
sustainability

Article

Solving Traveling Salesman Problem with Time Windows
Using Hybrid Pointer Networks with Time Features

Majed G. Alharbi 1 , Ahmed Stohy 2, Mohammed Elhenawy 3,* , Mahmoud Masoud 3

and Hamiden Abd El-Wahed Khalifa 4,5

����������
�������

Citation: Alharbi, M.G.; Stohy, A.;

Elhenawy, M.; Masoud, M.; El-Wahed

Khalifa, H.A. Solving Traveling

Salesman Problem with Time

Windows Using Hybrid Pointer

Networks with Time Features.

Sustainability 2021, 13, 12906. https://

doi.org/10.3390/su132212906

Academic Editor: Amir Mosavi

Received: 24 October 2021

Accepted: 17 November 2021

Published: 22 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Mathematics, College of Science and Arts, Qassim University, Al Mithnab 56648, Saudi Arabia;
3661@qu.edu.sa

2 Department of Computer and Systems Engineering, Minya University, Minya 61512, Egypt;
ahmedstohy6@gmail.com

3 Centre for Accident Research and Road Safety, Queensland University of Technology,
Brisbane 4059, Australia; mahmoud.masoud@qut.edu.au

4 Department of Mathematics, College of Science and Arts, Qassim University, Al-Badaya 51951, Saudi Arabia;
Ha.Ahmed@qu.edu.sa

5 Department of Operations Research, Faculty of Graduate Studies for Statistical Research, Cairo University,
Giza 12613, Egypt

* Correspondence: mohammed.elhenawy@qut.edu.au

Abstract: This paper introduces a time efficient deep learning-based solution to the traveling salesman
problem with time window (TSPTW). Our goal is to reduce the total tour length traveled by -*the
agent without violating any time limitations. This will aid in decreasing the time required to supply
any type of service, as well as lowering the emissions produced by automobiles, allowing our planet
to recover from air pollution emissions. The proposed model is a variation of the pointer networks
that has a better ability to encode the TSPTW problems. The model proposed in this paper is inspired
from our previous work that introduces a hybrid context encoder and a multi attention decoder. The
hybrid encoder primarily comprises the transformer encoder and the graph encoder; these encoders
encode the feature vector before passing it to the attention decoder layer. The decoder consists of
transformer context and graph context as well. The output attentions from the two decoders are
aggregated and used to select the following step in the trip. To the best of our knowledge, our
network is the first neural model that will be able to solve medium-size TSPTW problems. Moreover,
we conducted sensitivity analysis to explore how the model performance changes as the time window
width in the training and testing data changes. The experimental work shows that our proposed
model outperforms the state-of-the-art model for TSPTW of sizes 20, 50 and 100 nodes/cities. We
expect that our model will become state-of-the-art methodology for solving the TSPTW problems.

Keywords: traveling salesman problem with time window; deep neural network; reinforcement learning

1. Introduction

Greenhouse gases have maintained Earth’s temperature as livable for humans and
millions of other species by trapping heat from the sun. However, those gases have become
out of balance, threatening the existence and survival of living beings on our planet. The
level of carbon dioxide- the most hazardous and ubiquitous greenhouse gas is at a record
high in the atmosphere. Burning of fossil fuels is mainly responsible for the high amounts
of greenhouse gases in the atmosphere. Rather than allowing heat to escape into space, the
gases absorb solar energy and hold it near to the Earth’s surface. The greenhouse effect—the
result of this heat trapping, was first proposed in the 19th century by French mathematician
Joseph Fourier, who estimated in 1824 that the Earth would be significantly colder if it
didn’t have an atmosphere. Svante Arrhenius- a Swedish physicist, was the first to correlate
an increase in carbon dioxide gas from burning fossil fuels with a warming impact in 1896.

Sustainability 2021, 13, 12906. https://doi.org/10.3390/su132212906 https://www.mdpi.com/journal/sustainability

https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0003-0623-6420
https://orcid.org/0000-0003-2634-4576
https://doi.org/10.3390/su132212906
https://doi.org/10.3390/su132212906
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/su132212906
https://www.mdpi.com/journal/sustainability
http://www.mdpi.com/2071-1050/13/22/12906?type=check_update&version=2

Sustainability 2021, 13, 12906 2 of 12

“The greenhouse effect has been recognized and is influencing our climate now”, American
climate scientist James E. Hansen testified to Congress almost a century later.

Climate change is the phrase that scientists use today to describe the complex adjust-
ments impacting our planet’s weather and climate systems as a result of rising greenhouse
gas concentrations. It includes not just rising of average temperatures, which we refer
to as global warming, but also extreme weather events, shifting species populations and
habitats, rising sea levels, and a variety of other consequences. Governments and other
organizations throughout the globe are monitoring greenhouse gases, documenting their
affects, and adopting remedies, such as the Intergovernmental Panel on Climate Change
(IPCC), a United Nations group that studies the latest climate change science.

Carbon dioxide is the most common greenhouse gas, accounting for around three-
quarters of all emissions. It lasts for thousands of years in the atmosphere. Carbon dioxide
levels at Hawaii’s Mauna Loa Atmospheric Baseline Observatory hit 411 parts per million
in 2018, the highest monthly average ever measured. Burning of organic resources such as
coal, oil, gas, wood, and solid waste produces most of carbon dioxide emissions.

Transport is Europe’s biggest source of CO2, responsible for the emission of over a
quarter of all greenhouse gases. Transport emissions have increased by a quarter since 1990
and are continuing to rise with 2017 oil consumption in the EU increasing at its fastest pace
since 2001 [1]. Unless transport emissions are brought under control,’ National Climate
Goals 2030 will not be realized. To meet the 2050 Paris climate commitments, cars and
vans must be entirely decarbonized. This requires ending sales of cars with an internal
combustion engine by 2035. Such a transformation requires wholesale changes, not only to
vehicles but also how they are owned, taxed and driven.

