

Experimental Work in Science Education from Green Chemistry Perspectives: A Systematic Literature Review Using PRISMA

Vesna Ferk Savec * and Katarina Mlinarec

Faculty of Education, University of Ljubljana, SI-1000 Ljubljana, Slovenia; katarina.mlinarec@pef.uni-lj.si * Correspondence: vesna.ferk@pef.uni-lj.si

Abstract: Experimental work is an important component of science subjects at all educational levels. The implication of green chemistry ideas indicated the need for optimization of traditional experimental work by implementing green chemistry principles to promote sustainable development. The aim of the study is to present findings from a systematic literature review on the use of experimental work in science education from green chemistry perspectives in the literature from 1995 to 2020. Thus, three electronic databases were reviewed following the Preferred Reporting Items for Systematic Reviews (PRISMA) guidelines. The literature search identified a total of 1199 papers from Web of Science (N = 419), Scopus (N = 578), and Education Resources Information Center (ERIC) (N = 202). After applying inclusion/exclusion criteria, 263 papers were obtained and then analyzed in further detail. The findings highlighted trends in the integration of green chemistry principles into experimental work from primary to tertiary education levels and identified a literature gap, as well as the challenges and the possibilities for future development. The review outlined various opportunities for active learning within experimental work from green chemistry perspectives using a range of methods, with a particular focus on practical, hands-on, and laboratory activities.

Keywords: experimental work; green chemistry; practical work; PRISMA; science education

1. Introduction

Never have so many students been absent from school simultaneously as during 2020 as a result of the COVID-19 pandemic [1]. Therefore, it is even more important to advocate for higher quality education and pursue the fourth Sustainable Development Goal (SDG) from the 2030 Agenda framework [2,3] to ensure inclusive, equitable, and quality education, and promote lifelong learning opportunities for all [4,5].

Attempts to advance sustainable thinking in practice by focusing on engaging networks of chemists and stakeholders to develop Education for Sustainable Development (ESD) in many institutions go beyond COVID -19 pandemic [6–8]. In 1998, Anastas and Warner published Green Chemistry: Theory and Practice, in which they presented 12 Principles of Green Chemistry that describe what constitutes a greener chemical process, or product [9]: Prevention; Atom Economy; Less Hazardous Chemical Syntheses; Designing Safer Chemicals; Safer Solvents and Auxiliaries; Design for Energy Efficiency; Use of Renewable Feedstocks; Reduce Derivatives; Catalysis; Design for Degradation; Real-Time Analysis for Pollution Prevention and Inherently Safer Chemistry for Accident Prevention.

The American Chemical Society sees green chemistry as a field that is "open to innovation, new ideas, and revolutionary advances" [10]. The growing trend toward green chemistry has also had a significant impact on chemistry education [11,12]. The integration of sustainability and green chemistry in the education of future chemists and chemical engineers has been recognized as crucial to secure students a good position in the future job market and in their social roles [13–17]. This trend continued during the COVID-19 pandemic [18,19]. However, green chemistry topics have rarely been covered at the primary [20,21] and secondary [22,23] education levels to date [24].

Citation: Ferk Savec, V.; Mlinarec, K. Experimental Work in Science Education from Green Chemistry Perspectives: A Systematic Literature Review Using PRISMA. *Sustainability* 2021, 13, 12977. https://doi.org/ 10.3390/su132312977

Academic Editor: Maija Aksela

Received: 29 September 2021 Accepted: 18 November 2021 Published: 23 November 2021

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). In terms of the terminology used, the authors point out that there is no such thing as "green" or "sustainable" in an absolute sense and that the pursuit of greener or more sustainable products, services, and approaches is a collective, i.e., a normative, construct. Therefore, should we refer to green chemistry as "greener chemistry" or "chemistry for greener products," circular chemistry as "chemistry in the context of a circular economy," and sustainable chemistry as "chemistry for sustainability" [25]? Zuin et al. claim that education is at the heart of understanding and projecting the future transformation of these normative parts of "chemistry," which is a fundamental key to understanding their socio-historical constitution [26].

As shown in the review by Andraos and Dicks [12], various approaches have been developed to introduce students to green chemistry ideas, e.g., the introduction of green chemistry into the curriculum [14,27,28], textbooks, and other learning materials [29–31], lectures and full courses in green chemistry [32–34], various types of metrics for determining the "greenness" of a chemical reaction [35–38], and experimental work related to the green chemistry principles [39–42].

