following equations were considered to
estimate the embodied CO2 emissions and cost for each flat slab design case.

fco2 = vcρcEc + vsρsEs + vtρtEt (1)

fcost = vcρcCc + vsρsCs + vtρtCt (2)

where v, ρ, E, and C denote the volume, density, unit embodied CO2 emissions, and cost,
respectively, of the structural materials in the slabs. Subscripts c, s, and t represent concrete,
steel, and tendon, respectively. In Equations (1) and (2), the vc, vs, and vt indicate the
amounts of concrete, steel, and tendon, which are determined by the design variables tc, ds,
and tendon pattern distribution, as outlined in Table 1, for the various derived design cases.
In this study, a typical value for ρc was taken as 2400 kg/m3, while ρs was set according
to the density of the steel reinforcement size (ds), which ranges from 10 to 16 mm. The
prestressing tendons were mono strands (100 mm2 in cross-section) where the average
rupture stress ( fpm) was 1897 MPa and the stress at 0.1% residual strain was 1689 MPa.
Table 2 shows the unit of embodied CO2 emissions and cost for different strengths of steel
and concrete.

Table 2. Unit embodied CO2 emissions and cost.

Material Strength
(MPa)

Unit Embodied CO2
(kg CO2/kg)

Unit Cost
(USD/ton)

Concrete

24 Ec = 0.1304 Cc = 21.98

35 Ec = 0.1616 Cc = 25.02

50 Ec = 0.20 Cc = 34.02

Steel reinforcement

300 Es = 0.39 Cs = 577.29

400 Es = 0.40 Cs = 581.14

500 Es = 0.42 Cs = 604.20

Tendon 1897 Et = 0.44 Ct = 750.00

It was not always possible to determine complete boundary conditions for the embod-
ied energy and carbon data in the original studies. A common example was the energy that
was not traced completely back to the earth or electricity that was not traced all the way
upstream. The ICE database has cradle-to-gate boundaries, but a robust assessment of the
carbon released would consider whole-life implications, including operation and end of
life, i.e., cradle-to-grave. For materials with high embodied energy and high density such
as concrete, the difference between cradle-to-gate and cradle-to-grave could be considered
reasonably negligible. In contrast, the difference is significant for materials with a very low
cradle-to-gate embodied energy per kilogram, such as fine and coarse aggregates.

The product stage of concrete was divided into the raw material stage, the transporta-
tion stage, and the manufacturing stage. The raw material stage refers to CO2 emission
during the production of the major components of concrete such as cement, aggregate,
and water. For the transportation stage, CO2 emissions occur during the hauling of raw
materials to the ready-mixed concrete manufacturing plant. In the manufacturing stage,
CO2 emissions emanate from the electricity and oil used in concrete batch plants. The
transport distance and concrete technology were the same for all the mixtures in the ICE
database. The only difference was the concrete grade.

The embodied carbon or embodied CO2 comes from the embodied energy consumed
to extract, refine, process, transport, and fabricate the material or product (including
buildings). It is often measured from cradle to (factory) gate, cradle to site (of use), or cradle
to grave (end of life). Therefore, the embodied carbon footprint is the amount of carbon
(CO2 or CO2 emission) to produce a material. The embodied CO2 unit in Table 2 was
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estimated based on the life cycle inventory database constructed by ICE and some other
references [33,36,37], where the embodied CO2 was estimated from the embodied CO2
emission factors of all energy sources for the given materials’ production, from cradle to
(factory) gate. The carbon footprint of concrete varies because of the required compressive
strength. Nevertheless, the aggregate properties and operation standards remain constant
for all case studies.

According to Kajaste and Hurme [38], geographical differences in CO2 emissions from
cement and steel production are the reason for developing regional datasets. They analyzed
regional CO2 emissions of the cement industry by applying a climate impact management
matrix on a cradle-to-gate basis, which resulted in datasets to estimate regional emission
data covering over 77% of the world’s cement production. However, the ICE data for
carbon and energy would have been sourced from within the British Isles. Nevertheless, for
most materials, this was not feasible, and embodied energy data from international sources
had to be adopted using, for instance, European and worldwide averages. Considering
the datasets developed by Kajaste and Hurme, which indicated national differences in fuel
sources and electricity generation, preference should be given to embodied carbon data
from UK sources.

3.2. Design Constraint for Safety and Serviceability

The final design of PT RC slabs should satisfy the criteria of safety and serviceability
recommended by ACI 318-18 regarding the span-to-depth ratio, minimum slab reinforce-
ment, punching shear strength, and heel drop vibration. These criteria were reflected
as constraints in the design of each PT slab case. Figure 3 depicts the proposed design
flowchart for the PT floor slabs in compliance with ACI 318-18.
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According to the pertinent ACI 318-18 design provisions, the span-to-depth ratio for
PT flat slabs with a total imposed load of 5 kN/m2 is recommended to be 36. In negative
moment areas at the column support, the constraint for the minimum area of bonded rein-
forcement at the top of the PT slab in each direction is expressed using Equation (3), where
Ac f is the larger gross cross-sectional area of the slab-beam strip in the two orthogonal
equivalent frames intersecting the column in a two-way slab system.

As,min = 0.00075Ac f (3)

In addition, once the spacing of tendons exceeds 1.37 m, additional bonded shrinkage
and temperature reinforcement is required between the tendons at slab edges, extending
from the slab edge for a distance equal to the tendon spacing. Figure 4 depicts the steel
reinforcement distribution for a typical slab with a 6 m bay.
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The punching shear strength of flat RC slabs is typically controlled by the concrete
strength and geometric parameters of the slab and columns. In a flat RC slab without shear
reinforcement subjected to a centered axial load by an isolated column, two categories of
orthogonal bending moments, Mϕ producing tangential stresses and Mr producing radial
stresses, are developed due to the bidirectional flexural action of the slab. According to
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ACI 318-18, the concrete punching shear stress capacity of a two-way prestressed section
can be taken as:

vc =
(

βpλ
√

fc + 0.3 fpc

)
+ vp (4)

βp = min (0.29, 0.083
(

αsd
b0

+ 1.5
)
) (5)

where βp is the factor used to compute vc in the post-tensioned slab; b0 is the perimeter
of the critical section; fpc is the average value of fpc for the two directions ≤ 3.5 MPa
and ≥0.9 MPa; vp is the factored vertical component of all prestressed forces crossing the
critical section; and αs is the scale factor based on the location of the critical section (40 for
interior columns). In this study, all PT slab cases were designed without shear reinforce-
ment, and therefore the applied punching shear loads were lower than the allowable
punching shear stress of Equation (4).