Nearly half of the people in the United States—an estimated 150 million—live in
locations where federal air quality requirements are not met. Passenger cars and vans
(‘light commercial vehicles’) are responsible for around 12% and 2.5%, respectively, of total
EU emissions of carbon dioxide (CO2), which is the main greenhouse gas. Comprising of
ozone, particulate matter, and other smog-forming pollutants. The dangers of air pollution
on one’s health are enormous. Poor air quality aggravates respiratory disorders such
as asthma and bronchitis, raises the risk of life-threatening diseases such as cancer, and
places significant financial strain on our health-care system. It is responsible for up to
30,000 premature deaths each year.

Passenger cars are a major source of pollution, emitting large volumes of nitrogen
oxides, carbon monoxide, and other pollutants. In 2013, transportation accounted for more
than half of the carbon monoxide and nitrogen oxide emissions, as well as about a quarter
of the hydrocarbons released into the atmosphere. We are attempting to solve this issue by
reducing automotive emissions using machine learning approaches.

Machine learning is concerned with completing a task given to a set of typically limited
and noisy data. It is ideally suited for natural signals when no obvious mathematical
formulation arises since the real data distribution is unknown analytically, such as when
processing pictures, text, speech, or molecules, or when working with recommender
systems, social networks, or financial forecasts. Nowadays, one of the most exciting fields
of study is solving combinatorial optimization problems using machine learning.

Combinatorial optimization is a topic at the intersection of combinatorics and theoreti-
cal computer science that seeks to tackle discrete optimization problems using combinato-
rial approaches. A discrete optimization problem tries to find the optimal solution from an
unlimited number of solutions. It is widely utilized in industries such as transportation,
supply chain, energy, banking, and scheduling, to name a few.

One of the combinatorial optimization problems is the traveling salesman problem
(TSP) with time windows (TSPTW). It involves deciding the shortest path for a vehicle
visiting a set of nodes/cities. Each node is visited only once, and the service at that node
must begin within the time frame given by the earliest and latest times when service can
begin at that node. A vehicle will wait if it arrives at a node too early. Furthermore, due
dates must be observed too. The TSPTW has many real-world applications, including

Sustainability 2021, 13, 12906 3 of 12

banking, postal delivery, and school bus routing and material-handling systems with
autonomous guides.

There is a need for effective heuristics due to the problem’s complexity NP-Hard
because it contains the Traveling Salesman Problem as a particular case and the limits of
exact techniques to discover optimum solutions in a reasonable period when considering
practical examples. Carlton and Barnes [2] investigate infeasible solutions using a tabu-
search heuristic with a static penalty function. In a post-optimization phase, Gendreau
et al. [3] propose an insertion heuristic based on GENIUS [4] that gradually develops
and improves the route by successively removing and reintroducing nodes. Calvo [5]
uses an ad hoc objective function to solve an assignment problem, then creates a viable
tour by combining all identified sub-tours into a major tour, followed by a 3-opt local
search method to enhance the initial feasible solution. Ohlmann and Thomas [6] recently
produced the best-known results for a number of cases using compressed annealing, a
variation of simulated annealing [7] that relaxes the time windows restrictions by including
a variable penalty approach within a stochastic search strategy.

While research on the traveling salesman problem (TSP) has expanded fast, research
on the TSPTW has remained limited. Savelsbergh [8] has shown that even finding a viable
solution to the TSPTW is an NP-complete issue and has introduced inter-change heuristics
as a result.

The TSPTW has a variety of solvers, ranging from exact mathematical program-
ming techniques for small size problems to heuristic approaches. Integer and dynamic-
programming techniques have been employed in exact approaches to solve the TSPTW.
Christofides et al. and Baker [9,10] developed branch-and-bound algorithms for problems
with up to 50 nodes that need moderately tight time windows. Dumas, Y., et al. [11]
use state space-reduction techniques to expand prior dynamic-programming approaches,
allowing them to solve problems with up to 200 clients. In an alternate approach, Pesant
et al. use constraint programming to develop an exact method [12] and a heuristic [13] for
the TSPTW.

Constraint-based combinatorial optimization problems, such as TSP with time win-
dow, have not been thoroughly investigated in the literature of reinforcement learning
(RL). Qiang Ma et al. [14] used RL to train a pointer network with input graph layer [15] to
tackle this problem. However, their approach is still incapable of determining the optimum
policy across a wide range of problem sizes, as their study only addresses up to 20 points.

In this paper, we developed a deep learning model that was trained using RL to solve
TWTSP. We have re-defined the system state, rewarding schemes, and masking policy for
TWTSP based on the architecture described in [1].We will follow the same approach as
in [14], however the issue occurs when we need to simulate the data for training. Since we
are dealing with a constrained problem, we have no guarantee that the generated data has
a feasible solution. Qiang Ma [14] tackled this issue by first finding a good unconstrained
TSP tour using the generated and the 2-opt local search and then generating the time
window for the solved data, but there are two issues here:

1. 2-opt isn’t an exact algorithm so the generated data won’t be solved optimally.
2. This method does not take advantage of GPU parallelization, therefore model training

will be excruciatingly slow.

We addressed these issues by changing the way we generate the data; instead of using
a 2-opt model to solve the unconstrained TSP, we utilized Hybrid pointer network HPN [1]
since it gives a closer to optimum solution for data ranging from 20 to 100 points. Using
an HPN that is pretrained to solve unconstrained TSP will allow us to take advantage of
GPU, therefor the training is not slow. By filling these gaps and modifying HPN to be able
to encode time features, we will solve up to 100 points in TWTSP, whereas the previous
work [14] only solves 20 points. So, we must emphasize that the model used for data
creation is not the same as the model used to train TWTSP.