In order to support further development of green chemistry education, which has been recognized as one of the important topics in ESD [11,15,17], and thereby to focus especially on the trends and the needs related to specific educational methods, this article focuses primarily on a review of laboratory experimental work related to green chemistry to support quality of education, as experimental activities are recognized to have a distinctive and central role in the science curriculum. In addition, numerous benefits have been reported from engaging students in science laboratory activities [43–49].

Hofstein [45] observed that the following important reasons are still relevant 30 years after his review on the use of laboratory work in chemistry education: (1) "School laboratory activities have special potential as media for learning that can promote important science learning outcomes for students; (2) Teachers need knowledge, skills and resources that enable them to teach effectively in practical learning environments. They need to be able to provide opportunities for students to interact both intellectually and physically by conducting hands-on investigations and minds-on reflection; (3) Student perceptions and behaviors in the science laboratory are greatly influenced by teacher expectations and assessment practices, as well as the orientation of the associated laboratory guide, worksheets, and electronic media; (4) Teachers need ways to find out what their students are thinking and learning in the science laboratory and classroom".

Experimental work is essential for the teaching and learning of chemistry because it combines several activities with different objectives. Therefore, the planning of its implementation must be guided by the effectiveness of the planned performance in achieving the learning objectives [50]. The important purpose of experimental work in science education is to help students make connections between real objects, materials, and events and the abstract world of thoughts and ideas [47]. Tiberghien [51] believes that experimental work can help students develop an understanding of the connection between the two levels of knowledge: the level of objects and observations and the level of ideas. Abrahams and Millar [47] found that experimental work is also crucial for students to learn how to use laboratory equipment, but educators should pay careful attention to improving its efficiency in facilitating students' learning based on the data collected for the development of scientific ideas.

Previous review articles have reported on various aspects of the use of green chemistry in education, e.g., laboratory work in tertiary education [12,27,52–59], often only in a specific field of chemistry [52,56,57], and the integration of selected green chemistry principles into laboratory work in tertiary education [53,56,57]. The present paper aims to review experimental work from green chemistry perspectives more holistically by involving all fields of chemistry, all educational levels, and 12 Principles of Green Chemistry in a 25-year long period. To examine the possibilities of experimental work in green chemistry education, the following research questions were established:

- **RQ1:** What are the characteristics (year of publication, journal of publication, ISSN [e-ISSN], type of paper, field of chemistry) of the reviewed papers published from 1995 to 2020? **RQ2:** What are the main purposes of the reviewed papers? **RQ3:** Which learning type is predominant in the reviewed papers?
- $\mathbf{RQ4}$: What education level do the reviewed papers focus on?
- RQ5: Which green chemistry principles are addressed in the reviewed papers?

2. Materials and Methods

A systematic literature review method was used to address the objectives of the study and provide a comprehensive insight into the possibilities of experimental work in green chemistry education. To conduct a systematic literature review, we followed the updated Preferred Reporting Items for Systematic Reviews (PRISMA) 2020 guidelines [60], which focus on several aspects to ensure transparent, replicable, and scientifically adequate systematic reviews. Accordingly, a protocol was established to define the research questions and describe the chosen information sources, search strategy, selection criteria, data extraction, and analysis.

2.1. Information Sources and Search Strategy

The systematic literature review performed in this study comprised an advanced search of published articles between the years 1995 and 2020 in three electronic databases: Web of Science (WoS) Core Collection, Scopus, and Education Resources Information Center (ERIC). The selection of these three databases was based on their internationally recognized impact indices containing peer-reviewed scientific and scholarly literature published worldwide and across different scientific fields and disciplines [61,62].

The search strategy was based on the use of core concepts regarding the subject of the study (green chemistry, teach *, learn *, educ *, experiment *, practice *, laborator *) and research questions utilizing the Boolean operators (AND, OR) with simple operators using parentheses in the search string [63]. After testing and quickly reviewing the syntax required by each database, a search string was generated (Table 1).