The vibration serviceability limit state is an important design consideration for two-
way PT slabs. However, it is not always adequately addressed by several international
design standards. As shown in Figure 3, the serviceability vibration check is the most
important step in the PT floor design process and should be controlled once the load,
slab geometry, and material properties have been defined. The frequency tuning and
response calculation methods are the most adopted approaches for evaluating the vibration
serviceability limit state in PT floors. The frequency tuning method sets the natural
frequency of the PT floor above frequencies sensitive to resonating once excited by the
lower harmonic of foot drop heel forces. The response calculation method is a performance-
based approach concerned with determining the vibration response of a PT floor under the
foot drop heel forces. Aalami [39] proposed a simplified procedure based on the response
calculation method in which the parameters governing the vibration response of a PT
floor system are its modulus of elasticity, mass, damping, degree of cracking, if any, and
post-tensioning. In this simplified model, the floor system and its superimposed load are
considered for the mass calculation. Since the elastic modulus for vibration analysis is
larger than corresponding static values, the recommended value is 25% higher than the
static modulus. The damping also has high variability that is difficult to estimate before
the PT floor is placed in service. According to Allen et al. [40], the damping varies at 2–3%
for bare concrete PT floors and 5–8% in the case of full-height partition walls. In concrete
slabs, cracking decreases the floor stiffness and, therefore, decreases its natural frequency.
Nevertheless, for post-tensioned floors designed according to ACI 318-18, allowable tensile
stresses are relatively low; thus, such a decrease in stiffness is not essential.

The perception of floor vibration and whether it is exasperating is highly subjective
and differs from reference to reference. The Canadian Steel Design Code [41] provides
the perceptibility of foot drop vibration for several floor-damping levels. The Applied
Technology Council [42] addresses the same issue and recommends a threshold of human
sensitivity to vertical vibration, as depicted in Figure 5 [43]. Generally, there is a relationship
between the floor response acceleration with different natural frequencies and perceptibility
levels. It is widely accepted that humans are most sensitive to vibration for frequencies
ranging between 4 and 8 Hz, while more significant acceleration can be tolerated at lower
or higher frequencies.
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Figure 5. Threshold of human sensitivity to vertical vibration.

To determine the vibration characteristics of PT floors, the natural frequency and
its associated peak acceleration should be identified. Apart from commercial programs,
several analytical models are available to estimate the natural frequency of RC PT floors.
The simplified procedure proposed by Aalami [44] recommends the following empirical
equation to estimate the first natural frequency ( f ) of PT slabs with rectangular panels and
uniform thickness:

f =
c
a2 ϕ where c =

√
Eh3

12(1− υ2)
× g

q
(6)

f is the first natural frequency [Hz], a is the span length in the X-direction, E is the
dynamic modulus of elasticity 1.25 static E; in [MPa], h is the slab thickness [mm], υ is
Poisson’s ratio [0.2], g is the gravitational acceleration [9810 mm/s2], q is the weight per
unit surface area of the slab, and ϕ represents the boundary conditions of the slab, for a
central panel bound by similar panels on each side

ϕ = 1.57
(

1 + γ2
)

(7)

where γ is the x to y span length ratio.
Using Equation (6), ATC [42] and AISC/CISC [45] recommend the following relation-

ship for calculating the peak acceleration of the RC PT floor due to the foot drop heel:

ap

g
≤ P0e−0.35 f

βW
(8)

where ap is the peak acceleration, g is the gravitational acceleration [32.2 ft/s2; 9.81 m/s2],
P0 is the constant force representing the walking force, β is the modal damping ratio, W is
the effective weight of the panel and the superimposed dead load, and f is the first natural
frequency [Hz].

4. Developing Informational Models for Predicting Cost and Embodied CO2

To develop a more reliable model for estimating the overall cost and embodied CO2
emissions of PT floors, it is necessary to elucidate the physical phenomena and underlying
mechanisms correlated with the key geometrical and mechanical parameters involved.
Accordingly, this study investigates the development of an informational model through
developing a hybrid ANN coupled to a Firefly optimization algorithm. Using the com-
prehensive dataset discussed above, the informational model was created to estimate the
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overall cost and embodied CO2 emissions as determined by fundamental geometrical and
mechanical input parameters (tc, f ′c, fy, diameter of reinforcement bars, and slab area).

ANN is a data processing system that can learn from experience and generalize its
knowledge to new data unfamiliar to the model [46,47]. Inspired by the structure of
the biological brain, ANN comprises a group of neurons that operate locally to solve a
particular problem. Neural networks acquire knowledge through learning, which mimics
a simplified human brain-like approach via customary computations that capture the
underlying mechanisms. The multilayer feed-forward network is a reliable and commonly
used ANN structure and was used in this research. The multilayer feed-forward network
comprises three different layers: The input layer where the data are introduced to the
model; the hidden layer(s) where the input data are processed; and finally, the output layer
where the results of the feed-forward ANN are produced. Each layer contains a group of
nodes referred to as neurons that are connected to the proceeding layer. The neurons in the
hidden and output layers consist of three components: Weights, biases, and an activation
function that can be continuous, linear, or nonlinear. Standard activation functions include
the nonlinear sigmoid functions (logsig, tansig) and linear functions (poslin, purelin) [48].
Once the architecture of a feed-forward ANN (number of layers, number of neurons in
each layer, and activation function for each layer) has been selected, the weight and bias
levels should be adjusted using training algorithms. One of the most reliable ANN training
algorithms is the backpropagation (BP) algorithm, which distributes the network error to
arrive at the best fit or minimum error [49,50].