The rest of the paper is organized as follows, we will discuss the problem formulation
for TWTSP and how we simulated our data, then the model architecture for HPN, and

Sustainability 2021, 13, 12906 4 of 12

finally we will discuss in depth our experimental work and the effect of the time windows
width. We made our code publicly available [16].

2. Problem Formulation

The Traveling Salesman Problem with Time Windows (TSPTW) is the problem of
finding a minimum-cost path that visits each of a set of cities exactly once, where each city
must be visited within a given time window [ei, li]. After a city’s last possible service time,
it cannot be visited. If the salesman visits the node before the earliest service time, he must
wait until the beginning of time window at this node. To describe the TSPTW mathematical
model we define the following terms shown in Table 1.

Table 1. Mathematical terms for the TSPTW.

Nc Set of Nodes that Needs Service {1,2,. . . ,n}

Nn Set of all nodes in the network {0, 1, 2, . . . , n, n + 1}
N0 Set of all nodes that the salesman can depart {0, 1, 2, . . . , n}
N+ Set of all nodes that the salesman can visit {1, 2, . . . , n, n + 1}
ti The time at the witch the salesman service node i

ei The earliest time the salesman can service node i

li The latest time the salesman can arrive at node i

Consequently, the TSPTW can be formalized as shown below

mintn+1

s.t.ti+1−ti ≥ ‖xπ(i+1) − xπ(i)‖2, i ∈ Nn

ei ≤ ti ≤ lii ∈ Nc

(1)

Recall that π(i) is the index of the node selected at decoding step i by the policy π.

3. Model Architecture

As previously described in [1], the proposed model is a variation of the pointer
networks [15]. Compared with GPN, the proposed model has two extra components: a
hybrid context encoder and a multi attention decoder. The hybrid encoder is primarily
composed of the transformer’s encoder and the graph encoder; these encoders encode the
feature vector before passing it to the attention decoder layer. Therefore, there are two
decoders at the decoding stage, one for the transformer context and one for the graph
context. Finally, the output attention vectors from the two decoders are aggregated before
selecting the next node in the tour. We will discuss the model architecture briefly in the
next section. The proposed HPN is shown in Figure 1.

Which consists of Transformer’s encoder and Graph embedding layer as a hybrid
context encoder and the point encoder.

• Hybrid context encoder, the function of the hybrid context encoder is to encode the
Feature vector x = [x1, x2, e, l] into two contextual vectors. Where x1, x2, e and l are
the coordinates, entrance time and exit time for each point, respectively.

• Point encoder, which encodes the currently selected city using LSTM.

Which combining a hybrid context encoder with a multi-attention decoder. Xall is a
tensor, which contains all cities’ features and xi contains the currently selected city.

3.1. Hybrid Encoder

As illustrated in Figure 2. The encoder consists of:

Sustainability 2021, 13, 12906 5 of 12
Sustainability 2021, 13, x FOR PEER REVIEW 5 of 13

Figure 1. Architecture of HPN.

Which combining a hybrid context encoder with a multi-attention decoder. Xall is a
tensor, which contains all cities’ features and xi contains the currently selected city.

3.1. Hybrid Encoder
As illustrated in Figure 2. The encoder consists of:

Figure 2. Hybrid encoder.

Which consists of Transformer’s encoder and Graph embedding layer as a hybrid
context encoder and the point encoder.
• Hybrid context encoder, the function of the hybrid context encoder is to encode the

Feature vector 𝑥 = ሾ𝑥ଵ, 𝑥ଶ, e, lሿ into two contextual vectors. Where 𝑥ଵ, 𝑥ଶ, e and l
are the coordinates, entrance time and exit time for each point, respectively.

• Point encoder, which encodes the currently selected city using LSTM.
For the Hybrid context encoder, the first type of encoder used is a standard trans-

former encoder with multi-head attention: 𝐻௘௡௖ = 𝐻௟ୀ௅೐೙೎  ∈ 𝑅௡ ൈ ௗ  (2)

Figure 1. Architecture of HPN.

Sustainability 2021, 13, x FOR PEER REVIEW 5 of 13

Figure 1. Architecture of HPN.

Which combining a hybrid context encoder with a multi-attention decoder. Xall is a
tensor, which contains all cities’ features and xi contains the currently selected city.

3.1. Hybrid Encoder
As illustrated in Figure 2. The encoder consists of:

Figure 2. Hybrid encoder.

Which consists of Transformer’s encoder and Graph embedding layer as a hybrid
context encoder and the point encoder.
• Hybrid context encoder, the function of the hybrid context encoder is to encode the

Feature vector 𝑥 = ሾ𝑥ଵ, 𝑥ଶ, e, lሿ into two contextual vectors. Where 𝑥ଵ, 𝑥ଶ, e and l
are the coordinates, entrance time and exit time for each point, respectively.

• Point encoder, which encodes the currently selected city using LSTM.
For the Hybrid context encoder, the first type of encoder used is a standard trans-

former encoder with multi-head attention: 𝐻௘௡௖ = 𝐻௟ୀ௅೐೙೎  ∈ 𝑅௡ ൈ ௗ  (2)

Figure 2. Hybrid encoder.

For the Hybrid context encoder, the first type of encoder used is a standard transformer
encoder with multi-head attention:

Henc = Hl=Lenc ∈ Rn×d (2)

where

Hl = so f tmax

(
QlKlT

√
d

)
V l ∈ Rn×d (3)

Ql = HlWL
Q ∈ Rn×d, W l

Q ∈ Rd×d (4)

Kl = HlWL
K ∈ Rn×d, W l

K ∈ Rd×d (5)

V l = HlWL
V ∈ Rn×d, W l

V ∈ Rd×d (6)

where WL
Q, WL

K and WL
V are learnable parameters and L denotes the number of layer for

self-attention, Henc is a matrix containing the encoded nodes, Ql , Kl and V l are a query, key

Sustainability 2021, 13, 12906 6 of 12

and value of the self-attention, respectively. Figure 3 illustrates the flow of the Data inside
the Transformer encoder.