Information Source	Search String and Parameters
WoS Core Collection	(TI = (green chemistry) OR AB = (green chemistry) OR AK = (green chemistry)) AND (TI = (experiment * OR practice * OR laborator *) OR AB = (experiment * OR practice * OR laborator *) OR AK = (experiment * OR practice * OR laborator *)) AND (TI = (educ * OR teach * OR learn *) OR AB = (educ * OR teach * OR learn *) OR AK = (educ * OR teach * OR learn *)) Timespan: 1995-01-02–2021-01-02 Document type: Article, Review Article Language: English
Scopus	(TITLE (green AND chemistry) OR ABS (green AND chemistry) OR KEY (green AND chemistry)) AND (TITLE (experiment * OR practice * OR laborator *) OR ABS (experiment * OR practice * OR laborator *) OR KEY (experiment * OR practice * OR laborator *)) AND (TITLE (educ * OR teach * OR learn *) OR ABS (educ * OR teach * OR learn *) OR KEY (educ * OR teach * OR learn *)) AND (PUBYEAR > 1994) AND (EXCLUDE (PUBYEAR, 2021)) Document type: Article, Review Language: English
ERIC	((ab ((green chemistry)) OR ti ((green chemistry))) OR if ((green chemistry))) AND (ab ((educ * OR teach * OR learn *)) OR ti ((educ * OR teach * OR learn *)) OR if ((educ * OR teach * OR learn *))) AND (ab ((experiment * OR practice * OR laborator *)) OR ti ((experiment * OR practice * OR laborator *)) OR if ((experiment * OR practice * OR laborator *)) OR ti ((experiment * OR practice * OR laborator *))) Timespan: 1995-01-02–2021-01-02 Document type: Journal Articles Language: English

Table 1. Information source and search strategy.

Note: The asterisk (*) sign was used as a truncation operator. Asterisks were appended to the stem of a word, which allowed searching for all words containing that stem or the letters preceding the asterisk.

Only peer-reviewed articles were included in the study to increase its credibility and integrity. In the continuation of the search, additional parameters (document type: articles, review articles; language: English) to refine the search results were used in each database based on the inclusion and exclusion criteria described in Section 2.2. To offer as broad an overview as possible, specific journals in the search strategy phase were not chosen [64]. The final search in all databases was performed in August 2021.

2.2. Inclusion and Exclusion Criteria

With the intention to select and include only relevant studies for our research topic identified from the databases, specific inclusion and exclusion criteria were defined.

2.2.1. Inclusion Criteria

IC1: Journal articles.

IC2: The study is written in English.

IC3: The study is peer-reviewed.

IC4: The study is not listed in another database.

IC5: The study was conducted in an educational environment (primary, secondary, or tertiary education).

IC6: The study is related to science subjects.

IC7: The full text of the study is available.

IC8: The study includes reviews, research, or descriptions of green chemistry practices.

IC9: The study addresses experimental work in green chemistry education.

2.2.2. Exclusion Criteria

EX1: Proceedings of congresses, conference papers, books, book chapters, and other nonpeer-reviewed publications.

EX2: The study is not written in English.

EX3: The study is not peer-reviewed.

EX4: The study is listed in another database.

EX5: The study was not conducted in an educational environment (primary, secondary, or tertiary education).

EX6: The study is not related to science subjects.

EX7: The full text of the study is not available.

EX8: The study only includes opinions about green chemistry practices.

EX9: The study does not address experimental work in green chemistry education or it mentions it just briefly.

2.3. Data Collection and Analysis

The systematic literature review was carried out in five phases following the PRISMA 2020 guidelines [65]. The first phase consisted of an initial search of the literature included in the WoS (*n* = 419), Scopus (*n* = 578), and ERIC (*n* = 202) electronic databases. Based on the inclusion (**IC1, IC2, IC3**) and exclusion (**EX1, EX2, EX3**) criteria, a total of 313 papers (305 chosen by database automation tools and eight by a human) were excluded as ineligible regarding the type of paper, language, and peer-review criteria. Regarding the inclusion and exclusion criteria (**IC4, EX4**) 409 duplicate papers were excluded using Microsoft Excel software. In the second phase, the inclusion (**IC5, IC6**) and exclusion (**EX5, EX6**) criteria were applied by reviewing the title and abstract of 476 papers. In case of insufficient or vague abstracts, the entire paper was browsed. Six papers that were not available in full text were excluded for further analysis (**IC7, EX7**). In the fourth phase, a total of 372 papers were carefully screened for eligibility by applying inclusion (**IC8, IC9**) and exclusion (**EX8, EX9**) criteria. In the fifth phase, the full text of the remaining 263 papers were reviewed thoroughly for relevance to our criteria and research questions. The described process is summarized in a PRISMA flow diagram (Figure 1).

Figure 1. PRISMA 2020 flow diagram [60].