4.1. Firefly Optimization Algorithm

The Firefly algorithm introduced by Yang [47] in 2009 at Cambridge University is a
swarm intelligence algorithm for optimization problems. Inspired by the behavior and
flashing patterns of tropical fireflies, this algorithm is flexible and easy to implement. It
is a metaheuristic bio-inspired algorithm with a random optimization, which converges
to a comprehensive solution of an optimization problem. The Firefly algorithm employs
the following idealized rules [51–54]: (i) No sex distinctions, i.e., fireflies pay attention to
each other regardless of their gender; and (ii) the level of attractiveness of each firefly is
proportional to its brightness. Considering two flashing fireflies, the less-bright fireflies
will move towards the brighter one. This attitude implies the higher the brightness is, the
smaller the distance between two flashing fireflies will be. In the case of no brighter firefly
nearby, it will fly randomly, and (iii) the brightness of a particular firefly is determined
using the objective function.

The basic rules of the Firefly algorithm were designed in such a way as to resolve
ongoing problems. Therefore, two fundamental parameters need to be identified: At-
tractiveness and the difference in the light intensity or brightness. The intensity of light
I
(
rij
)

is inversely relative to the square of the distance rij and the relative light intensity or
brightness of each firefly estimated using the following Gaussian equation [53,55]:

I
(
rij
)
= I0 e−λr2

ij (9)

where I
(
rij
)

is the brightness at a distance rij; I0 is the maximum brightness (the absolute
light intensity at the source point rij = 0) that is relevant to the objective function value; λ is
the light absorption factor, which indicates that brightness increases steadily by increasing
the distance and the absorption of the medium; and rij is the Euclidean distance between
firefly i and firefly j. The following equation expresses the attractiveness of each firefly [56]:

β
(
rij
)
= β0e−λr2

ij (10)

where β0 is the maximum attractiveness at the Euclidean distance rij (the largest value
of the firefly to attract another is naturally set to 1). To estimate the Euclidean distance
between two fireflies, it is assumed that a firefly positioned at xi =

(
xi

1, xi
2, . . . , xi

k
)

is
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brighter than another firefly situated at xj =
(

xj
1, xj

2, . . . , xj
k

)
; therefore, the firefly located

at xi will move towards xj. Using this assumption, the Euclidean distance between any
two fireflies i and j at xi and xj can be estimated as follows [53,55]:

rij =
∣∣xi − xj

∣∣ =
√√√√ d

∑
k

(
xi, k − xj, k

)2
(11)

where d is the dimension and xi, k is the kth component of the spatial coordinate xi of
the ith firefly. Once a firefly i is attracted to another more attractive firefly j, the updated
location can be determined by the following equation:

xi+1 = xi + β0e−λr2
ij
(
xj − xi

)
+ ∝

(
rand− 1

2

)
(12)

The first term in Equation (12) is the current position of a firefly, the second term is
relevant to that firefly’s attractiveness to light intensity observed by nearby fireflies, and the
third term is related to the random motion of a firefly once there are not any brighter fireflies.
The factor ∝ is a randomization coefficient determined using the problem’s interest, whereas
rand is a random number determined from a uniform distribution or Gaussian distribution
at time t, and if β0 = 2, it tends to be a simple random walk. In the implementation of the
algorithm, this study assumes that β0 = 2 and ∝= 0.25 while the absorption coefficient
or attractiveness λ = 1; leading to the rapid convergence of the algorithm towards the
optimal solution. Figure 6 illustrates the concept of the firefly-based algorithm considered
in this study. Moreover, Figure 7 depicts the developed flowchart implemented to predict
the overall cost and embodied CO2 emissions given in Equations (1) and (2), as defined in
Section 2 [57].

Generation of Training and Testing Data Sets

The dataset and its properties have been discussed in Section 3.1 above. As mentioned
earlier, the independent input parameters in each design case include tc, fc, fy, the diameter
of reinforcement bars, and the slab area, which forms a 5 × 1 matrix, and the dependent
output parameter includes the overall cost and embodied CO2 emissions, which forms a
2 × 1 matrix. The features of input and output parameters are shown in Table 3.
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Table 3. Features of input and output parameters.

Parameter Unit Type Max Min Average STD Variance

Diameter of Rebar mm Input 16.00 10.00 13.76 1.88 3.53

Thickness of Slab m Input 0.34 0.11 0.24 0.06 0.00

Compressive Strength, f ′c MPa Input 50.00 24.00 35.09 11.12 123.63

Yield Strength, fy MPa Input 500.00 300.00 408.82 87.65 7682.18

Slab Area m2 Input 576.00 64.00 316.35 158.26 25,047.28

Cost USD Output 25,126.87 621.64 8572.36 6330.77 40,078,618.90

Embodied CO2 Emissions ton Output 101.97 2.36 35.35 26.17 684.73
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A statistical relationship between two random variables, whether causal or not, is
called correlation or dependency. In the broadest sense, correlation refers to the degree
to which a pair of parameters are linearly associated. A correlation matrix is a table that
provides correlation coefficients among input variables, where the correlation between the
two variables is shown in each cell of the table. For advanced analysis, a correlation matrix
is used to summarize data as input. Meanwhile, considering the range of data for each
variable and to avoid any divergence in the results, the variables are first normalized in the
range of 1 to −1, using the following equation:

Xn =
2(X− Xmin)

Xmax − Xmix
− 1 (13)

where Xn is the normalized value of the variable, Xmax is its maximum value, and Xmin is its
minimum value. X is the original (non-transformed) value of the variable. The minimum
and maximum values for each input variable have been given earlier in Table 3. Figure 8
shows the correlation matrix developed for the input variables in this study. Considering
that the statistical behavior of the output parameters should be evaluated, boxplots were
examined, indicating that they follow a normal distribution, as depicted in Figure 9 [58].
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The trial-and-error method was used to obtain the most efficient ANN model architec-
ture that best reflects the characteristics of the data. In this study, an innovative method
for calculating the number of neurons in the hidden layers was implemented, as per the
following equation [59]:

NH ≤ min
(
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)
(14)

where NH is the number of hidden layer nodes, NI is the number of inputs, and NTR is
the number of training samples. Since the number of influential input variables is 5, the
empirical equation showed that the number of neurons in the hidden layers should be
either 10.5 or 11. Thus, several networks with different topologies with a maximum of
two hidden layers and 10 neurons were trained and studied in this study. The hyperbolic
tangent stimulation function and the Levenberg–Marquardt training algorithm were used
in all networks. The statistical metrics used to evaluate the performance of different
topologies were the average absolute error (AAE), the coefficient of determination (R2),
and the variance account factor (VAF), which are defined in Equations (15)–(17) [60]. In
total, 25 topologies were examined, and it was found that the network with the topology
consisting of the 5-4-5-2-layer architecture achieved the smallest error values for AAE, VAF,
and the highest value of R2 in estimating the output parameters. To represent the accuracy
of all the examined topologies, the R and RMSE indices were investigated, as depicted
in Figure 10.