Sustainability 2021, 13, x FOR PEER REVIEW 6 of 13

where 𝐻௟ = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 ൭𝑄௟𝐾௟೅√𝑑 ൱ 𝑉௟   ∈ 𝑅௡ ൈ ௗ  (3)𝑄௟ =   𝐻௟ 𝑊ொ௅   ∈ 𝑅௡ ൈ ௗ , 𝑊ொ௟   ∈ 𝑅ௗ ൈ ௗ  (4)𝐾௟ =   𝐻௟ 𝑊௄௅   ∈ 𝑅௡ ൈ ௗ , 𝑊௄௟   ∈ 𝑅ௗ ൈ ௗ  (5)𝑉௟ =   𝐻௟ 𝑊௏௅   ∈ 𝑅௡ ൈ ௗ , 𝑊௏௟   ∈ 𝑅ௗ ൈ ௗ  (6)

where L
QW , L

KW and L
VW are learnable parameters and 𝐿 denotes the number of layer

for self-attention, 𝐻௘௡௖ is a matrix containing the encoded nodes, 𝑄௟, 𝐾௟ and 𝑉௟ are a
query, key and value of the self-attention, respectively. Figure 3 illustrates the flow of the
Data inside the Transformer encoder.

Figure 3. Transformer’s Encoder used to encode the Feature Vector.

The second encoder type is a graph embedding layer, which encodes the Feature vec-
tor into a high dimensional vector. The graph is complete since we are just addressing
symmetric TWTSP. Therefore, the graph embedding layer may be expressed as follows: 𝑋௟ =  𝛾 𝑋௟ିଵ 𝑊௚ + (1 − 𝛾) 𝜑ఏ(𝑋௟ିଵ|𝑁(𝑖)|) (7)

where 𝑋௟    ∈ 𝑅ே ൈ ௗ೗ ,  𝑎𝑛𝑑 𝜑ఏ : 𝑅ே ൈ ௗ೗షభ  →   𝑅ே ൈ ௗ೗  is the aggregation function, γ is a

trainable parameter, 1l ld d
gW R − ×∈ is trainable weight matrix and 𝑁(𝑖) the adjacency

matrix of node 𝑖. In this context 𝐿 denotes the number of layers used, 𝑁 denotes the
number of cities and 𝑑௟ denotes the hidden dimension of the L-th layer.

For the point encoder which encodes the features vector 𝑥௜ of the current selected
city 𝑖, each features vector is embedded into a higher dimensional vector 𝑥ො௜ ∈   𝑅ௗ, where

Figure 3. Transformer’s Encoder used to encode the Feature Vector.

The second encoder type is a graph embedding layer, which encodes the Feature
vector into a high dimensional vector. The graph is complete since we are just addressing
symmetric TWTSP. Therefore, the graph embedding layer may be expressed as follows:

Xl = γXl−1Wg + (1− γ)ϕθ

(
Xl−1

|N(i)|

)
(7)

where Xl ∈ RN×dl , and ϕθ : RN×dl−1 → RN×dl is the aggregation function, γ is a train-
able parameter, Wg ∈ Rdl−1×dl is trainable weight matrix and N(i) the adjacency matrix of
node i. In this context L denotes the number of layers used, N denotes the number of cities
and dl denotes the hidden dimension of the L-th layer.

For the point encoder which encodes the features vector xi of the current selected city
i, each features vector is embedded into a higher dimensional vector x̂i ∈ Rd, where d is
the hidden dimension. The vector x̂i for the current city i is then encoded by an LSTM. xh

i
is the hidden variable of the LSTM.

3.2. Multi-Decoder

The decoder is built on a pointer network’s attention mechanism and outputs the
pointer vector ui, which is then sent through a Softmax layer to generate a distribution over
the following candidate cities. The following is the formulation of the attention mechanism
and the pointer vector:

u(j)
i =

{
VT .tanh

(
Wrrj + Wqq

)
i f j 6= σ(k), ∀k < j,

−∞ otherwise,
(8)

Sustainability 2021, 13, 12906 7 of 12

where u (j)
i considered as the jth element of the vector ui , Wr and Wq are trainable

parameters, q is the query vector from the hidden state of the LSTM, ri is a reference vector
containing the contextual information from all cities.

To illustrate the model operations in Figure 1, we feed the network a tensor of input
nodes; in this problem the input nodes contain four features as previously illustrated so
the input dimension will be (batch-size, problem-size, number-of-feature). We will feed
these nodes into the hybrid context and will get two contextual vectors, one from the
transformer’s encoder and the other from the graph encoder. Then, for the first decoding
stamp, we feed to the pointer encoder the placeholder for learning the best possible location
to start the decoding. Finally, we feed to our decoder, which is a simple attention layer of
the contextual vectors with the hidden states from the pointer encoder and aggerate the
two-attention vectors using the sum operation. For clarity, we use two decoders, layer one
for the graph’s context vector and the other for the transformer’s context vector.

To this end, we incorporate the model with a graph embedding encoder beside the
transformer’s encoder as a hybrid context encoder with an additional decoder layer. The
model is then trained using the REINFORCE gradient estimator with a greedy rollout
baseline [17].

4. Experimental Work

In this section, we discuss the details of the training and testing of the proposed
model. Pytorch 1.7.0 is used to implement our model in Table 2, and summarizes the
hyperparameters used during training. All tests are carried out on Kaggle’s GPU P100
with 16 GB of RAM. The average one epoch time for TWTSP20, TWTSP50 and TWTSP100
are 10 Min, 30 Min and 75 Min, respectively.

Table 2. Hyperparameters used for training.

Parameter Value Parameter Value

Graph Embedding layer 3 Learning rate 1 × 10−4

Transformer Encoder 6 Batch size 512
Feed-forward dim 512 Training steps 2500

Optimizer Adam Tanh clipping 10
Epochs 100 Time Windows Expectation 1

4.1. Simulated Dataset Generation

To generate training and testing data that has a feasible solution, we independently drew
the coordinates of the nodes from a uniform distribution (i.e., x1 and x2 ∼ uni f orm(0, 1)) [14].
Then, we solved the generated unconstrained instances using pre-trained HPN on the
generated data. The HPN returned the time ti at the witch the salesman service node
i. Therefore, for each node i ∈ Nc, we set ei = max(ti − êi, 0) and li = ti + l̂i, where
êi ∼ uni f orm(0, 2) and l̂i ∼ uni f orm(0, 2) + 1. Therefore ei ≤ ti ≤ li, which means that a
feasible solution in the training and test data always exist, and the expected time windows
width is 1 time unite. Finally, all the cities in the instance are randomly shuffled.

4.2. Reward Function

The reward function consists of two terms. One term is the penalty term:

p(t, l) =
Nc

∑
i=1

max(li − ti, 0) (9)

where this term will be added if the arriving time exceeds the leaving time. The other term
is the total time cost of TWTSP solution. Consequently, the reward function is the total time
cost of TWTSP solution plus the weighted penalty of missing one node β ∗ p(t, l), where β
is the penalty factor:

R = tn+1 + β ∗ p(t, l) (10)

Sustainability 2021, 13, 12906 8 of 12

We use p(t, l) to calculate accuracy, which is the number of instances that are suc-
cessfully solved. If p(t, l) > 0, there exists at least one city where the arrival time exceeds
the upper bound of the time window, indicating that the solution is infeasible. In this
experimental work we set the value of β equal to 10 as [14]. (Table 3) illustrates simulate
data generation.

Table 3. Illustration of the simulated data generation.

#Algorithm 1 Data Simulation

1: Input: pre-trained model for TSP, batch size B, problem size
2: InputData = RandomInstance (B, size, 2) #Random generate TSP points (x1, x2) Features
3: X = pre_trainedModel(InputData) #Solve the points using pre-trained model, X is a tensor
4: PrevCities = FirstCities #contains the pre-trained model’s solution
5: for t = 1, . . . , size do:
6: current cities = X[t] #Pick the current city
7: cur_time ← EuclideanDistance(current_cities, PrevCities) #Caluclate the Euc Distance
8: X[:,t,2] ← max(0,(cur_time − 2 ∗ RandomNumber)) #Entrance Time
9: X[:,t,3] ← cur_time + 2 ∗ RandomNumber + 1 #Leaving Time
10: end for
11: Shuffle(X)

5. Results and Analysis

Findings recall that, in the context of the TSPTW problem, time features are added to
the nodes’ coordinates such that each of the nodes xi is a quadruple (x1i, x2i, ei, li), where
(x1i, x2i) is a 2-D coordinate and (ei, li) are the entering and leaving time. To compare our
results with OR-Tools, we used the Ant Colony Optimization (ACO) algorithm [18] and
the graph pointer network (GPN) to solve the same TSPTW instances. Table 4. shows
the average trip cost for 10,000 TSPTW test instances. We employ the greedy search for
prediction by simply taking the highest probability between the next candidates generated
from our policy.

Table 4. Results for TSPTW 20-50-100. Obj: objective of TSPTW. Time: the running time of the algorithms. Feasible %: the
percentage of instances that have feasible solutions by the algorithm. All results are averaged from 10K instances.

TWTSP20 TWTSP50 TWTSP100

Method Obj Time Feasible% Obj Time Feasible% Obj Time Feasible%

OR-Tools (Savings) 4.045 121 s 72.06% 6.251 1120 s 70.21%
ACO 4.655 204 s 62.10% 8.136 1493 s 61.52%

GPN Greedy 3.871 1 s 99.7% 5.95 3 s 99.97% 9.78 8 s 32.8%
HPN Greedy 3.867 1 s 100% 5.86 4 s 100% 8.32 12 s 99.97%

Even though all instances have feasible solutions based on our training setting, the
algorithms will occasionally fail to discover a feasible solution. As an evaluation metric,
we utilize the percentage of feasible solutions to represent this. To achieve fairness in
comparison, we re-trained the GPN model using our settings.

Table 4 shows that our model can solve instances that has up to 100 nodes with a
high accuracy ≈ 100%, whereas GPN can only solve up to 50 points. In the Obj column,
we record the overall tour length costed by the tour as well as the sum of the time spent
waiting for every point visited by our agent. The results show that our model outperforms
all the paired approaches for TWTSP shown in Table 4. Furthermore, the proposed model
has a better generalization for TWTSP100. Figure 4 shows HPN solutions for three TWTSP
instances of 20.50 and 100 nodes size.

Sustainability 2021, 13, 12906 9 of 12

Sustainability 2021, 13, x FOR PEER REVIEW 9 of 13

record the overall tour length costed by the tour as well as the sum of the time spent wait-
ing for every point visited by our agent. The results show that our model outperforms all
the paired approaches for TWTSP shown in Table 4. Furthermore, the proposed model
has a better generalization for TWTSP100. Figure 4 shows HPN solutions for three TWTSP
instances of 20.50 and 100 nodes size.

Table 4. Results for TSPTW 20-50-100. Obj: objective of TSPTW. Time: the running time of the algorithms. Feasible %: the
percentage of instances that have feasible solutions by the algorithm. All results are averaged from 10K instances.