AAE =

∣∣∣∑n
i=1

(Oi−Pi)
Oi

∣∣∣
n

× 100 (15)

R2 = 1− sum squared regression (SSR)
total sum o f squares (TSS)

(16)

VAF =

[
1− var(Oi − Pi)

var(Oi)

]
× 100 (17)
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Figure 11 illustrates the proposed 5-4-5-2 topology of the feed-forward network with
two hidden layers, five input variables (neurons), and two output parameters. Table 4
reports the statistical metrics of the proposed 5-4-5-2 topology of the hybrid Firefly–ANN
optimization algorithm at the training and testing stages. It should be noted that the error
criteria for model training and testing were calculated in the main range of variables and
not in the normalized range.

Table 4. Statistical metrics of the proposed 5-4-5-2 model topology.

Output Parameter Stage Network Designation AAE VAF% R2 y = ax + b

Embodied CO2
Train FA-ANN 2L(4–5) 0.019 99% 0.9991 y = 0.9991x + 0.0326

Test FA-ANN 2L(4–5) 0.097 96% 0.9756 y = 1.0792x − 0.4217

Cost
Train FA-ANN 2L(4–5) 0.060 97% 0.9703 y = 0.9703x + 259.42

Test FA-ANN 2L(4–5) 0.167 87% 0.921 y = 1.148x − 1268.5
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The ANN used in this study was the Newff Feed Forward. A total of 70% of the
data were used for model training, while the remaining 30% was used for network testing.
The firefly optimization algorithm was used to provide the least prediction error for the
trained structure and to optimize the ANN’s weights and biases. The properties of the
firefly optimization algorithm parameters are given in Table 5.

Table 5. Firefly algorithm parameters.

Parameter Value Parameter Value

Population size 100 Attraction coefficient base value 2
Mutation coefficient 0.25 Mutation coefficient damping ratio 0.99

Light absorption coefficient 1 M (exponent of distance term) 2

4.2. Genetic Algorithm, Multiple Linear, and Nonlinear Regression Models

To validate the proposed hybrid Firefly–ANN model in this study, the genetic al-
gorithm, multiple linear, and nonlinear regression models were developed. The genetic
algorithm (GA) is a method for solving both constrained and unconstrained optimization
problems based on natural selection, the process that drives biological evolution [61]. The
genetic algorithm repeatedly modifies a population of individual solutions. At each step,
the GA selects individuals at random from the current population to be parents and uses
them to produce the next generation of children. Over successive generations, the popula-
tion evolves toward an optimal solution. The GA analyzed in this research is available in
the Matlab Global Optimization Toolbox, and its features are depicted in Table 6.

Table 6. Properties of genetic algorithm.

Parameter Value Parameter Value

Max generations 150 Crossover (percent) 50

Recombination (percent) 15 Crossover method single point

Lower bound −1 Selection mode 1

Upper bound +1 Population size 150

In a multiple linear regression (MLR) model, two or more independent variables have
a major effect on the dependent variable, as shown in the following equation:

y = f (x1, x2, . . .)→ y = a0 + a1x1 + a2x2 + . . . (18)

where y is a dependent variable; x1, x2, . . . are independent variables; and a1, a2, . . . are
equation coefficients. In this study, different models of MLR were examined for input and
output variables. The most suitable coefficients using the MLR model for the output param-
eters, overall cost, and embodied CO2 emissions, are presented in the following equations.
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Cost = −2931− 185 x1 − 40046 x2 + 131.1 x3 + 4.06 x4 + 54.86 x5 (19)

ECO2 = −13.9− 0.668 x1 − 133.9 x2 + 0.5318 x3 + 0.00995 x4 + 0.2138 x5 (20)

where x1 is the rebar diameter, x2 is the thickness of the slab, x3 is f ′c, x4 is fy, and x5 is
the slab area. The nonlinear regression model (NLR) involves a comprehensive range of
techniques for analyzing variables, particularly once the limited number of data has been
determined. Nevertheless, this technique has some drawbacks, including not covering
variables in all their possible range and using iterative methods to find the proper relation-
ship. NLR has been successfully applied in diverse simulations and analyses in the domain
of civil engineering, including modeling the compressive strength of recycled aggregate
concrete, structural health monitoring, and predicting the ductility of reinforced concrete
beams [62]. The most suitable coefficients using the NLR model for the output parameters,
overall cost, and embodied CO2 emissions, are presented in the following equations.

Cost = exp (0.006x1 + 3.325x2 + 0.008x3 + 0.0009x4 + 0.003x5 + 6.796) (21)

ECO2 = exp(0.006x1 + 5.742x2 + 0.014x3 + 0.0002x4 + 0.002x5 + 0.750) (22)

5. Results and Discussion
5.1. Evaluation of Cost and Embodied CO2 Emissions

Figure 12 depicts the cost and embodied CO2 emissions of PT and conventional RC
slabs for different span lengths. The results indicate that by increasing the slab span, both
the cost and embodied CO2 emissions were decreased. According to Figure 12, the cost
and embodied CO2 emissions decreased by 39% and 12%, respectively, in the PT slab with
a 12 m span length compared to a conventional slab, yet these percentages were relatively
smaller (18% and 1%, respectively) for a PT slab with a 4 m span length. Such a finding
complies with previous findings in [63] where the cost analysis confirmed that the post-
tensioned flat-slab system provides a better cost reduction of approximately 16.5. However,
the current study did not consider the labor cost and technical equipment requirements,
and therefore PT floor slabs may not be economically justifiable for span lengths shorter
than 6 m.