 TWTSP20 TWTSP50 TWTSP100
Method Obj Time Feasible% Obj Time Feasible% Obj Time Feasible%

OR-Tools (Savings) 4.045 121s 72.06% 6.251 1120s 70.21%
ACO 4.655 204s 62.10% 8.136 1493s 61.52%

GPN Greedy 3.871 1s 99.7% 5.95 3s 99.97% 9.78 8s 32.8%
HPN Greedy 3.867 1s 100% 5.86 4s 100% 8.32 12s 99.97%

Sustainability 2021, 13, x FOR PEER REVIEW 10 of 13

Figure 4. Sample tours TWTSP20, TWTSP50 and TWTSP100 solved by HPN the cost included the total tour distance plus
any time wait each point labeled with its time window (Entrance, Leaving) on 2D space on the left. On the right, plotting
the x and y axes for the coordinates of the point and the z axis for the available time window for that point.

Figure 4 illustrates some examples of 3D plotting in which the z axis is the time di-
mension. Moreover, at each node we represent the time window by a line parallel to the
z-axis and its start and end are the 𝑒௜ and 𝑙௜ respectively. In the figure, the tour line hits
each bar at which the agent arrived to serve this point.

5.1. The Effect of Time Window
We intuitively understand that expanding the time windows from both sides makes

the problem closer to be unconstrained TSP and may decrease tour cost. Furthermore,
using representative data to train a machine learning model is important for building a
generalized model. This fact sheds light on the importance of the expected width of the
time window 𝐸(𝑊) used to simulate the training data. Recall that, in this research we set
the expected width of the window equals 1. So, in this section we consider 𝐸(𝑊) is an
indirect hyperparameter that needs fine tuning. Therefore, we conducted sensitivity anal-
ysis and investigates how the tour cost and feasibility vary as the width of the time win-
dow changes. We hypothesis that the larger the width of the expected time window the
easier to find a solution. To test the above hypotheses, we generated four different datasets
that have expected time window length of ½, 1, 2 and 4, respectively. Consequently, we
trained four models each using one of the four datasets then we test each model using the
four testing datasets. The performance of each model versus the testing dataset is shown
in Table 5 which records the average over 10,000 instances.

Figure 4. Sample tours TWTSP20, TWTSP50 and TWTSP100 solved by HPN the cost included the total tour distance plus
any time wait each point labeled with its time window (Entrance, Leaving) on 2D space on the left. On the right, plotting
the x and y axes for the coordinates of the point and the z axis for the available time window for that point.

Sustainability 2021, 13, 12906 10 of 12

Figure 4 illustrates some examples of 3D plotting in which the z axis is the time
dimension. Moreover, at each node we represent the time window by a line parallel to the
z-axis and its start and end are the ei and li respectively. In the figure, the tour line hits each
bar at which the agent arrived to serve this point.

5.1. The Effect of Time Window

We intuitively understand that expanding the time windows from both sides makes
the problem closer to be unconstrained TSP and may decrease tour cost. Furthermore,
using representative data to train a machine learning model is important for building a
generalized model. This fact sheds light on the importance of the expected width of the
time window E(W) used to simulate the training data. Recall that, in this research we
set the expected width of the window equals 1. So, in this section we consider E(W) is
an indirect hyperparameter that needs fine tuning. Therefore, we conducted sensitivity
analysis and investigates how the tour cost and feasibility vary as the width of the time
window changes. We hypothesis that the larger the width of the expected time window the
easier to find a solution. To test the above hypotheses, we generated four different datasets
that have expected time window length of 1

2 , 1, 2 and 4, respectively. Consequently, we
trained four models each using one of the four datasets then we test each model using the
four testing datasets. The performance of each model versus the testing dataset is shown
in Table 5 which records the average over 10,000 instances.

Table 5. Total cost, time and feasible % metrics of the trained models versus the testing dataset generated using different
expected time window width.

NET1 (E(WT)) = 1
2 NET2 (E(WT)) = 1 NET3 (E(WT)) = 2 NET4 (E(WT)) = 4

Cost Wait Acc Cost Wait Acc Cost Wait Acc Cost Wait Acc

E(W) = 1
2

e~2 ∗ uniform (0,1)
L~2 ∗ uniform (0,1) + 1

2

3.89 0.003 99.99% 3.89 0.002 99.8 3.90 0.003 99.62% 4.2 0.001 85.5%

E(W) = 1
e~2 ∗ uniform (0,1)

L~2 ∗ uniform (0,1) +1
3.897 0.004 100% 3.88 0.002 100% 3.875 0.002 100% 4.04 0.008 99.51%

E(W) = 2
e~2 ∗ uniform (0,1)

L~2 ∗ uniform (0,1) + 2
4.14 0.009 100% 3.93 0.005 100% 3.858 0.001 100% 3.91 0.003 100%

E(W) = 4
e~2 ∗ uniform (0,1)

L~2 ∗ uniform (0,1) + 4
4.67 0.0113 100% 4.39 0.013 100% 3.985 0.009 100% 3.836 0.0008 100%

Table 5 shows that, as expected, increasing the window size of the training and testing
makes it easier for the model to determine a good policy that yields tours with good cost
as illustrated by the table above.

5.2. Variable Time Window

Table 5 also shows that, training a model with data that has a particular E(W) and
testing with data that has a different E(W) increases the average trip cost which is an
unwanted effect. So, the size of time windows is an important design choice; perhaps
we can make it an indirect hyperparameter. In this section, we will illustrate the effect
of variable expected time windows on the model performance using Adam and Adam
W optimizers.

As proposed by Ilya Loshchilov [19], the weight decay is inherently tied to the learning
rate in the Adam optimizer’s common weight decay implementation. This means that when
improving the learning rate, you must also discover a new optimal weight decay for each
learning rate you test. The weight decay is decoupled from the optimization stage by the
AdamW optimizer. This indicates that the weight decay and learning rate may be adjusted
independently, and that altering the learning rate has no effect on the ideal weight decay.
As a result of this modification, generalization performance has significantly improved.

Sustainability 2021, 13, 12906 11 of 12

So, we generated a TWTSP20 dataset that has variable expected time windows ranging
from 1 to 5. Then we created two instances of our proposed model and train each one
using different optimizers (i.e., Adam and AdamW). Figure 5 illustrates the performance
for these two experiments.

Sustainability 2021, 13, x FOR PEER REVIEW 11 of 13

Table 5. total cost, time and feasible % metrics of the trained models versus the testing dataset generated using different
expected time window width.

NET1 (E(WT)) = ½ NET2 (E(WT)) = 1 NET3 (E(WT)) = 2 NET4 (E(WT)) = 4

Cost Wait Acc Cost Wait Acc Cost Wait Acc Cost Wait Acc (W) = ½
e~2 * uniform (0,1)

L~2 * uniform (0,1) + ½
3.89 0.003 99.99% 3.89 0.002 99.8 3.90 0.003 99.62% 4.2 0.001 85.5% E(W) = 1

e~2 * uniform (0,1)
L~2 * uniform (0,1) +1

3.897 0.004 100% 3.88 0.002 100% 3.875 0.002 100% 4.04 0.008 99.51% E(W) = 2
e~2 * uniform (0,1)

L~2 * uniform (0,1) + 2
4.14 0.009 100% 3.93 0.005 100% 3.858 0.001 100% 3.91 0.003 100% E(W) = 4

e~2 * uniform (0,1)
L~2 * uniform (0,1) + 4

4.67 0.0113 100% 4.39 0.013 100% 3.985 0.009 100% 3.836 0.0008 100%

Table 5 shows that, as expected, increasing the window size of the training and testing
makes it easier for the model to determine a good policy that yields tours with good cost
as illustrated by the table above.

5.2. Variable Time Window
Table 5 also shows that, training a model with data that has a particular 𝐸(𝑊) and

testing with data that has a different 𝐸(𝑊) increases the average trip cost which is an
unwanted effect. So, the size of time windows is an important design choice; perhaps we
can make it an indirect hyperparameter. In this section, we will illustrate the effect of var-
iable expected time windows on the model performance using Adam and Adam W opti-
mizers.

As proposed by Ilya Loshchilov [19], the weight decay is inherently tied to the learn-
ing rate in the Adam optimizer’s common weight decay implementation. This means that
when improving the learning rate, you must also discover a new optimal weight decay
for each learning rate you test. The weight decay is decoupled from the optimization stage
by the AdamW optimizer. This indicates that the weight decay and learning rate may be
adjusted independently, and that altering the learning rate has no effect on the ideal
weight decay. As a result of this modification, generalization performance has signifi-
cantly improved.

So, we generated a TWTSP20 dataset that has variable expected time windows rang-
ing from 1 to 5. Then we created two instances of our proposed model and train each one
using different optimizers (i.e., Adam and AdamW). Figure 5 illustrates the performance
for these two experiments.

Figure 5. Training performance for TWTSP20 with variable expected time window where the left panel shows the Actor
performance, and the right panel shows the critic performance.

We could see that there is a large spike on the beginning of the training for Adam, but
that’s not affecting the total performance; both optimizer’s results are very close and we
can say that Adam W is smoother than Adam. However, there is no difference between
both of them on the final result. Table 6 shows the evaluation performance for TWTSP20
trained on variable expected time windows, one with Adam and the other with Adam W.

Table 6. Evaluation performance for both Adam and Adam W, Cost indicates to the total cost for the tour which is the total
tour length plus the total time wait.

Type of Data NET1 AdamW NET2 Adam

Data-Variable-Exp Cost Acc Wait Cost Acc Wait

E(W) = 1
2 3.875 100% 0.0037 3.877 100% 0.003

E(W) = 1 3.89 99.14% 0.0022 3.90 98.76% 0.0019
E(W) = 2 3.885 99.89% 0.002 3.887 99.97% 0.0019
E(W) = 4 3.88 99.98% 0.003 3.876 100% 0.003
E(W) = 8 3.875 100% 0.005 3.887 100% 0.007

E(W) = 16 4.086 100% 0.008 3.99 100% 0.03

Table 6 shows that the two trained models give good results when tested using E(W)
outside the range used in the training dataset, which means that using training data that
has variable E(W) results in a better generalized model.

6. Conclusions

In this paper, we developed an RL-based model to solve the traveling salesman
problem with time windows. The developed model is based on using different encoders
and decoders to be able to better model the joint distribution between the problem features
and the solution. We compared the proposed model with the GPN and showed that our
model yields better trips and can solve larger instances. Our model is still not capable of
generalizing two very large problem instances i.e., TWTSP500 and TWTSP1000. We will let
this work into our future direction.

Future research could lead to the development of multi-objective optimization models
that consider multiple objectives such as customer satisfaction, tour duration, and solution

Sustainability 2021, 13, 12906 12 of 12

time, as well as various constraints such as road traffic, municipality ordinances and codes,
and labor standards.

Author Contributions: M.G.A.: Conceptualization-Equal, Data curation-Equal, Investigation-Equal,
Methodology-Equal, Writing-original draft-Equal; A.S.: conceived of the presented idea, developed
the theoretical formalism, performed the analytic calculations, performed the numerical simulations,
the paper’s code and wrote the manuscript; M.E.: Conceptualization-Lead, Data curation-Lead,
Investigation-Lead, Methodology-Lead, Software-Lead, Supervision-Lead, Validation-Lead, Writing-
original draft-Lead; M.M.: Conceptualization, Data curation, Funding acquisition, Methodology;
H.A.E.-W.K.: Conceptualization, Data curation-Equal, Writing-original draft. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by Qassim University grant number [10300-cos-2020-1-3-1].