Sustainability 2021, 13, x FOR PEER REVIEW 17 of 29 
 

In a multiple linear regression (MLR) model, two or more independent variables 
have a major effect on the dependent variable, as shown in the following equation: 

ݕ = ,ଵݔ)݂ ,ଶݔ . . . ) → ݕ = ܽ଴ + ܽଵݔଵ + ܽଶݔଶ+. .. (18) 

where y is a dependent variable; x1, x2, … are independent variables; and a1, a2, … are 
equation coefficients. In this study, different models of MLR were examined for input and 
output variables. The most suitable coefficients using the MLR model for the output pa-
rameters, overall cost, and embodied CO2 emissions, are presented in the following equa-
tions. 

= ݐݏ݋ܥ  −2931 − ଵݔ 185   − ଶݔ 40046   + ଷݔ 131.1   + ସݔ 4.06   +  ହ (19)ݔ 54.86 
ଶܱܥܧ  =  −13.9 − ଵݔ 0.668 − ଶݔ 133.9 + ଷݔ 0.5318 + ସݔ 0.00995 +  ହ (20)ݔ 0.2138

where ݔଵ is the rebar diameter, ݔଶ is the thickness of the slab, ݔଷ is ݂′௖, ݔସ is ௬݂, and 
ହݔ  is the slab area. The nonlinear regression model (NLR) involves a comprehensive 
range of techniques for analyzing variables, particularly once the limited number of data 
has been determined. Nevertheless, this technique has some drawbacks, including not 
covering variables in all their possible range and using iterative methods to find the 
proper relationship. NLR has been successfully applied in diverse simulations and anal-
yses in the domain of civil engineering, including modeling the compressive strength of 
recycled aggregate concrete, structural health monitoring, and predicting the ductility of 
reinforced concrete beams [62]. The most suitable coefficients using the NLR model for 
the output parameters, overall cost, and embodied CO2 emissions, are presented in the 
following equations. 

ݐݏ݋ܥ = ଵݔ0.006) ݌ݔ݁ + ଶݔ3.325 + ଷݔ0.008 + ସݔ0.0009 + ହݔ0.003 + 6.796) (21) 
ଶܱܥܧ = exp(0.006ݔଵ + ଶݔ5.742 + ଷݔ0.014 + ସݔ0.0002 + ହݔ0.002 + 0.750) (22) 

5. Results and Discussion 
5.1. Evaluation of Cost and Embodied CO2 Emissions 

Figure 12 depicts the cost and embodied CO2 emissions of PT and conventional RC 
slabs for different span lengths. The results indicate that by increasing the slab span, both 
the cost and embodied CO2 emissions were decreased. According to Figure 12, the cost 
and embodied CO2 emissions decreased by 39% and 12%, respectively, in the PT slab with 
a 12 m span length compared to a conventional slab, yet these percentages were relatively 
smaller (18% and 1%, respectively) for a PT slab with a 4 m span length. Such a finding 
complies with previous findings in [63] where the cost analysis confirmed that the post-
tensioned flat-slab system provides a better cost reduction of approximately 16.5. How-
ever, the current study did not consider the labor cost and technical equipment require-
ments, and therefore PT floor slabs may not be economically justifiable for span lengths 
shorter than 6 m. 
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Figure 12. Comparison between the cost and EMBODIED CO2 emissions in PT and conventional RC slabs.

Figure 13 illustrates the ratio of concrete, steel, and tendon in the distribution of cost
and embodied CO2 emissions, calculated by the average value of design cases for a given
span. The results indicate that concrete contributed an average of 65% and 94% to the
overall cost and embodied CO2 emissions, respectively. The second-largest contributor
to the overall cost and embodied CO2 emissions is steel, representing, on average, 18%
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and 4%, respectively. Although the tendons play a significant role in PT floors, they are
only responsible for around 12% and 2% of the overall cost and embodied CO2 emissions.
Therefore, Figure 13 confirms that for achieving an economical and sustainable design of
PT slabs, the concrete should be the primary concern for optimization.
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Figure 13. Ratio of concrete, steel, and tendon in the distribution of cost and EMBODIED CO2 emissions.

5.2. Evaluation of the Informational Models to Predict Cost and Embodied CO2 Emissions

Figure 14 displays a comparison between the actual observed data, the prediction
of the novel Firefly–ANN model, and the other three informational models considered
in this study. The results indicate that the Firefly–ANN model attained more reliable
estimations of the overall cost and embodied CO2 emissions for PT floor slabs than the
MLR, GA, and NLR. Table 7 shows the ratio of actual to calculated value obtained by
all studied informational models to predict the cost and embodied CO2 emissions. It
can be observed that the proposed hybrid Firefly–ANN model yielded the most reliable
results for both studied parameters. The maximum and average values of the cost and
embodied CO2 emissions ratio estimated by the Firefly–ANN model were the closest to
unity, indicating robust predictive capability. Meanwhile, the minimum value of the ratio of
those parameters achieved by the Firefly–ANN model was equal to 0.79 and 0.69, resulting
in accurate yet conservative predictions, which is convenient for design purposes.

Another visual measure that can be considered for comparing the performance of the
hybrid Firefly-ANN model against the other informational models is the Taylor diagram,
as shown in Figure 15. This diagram depicts a graphical illustration of each investigated
model’s adequacy based on the root mean-square-centered difference, the correlation
coefficient, and the standard deviation. The results indicate that the closest prediction
of the studied parameters to the points representing the actual cost and embodied CO2
emissions were provided by the Firefly–ANN model proposed in this study. The MLR
model resulted in higher values of root mean-square-centered difference and standard
deviation, indicating a rather low accuracy of the model in estimating the experimental
data compared to the NLR model. Meanwhile, although the GA model predicted the
EMBODIED CO2 emissions properly, it also resulted in higher root mean-square-centered
values for the cost parameter.
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Figure 14. Estimation of the overall cost and EMBODIED CO2 emissions by all studied informational models.

Table 7. Statistical metrics of all studied informational models (observational to calculated).