Data Availability Statement: The simulated data used in this paper is available at [16].

Acknowledgments: The authors gratefully acknowledge Qassim University, represented by the
deanship of scientific Research, on the financial support for this research under the number (10300-
cos-2020-1-3-1) during the academic year 1442AH/2020AD.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Stohy, A.; Abdelhakam, H.-T.; Ali, S.; Elhenawy, M.; Hassan, A.A.; Masoud, M.; Glaser, S.; Rakotonirainy, A. Hybrid Pointer

Networks for Traveling Salesman Problems Optimization. arXiv 2021, arXiv:2110.03104.
2. Carlton, W.B.; Barnes, J.W. Solving the Traveling-Salesman Problem with Time Windows Using Tabu Search. IIE Trans. 1996, 28,

617–629. [CrossRef]
3. Gendreau, M.; Hertz, A.; Laporte, G.; Stan, M. A Generalized Insertion Heuristic for the Traveling Salesman Problem with Time

Windows. Oper. Res. 1998, 46, 330–335. [CrossRef]
4. Gendreau, M.; Hertz, A.; Laporte, G. New Insertion and Postoptimization Procedures for the Traveling Salesman Problem. Oper.

Res. 1992, 40, 1086–1094. [CrossRef]
5. Calvo, R.W. A New Heuristic for the Traveling Salesman Problem with Time Windows. Transp. Sci. 2000, 34, 113–124. [CrossRef]
6. Ohlmann, J.W.; Thomas, B.W. A compressed-annealing heuristic for the traveling salesman problem with time windows. Informs

J. Comput. 2007, 19, 80–90. [CrossRef]
7. Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. Optimization by simulated annealing. Science 1983, 220, 671–680. [CrossRef] [PubMed]
8. Savelsbergh, M.W. Local search in routing problems with time windows. Ann. Oper. Res. 1985, 4, 285–305. [CrossRef]
9. Christofides, N.; Mingozzi, A.; Toth, P. State-space relaxation procedures for the computation of bounds to routing problems.

Networks 1981, 11, 145–164. [CrossRef]
10. Baker, E.K. Technical Note—An Exact Algorithm for the Time-Constrained Traveling Salesman Problem. Oper. Res. 1983, 31,

938–945. [CrossRef]
11. Dumas, Y.; Desrosiers, J.; Gelinas, E.; Solomon, M.M. An Optimal Algorithm for the Traveling Salesman Problem with Time

Windows. Oper. Res. 1995, 43, 367–371. [CrossRef]
12. Pesant, G.; Gendreau, M.; Potvin, J.-Y.; Rousseau, J.-M. An Exact Constraint Logic Programming Algorithm for the Traveling

Salesman Problem with Time Windows. Transp. Sci. 1998, 32, 12–29. [CrossRef]
13. Pesant, G.; Gendreau, M.; Potvin, J.-Y.; Rousseau, J.-M. On the flexibility of constraint programming models: From single to

multiple time windows for the traveling salesman problem. Eur. J. Oper. Res. 1999, 117, 253–263. [CrossRef]
14. Ma, Q.; Ge, S.; He, D.; Thaker, D.; Drori, I. Combinatorial optimization by graph pointer networks and hierarchical reinforcement

learning. arXiv 2019, arXiv:1911.04936.
15. Vinyals, O.; Fortunato, M.; Jaitly, N. Pointer networks. arXiv 2015, arXiv:1506.03134.
16. Stohy, A. Solving Traveling Salesman Problem with Time Windows Using Hybrid Pointer Networks with Time Features. 2021.

Available online: https://www.researchgate.net/publication/355142062_Hybrid_Pointer_Networks_for_Traveling_Salesman_
Problems_Optimization (accessed on 17 November 2021).

17. Kool, W.; Van Hoof, H.; Welling, M. Attention, learn to solve routing problems! arXiv 2018, arXiv:1803.08475.
18. Cheng, C.-B.; Mao, C.-P. A modified ant colony system for solving the travelling salesman problem with time windows. Math.

Comput. Model. 2007, 46, 1225–1235. [CrossRef]
19. Loshchilov, I.; Hutter, F. Decoupled weight decay regularization. arXiv 2017, arXiv:1711.05101.

http://doi.org/10.1080/15458830.1996.11770707
http://doi.org/10.1287/opre.46.3.330
http://doi.org/10.1287/opre.40.6.1086
http://doi.org/10.1287/trsc.34.1.113.12284
http://doi.org/10.1287/ijoc.1050.0145
http://doi.org/10.1126/science.220.4598.671
http://www.ncbi.nlm.nih.gov/pubmed/17813860
http://doi.org/10.1007/BF02022044
http://doi.org/10.1002/net.3230110207
http://doi.org/10.1287/opre.31.5.938
http://doi.org/10.1287/opre.43.2.367
http://doi.org/10.1287/trsc.32.1.12
http://doi.org/10.1016/S0377-2217(98)00248-3
https://www.researchgate.net/publication/355142062_Hybrid_Pointer_Networks_for_Traveling_Salesman_Problems_Optimization
https://www.researchgate.net/publication/355142062_Hybrid_Pointer_Networks_for_Traveling_Salesman_Problems_Optimization
http://doi.org/10.1016/j.mcm.2006.11.035

	Introduction
	Problem Formulation
	Model Architecture
	Hybrid Encoder
	Multi-Decoder

	Experimental Work
	Simulated Dataset Generation
	Reward Function

	Results and Analysis
	The Effect of Time Window
	Variable Time Window

	Conclusions
	References