Parameter Cost Embodied CO2

Model FA-ANN MLR GA-ANN NLR FA-ANN MLR GA-ANN NLR

Avg 1.01 0.65 0.97 0.91 0.99 1.32 1.01 0.92

STD 0.12 3.80 0.15 0.25 0.06 1.99 0.07 0.21

Max 1.26 7.74 1.30 1.31 1.08 15.42 1.33 1.64

Min 0.79 0.25 0.39 0.30 0.69 0.30 0.84 0.34
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Figure 15. Taylor diagram visualization of Firefly–ANN model performance in the prediction of (a) cost and (b) embodied
CO2 emissions.

Table 8 provides the final weights and biases for both hidden layers estimated by
the ANN-Bat model. Using the values of the weights and biases between the differ-
ent ANN layers, the output parameter can be determined and predicted through the
following equations:

a(2) = tanh
(

IW × a(1) + b1

)
(23)

a(3) = tanh
(

LW1× a(2) + b2

)
(24)

YPredic(Normalize)
Cost or ECO2

= tanh
(

LW2× a(3) + b3

)
(25)

YPredict(Actual)
Cost or ECO2

=
YPredict(Normalize)

Cost or ECO2
+ 1

2
× (Ymax −Ymin) + Ymin (26)

Table 8. Final weights and bias values of the optimum FA-ANN model to estimate CO2 emissions
and cost.

IW b1
1.9731 −2.1998 2.6261 −2.3820 5.2391 3.9098
−0.1660 0.4415 −0.1667 0.2442 0.2667 −0.2935
−0.1882 −1.7376 1.0767 −1.1529 1.9440 −0.7258
−2.9288 −3.8286 −1.6715 0.7197 2.4272 3.1722

LW1 b2
−1.3059 −1.3929 0.9824 1.5435 0.8405
−0.9005 0.1571 0.0750 −1.5616 −0.0179
0.3771 −0.2996 0.0109 0.7141 1.2165
4.5527 0.8839 −2.1155 −2.0875 −5.0549
−0.5500 −1.4244 −2.3094 −0.7354 −0.4599

LW2 b3
−0.0971 −2.5496 −16.3704 0.0989 −0.6953 13.4769
−1.0636 −2.4175 −15.9552 −0.8183 −0.2053 12.7690

IW: Weights values for Input Layer; LW1: Weights values for First Hidden; LW2: Weights values for Second
Hidden Layer; b1: Bias values for First Hidden Layer; b2: Bias values for Second Hidden Layer; b3: Bias values
for Output Layers.
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5.3. Sensitivity Analysis of Cost and Embodied CO2 Emissions to Slab Design Parameters

This section explores the sensitivity of the cost and embodied CO2 emissions to the PT
slab geometrical and mechanical parameters (tc, fc, fy, and tendon pattern). Sensitivity
analysis (SA) can reveal how significantly the model output is affected by changes within
input variables. There are two main types of SA: Global and local sensitivity analysis. The
local sensitivity analysis concentrates on the local impact of individual input parameters
on the overall performance. The global sensitivity analysis (GSA) evaluates the influence
of individual input parameters over their entire spatial range and measures the uncertainty
of the overall performance (output) caused by input uncertainty in interaction with other
parameters taken individually [64]. Therefore, considering the nature of the output param-
eters in this study, GSA was considered more rational for investigating the impact of input
parameters on the overall model performance.

Amongst GSA methods, a variance-based approach was primarily considered in the
existing literature for sensitivity analysis. The method provides a specific methodology
for defining total and first-order sensitivity indices for each ANN model input parameter.
Assuming a model of the form Y = f (X1, X2, . . . , Xk ) where Y is a scalar, the variance-based
technique takes a variance ratio to evaluate the impact of individual parameters using
variance decomposition as per the following equation:

V =
k

∑
i=1

Vi +
k

∑
i=1

k

∑
j>i

Vij + . . . + V1,2,...,k (27)

where V is the variance of the ANN model output, Vi is the first-order variance for
the input Xi, and Vij to V1,2, . . . , k corresponds to the variance of the interaction of the
k parameters. Vi and Vij, which denote the significance of the individual input to the
variance of the output, are a function of the conditional anticipation variance, following
the equations below.

Vi = Vxi [Ex∼i (YXi)] (28)

Vij = Vxixj

[
Ex∼ij

(
YXi, Xj

)]
−Vi −Vj (29)

where X∼i designates the set of all input variables apart from Xi. The first-order sensitivity
index (Si) represents the first-order impact of an input Xi on the overall output provided
by the following equation.

Si =
Vi

V(Y)
(30)

The above-mentioned methodology for calculating the first-order sensitivity index
was considered in this research. Results of the SA are presented in Figure 16. The results
confirm that the thickness of the slab had a major influence on both the cost and embodied
CO2 emissions by factors of 86% and 62%, respectively. This aspect was discussed earlier
in Section 4.1 where the concrete was found to be responsible for the overall cost and
embodied CO2 emissions by an average of 65% and 94%, respectively, in all studied floor
spans. Figure 15 shows that the second largest contributor to the cost and embodied CO2
emissions in PT slabs is the compressive strength of concrete ( f ′c), whereas the output
parameters were less sensitive to the yield strength of the steel reinforcement ( fy).

To examine the sensitivity of the overall cost and embodied CO2 emissions to f ′c
and fy, a PT floor with a 12 m span was investigated. Figure 16 acknowledges that both the
cost and embodied CO2 emissions were very sensitive to f ′c whereby upon f ′c increasing
from 24 to 50 MPa, the overall cost and embodied CO2 emissions were increased by 20%
and 50%, respectively. Yet, the overall cost and embodied CO2 emissions were slightly
decreased by increasing the yield strength of the steel reinforcement ( fy), although the
impact was not major. Figure 17 indicates that there was a strong correlation between the
tendon pattern and the overall cost, whereby using a distributed pattern, the overall cost
was decreased by 42%. This issue can be explained by the fact that using a distributed
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pattern for tendons decreases the flexural shrinkage and the effect of temperature on the
reinforcement. Yet, using a distributed pattern for tendons provided less impact on the
overall embodied CO2 emissions.
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Figure 16. Sensitivity analysis of cost and embodied CO2 emissions to the mechanical properties and tendon patterns in
PT RC slabs.

Sustainability 2021, 13, x FOR PEER REVIEW 22 of 29 
 

The above-mentioned methodology for calculating the first-order sensitivity index 
was considered in this research. Results of the SA are presented in Figure 16. The results 
confirm that the thickness of the slab had a major influence on both the cost and embodied 
CO2 emissions by factors of 86% and 62%, respectively. This aspect was discussed earlier 
in Section 4.1 where the concrete was found to be responsible for the overall cost and 
embodied CO2 emissions by an average of 65% and 94%, respectively, in all studied floor 
spans. Figure 15 shows that the second largest contributor to the cost and embodied CO2 
emissions in PT slabs is the compressive strength of concrete (݂′௖), whereas the output 
parameters were less sensitive to the yield strength of the steel reinforcement ( ௬݂).  

To examine the sensitivity of the overall cost and embodied CO2 emissions to ݂′௖ 
and ௬݂, a PT floor with a 12 m span was investigated. Figure 16 acknowledges that both 
the cost and embodied CO2 emissions were very sensitive to ݂′௖ whereby upon ݂′௖ in-
creasing from 24 to 50 MPa, the overall cost and embodied CO2 emissions were increased 
by 20% and 50%, respectively. Yet, the overall cost and embodied CO2 emissions were 
slightly decreased by increasing the yield strength of the steel reinforcement ( ௬݂), although 
the impact was not major. Figure 17 indicates that there was a strong correlation between 
the tendon pattern and the overall cost, whereby using a distributed pattern, the overall 
cost was decreased by 42%. This issue can be explained by the fact that using a distributed 
pattern for tendons decreases the flexural shrinkage and the effect of temperature on the 
reinforcement. Yet, using a distributed pattern for tendons provided less impact on the 
overall embodied CO2 emissions. 

   

Figure 16. Sensitivity analysis of cost and embodied CO2 emissions to the mechanical properties and tendon patterns in 
PT RC slabs. 

 
Figure 17. Sensitivity of cost and embodied CO2 emissions to geometrical and mechanical parame-
ters. 

  

0.86

0.12
0.02

0.62

0.20 0.18

0.00

0.20

0.40

0.60

0.80

1.00

Thickness of slab f'c Fy

Se
ns

iti
vi

ty
 In

de
x

Parameters

FCost FCo2

R² = 0.7417

R² = 0.9994

0

0.05

0.1

0.15

0.2

0

10

20

30

40

0 20 40 60

EC
O

2 
(T

on
 / 

m
2)

C
os

t (
U

SD
 / 

m
2)

f'c (MPa)

Cost ECO2

R² = 0.8887

R² = 0.8765

0

0.05

0.1

0.15

0.2

0

10

20

30

40

0 500 1000

EC
O

2 
(T

on
 / 

m
2)

C
os

t (
U

SD
 / 

m
2)

fy  (MPa)

Cost ECO2
0

0.05

0.1

0.15

0.2

0

10

20

30

40

EC
O

2 
(T

on
 / 

m
2)

C
os

t (
U

SD
 / 

m
2)

Tendon Pattern

Cost ECO2

Banded   Distributed 

Figure 17. Sensitivity of cost and embodied CO2 emissions to geometrical and mechanical parameters.

6. Influence of Prestressing on Punching Strength of PT Slab

Punching shear failures of PT slabs are a primary concern in the absence of particular
mitigating measures (integrity or shear reinforcement). They are brittle and can propagate
to adjacent columns (overloaded after first punching of a column), thus triggering the
possible progressive collapse of the entire structure [1]. The punching shear strength of flat
RC slabs is typically controlled by the compressive strength of the slab and column concrete
and their geometric parameters. In a flat slab without shear reinforcement subjected to a
cantered axial load by an isolated column, two categories of orthogonal bending moments,
Mϕ producing tangential stresses and Mr producing radial stresses, are developed due to
the bidirectional flexural action of the slab, as depicted in Figure 18 [6]. The normal stresses,
σϕ, and σr, developed by the above-mentioned orthogonal bending moments, respectively,
stretch the top and compress the bottom of the slab. Once these stresses surpass the tensile
strength of the concrete, flexural cracks are developed, normal and parallel to the column’s
perimeter. Once the shear load increases, damage concentrates along a tangential direction
that is inclined through the slab depth, labelled punching shear failure. Over the loading
sequence, the stiffness changes because of the radial and tangential cracks, leading to
redistributions between tangential and radial bending moments, subsequently yielding the
flexural reinforcement.
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Figure 18. (a) Punching shear cracks, (b) internal forces, and (c) state of stresses in flat concrete slab.

To evaluate the accuracy of the ACI 318-18 empirical equation for punching shear
(Equation (4)) and investigate the sensitivity of the punching shear of PT slabs to mechanical
and geometrical properties ( f ′c, d, fpc, and flexural reinforcement ratio ρ), a dataset of
punching shear of PT floors was compiled from the open literature as shown in Appendix A
(Table A1). Figure 19 depicts the sensitivity of the punching shear to geometrical and
mechanical parameters. The results confirm that the overall depth of the slab, d, has a
major contribution in resisting punching shear, whereas the prestress force in tendons
has a contribution as low as 0.09. The compressive strength of concrete, f ′c, and flexural
reinforcement ratio, ρ, contributed to the resistance against the punching shear by 0.19
and 0.13, respectively. Meanwhile, the statistical metrics (average, standard deviation, and
coefficient of variance) presented in Appendix A (Table A1) indicate that the ACI empirical
equation produced conservative results in estimating the punching shear of PT slabs, where
the average value of the test-to-prediction data was calculated as 1.55.
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7. Concluding Remarks

In this research, a novel hybrid Firefly–Artificial Neural Network (Firefly–ANN)
model was developed to estimate the cost and embodied CO2 emissions of PT slabs
made with different design variables. The following main findings can be drawn from
this research.

The results confirm that the environmental and economic feasibility of PT floor slabs is
more evident for large span slabs. It was found that the cost and embodied CO2 emissions
decreased by 39% and 12%, respectively, in PT slabs with a 12 m span length compared
to conventional RC slabs. However, considering labor costs and technical equipment
requirements for PT floor slabs, their use for span lengths shorter than 6 m may not be
economically justifiable.
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The results indicate that the proposed Firefly–ANN model provided more accurate
and reliable estimations of the overall cost and embodied CO2 emissions of PT floors than
the genetic algorithm and multi-linear and non-linear regression models. The ratio of
observational to calculated values estimated by the Firefly–ANN model was the closest to
unity, indicating robust predictive capability. The root mean-square-centered difference,
the correlation coefficient, and the standard deviation provided by the Taylor diagram also
acknowledge the high potential of the hybrid Firefly–ANN model for estimating the cost
and embodied CO2 emissions.

Using the proposed informational model, it is possible to manage the cost and em-
bodied CO2 over the design process of PT slabs. Using this technique, the designer gains
insight into the ratio of concrete, steel, and tendon in the distribution of cost and embodied
CO2 emissions.

Sensitivity analysis confirmed that the cost and embodied CO2 emissions were very
sensitive to the slab thickness, with values of 86% and 62%, respectively. Moreover, the
sensitivity of the cost and embodied CO2 emissions to the compressive strength of concrete
( f ′c) was recorded as 12% and 20%, respectively.

The results also showed a strong correlation between the tendon pattern and the
overall cost, whereby using a distributed pattern, the overall cost was decreased by 42%.
This issue can be explained by the fact that using a distributed pattern for tendons can
decrease the flexural shrinkage and temperature effects on the reinforcement. Nevertheless,
using a distributed pattern for tendons resulted in a smaller effect on the overall embodied
CO2 emissions.
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Nomenclature

RC: Reinforced concrete f ′c: Compressive Strength of Concrete
ANN: Artificial Neural Network tc: slab thickness
FA-Firefly Algorithm ds: diameter of the steel reinforcement
PT: Post-tensioned v : Volume of the material
GHGs: greenhouse gases ρ: density of the material
GA: genetic algorithm Ec,s,t : unit embodied CO2 emissions

I
(

rij

)
: intensity of light C: Unit of the cost

NH: the number of hidden layer nodes fpm: average rupture stress of tendon
NI: the number of inputs As,min: minimum area of bonded reinforcement
NTR : the number of training samples Ac f : larger gross cross-sectional area

of the slab-beam strip
AAE: average absolute error vc : punching shear strength
R2 : coefficient of determination b0: perimeter of the critical section
VAF: variance account factor vp: the factored vertical component of all

prestressed forces crossing the critical section
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MLR: multiple linear regression αs: scale factor
NLR: nonlinear regression model f : the first natural frequency
SA: Sensitivity analysis a: span length in the X-direction
GSA: global sensitivity analysis ϕ: represents the boundary conditions of the slab
GBFS: ground blast furnace slag E: the dynamic modulus of elasticity
FA: fly ash υ: the Poisson’s ratio
OPC: ordinary Portland cement g: gravitational acceleration
LCA: Life Cycle Assessment q: weight per unit surface area of the slab
f y: yield strength ap: peak acceleration
f ′c: compressive strength of concrete P0: constant force representing the walking force
tc: slab thickness β: modal damping ratio
ds: diameter of the steel reinforcement W : effective weight

Appendix A

Table A1. Dataset on punching shear of PT slabs.

Slab ´
fc (Mpa) fpc (Mpa) d (mm) ρ (%) vc (kN) Vc/VACI

Mostafa S. et al. [65]

SNP1 30.1 2.03 80 1.4 271 1.95

SHP1 65.5 2.48 80 1.4 337 1.88

SHP2 67 2.39 80 1.4 431 2.4

SHP3 67 2.39 80 1.4 381 2.13

Eid [66]

S1 30.1 2.03 80 1.4 260 2.04

S2 29.6 2.01 80 1.4 220 2.24

S3 29.6 1.65 80 1.4 170 2.21

Silva [67]

A1 37.8 3.31 102 0.62 380 1.6

A2 37.8 2.14 108 0.47 315 1.38

A3 37.8 3.16 102 0.62 352.7 1.57

A4 37.8 1.98 103 0.51 321 1.61

B1 40.1 3.39 108 0.6 582.5 1.41

B2 40.1 2.23 105 0.48 488 1.39

B3 40.1 3.12 102 0.63 519.8 1.47

B4 40.1 2.16 100 0.5 458.8 1.48

C1 41.6 3.33 105 0.61 720 1.36

C2 41.6 2.26 100 0.5 556.7 1.26

C3 41.6 3.48 100 0.64 636.6 1.32

C4 41.6 2.31 98 0.52 497.1 1.2

D1 44.1 3.34 99 0.68 497.1 1.39

D2 44.1 2.23 101 0.5 385.2 1.18

D3 44.1 2.27 100 0.51 395.2 1.26

D4 44.1 2.22 106 0.48 531.5 1.09
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Table A1. Cont.

Slab ´
fc (Mpa) fpc (Mpa) d (mm) ρ (%) vc (kN) Vc/VACI

Correa [68]

LP2 52.4 2.19 104 1.17 355 1.22

LP3 52.4 4.28 104 1.17 415 1.16

LP4 50.7 0.8 104 1.17 390 1.55

LP5 50.7 1.33 104 1.17 475 1.74

LP6 52.4 1.76 104 1.17 437 1.51

Kordino and
Nolting [69]

V1 33.6 1.7 124 0.62 450 1.32

V2 36 1.66 123 0.9 525 1.55

V3 36 3.09 122 0.62 570 1.28

V6 30.4 1.77 120 0.62 375 1.46

V7 31.2 1.77 124 0.62 475 1.4

V8 35.2 1.77 124 0.62 518

Hassanzadeh [70]

A1 31 2.79 150 0.18 668 1.33

A2 28.7 2.74 146 0.18 564 1.31

B2 43.8 2.12 176 0.29 827 1.37

B3 41.1 2.21 190 0.29 1113 1.56

B4 43.2 1.99 190 0.29 952 1.45

Shehata [71]

SP1 36.5 3.94 140 0.27 988 2

SP2 41.7 4.81 140 0.27 884 1.58

SP3 40.9 3.28 140 0.27 780 1.69

SP4 42.5 3.5 140 0.27 728 1.52

Melges [72]

M4 51.9 1.95 128 0.92 773 1.83

Average 1.55

St of Dev 0.31

C.O.V 0.2
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