The corresponding table for all included papers (n = 263) in the systematic literature review can be found in the Appendix A (Table A1). The coding number of the paper and the electronic database from which it was extracted (all papers from Scopus [and duplicates in WoS and ERIC] = S; all papers from WoS [and duplicates in ERIC] = W; all papers from ERIC = E) are also provided and follow the codification [66] used to identify specific papers to discuss the results of the analysis.

The following data were extracted from each paper: (1) field of chemistry, (2) type of paper, (3) purpose of the paper, (4) learning type, (5) educational level/target groups, and (6) green chemistry content (regarding green chemistry principles).

Two researchers (the authors of this paper) independently performed the systematic literature review following the established protocol using the same inclusion and exclusion criteria and descriptors. The authors compared and confirmed their findings. The degree of agreement on the inclusion of papers was 98%. Disagreements were resolved by discussion and shared consensus.

3. Results

3.1. What Are the Characteristics of the Reviewed Papers Published from 1995 to 2020?

A total of 263 papers met the objectives of the study and the inclusion and exclusion criteria (Figure 1). The first identified paper that focused on experimental work from green chemistry perspectives was published in 2000 in the *Journal of Chemical Education* and addressed "an environmentally benign synthesis of adipic acid" aimed at organic instructors [67]. However, more intense research from green chemistry perspectives began in 2011

and reached a peak in 2019 with 42 papers (duplicates excluded). More than half of all reviewed papers (n = 140) were published in the previous five years (2015–2020) (Figure 2).

Figure 2. Grouping of publications by year and electronic database (WoS, ERIC, and Scopus) dealing with experimental work from green chemistry perspectives (Note: In Figure 2, the duplicate papers are not excluded.).

Table 2 lists the scientific journals in which papers addressing experimental work from green chemistry perspectives were published between 1995 and 2020. As can be seen from Table 2, the majority of papers (n = 200) were published in the *Journal of Chemical Education*. This finding is in agreement with Marques et al. [68], who noted that almost half of the scientific papers on the wider topic of green chemistry education in the WoS were published in the *Journal of Chemical Education*. Both studies suggest that this journal can be recognized as an important source for the dissemination of practices in educational settings in this field at the international level.

The remaining journals that published several articles addressing experimental work from green chemistry perspectives are: *Green Chemistry Letters and Reviews* (n = 8), *Physical Sciences Reviews* (n = 7), *Chemistry Education Research and Practice* (n = 5), *Current Opinion in Green and Sustainable Chemistry* (n = 4), *Journal of Science Education* (n = 3), *Green Chemistry* (n = 3), *ACS Chemical Health and Safety* (n = 2), *ACS Symposium Series* (n = 2), *Quimica Nova* (n = 2), and *Research in Science & Technological Education* (n = 2). In a further 25 journals, one paper on this topic was published (Table 2).

In Table 3 the reviewed papers are presented according to the "type of paper," e.g., literature review, experience report, or evaluation study. Thus, 17 review papers and 41 evaluation studies were identified. However, most of the research papers (n = 205) were experience reports that focused on the development and implementation of practical activities related to experimental work from green chemistry perspectives.

From green chemistry perspectives, the experimental work was mostly addressed in relation to organic chemistry (n = 150, Table 4). The integration of green chemistry into education was most notable in the context of optimizing organic syntheses, which was an aspect repeatedly highlighted in the literature [12,52]. As can be seen from Table 4, other papers addressed experimental work in general chemistry (n = 23), analytical chemistry (n = 21), inorganic chemistry (n = 15), chemistry (n = 12), polymer science (n = 10), physical chemistry (n = 9), environmental chemistry (n = 7), and some papers in other fields of chemistry (n=16), which reflects the need for the introduction of green chemistry ideas into various fields of chemistry.

Journal	Publisher	ISSN [e-ISSN]	5-Year IF *	No. of Papers	Paper Code
Journal of Chemical Education	American Chemical Society	0021-9584 (1938-1328)	2.37	200	S1-S7, S9-S13, S15-S23, S25-S36, S38-S42, S44-S47, S49-S51, S55-S58, S60, S61, S64-S66, S68-S74, S76-S82, S84-S86, S88-S93, S101-S108, S110 S114-S123, S125, S127-S135, S137, S139-S143, S145, S146, S148, S152-S154, S156, S158-S167, S170, S171, S173-S183, S185-S196, S198, S200-S204, S206, S208, S211-S214, S216-S226, 1W, 3W, 7W,
Green Chemistry Letters and Reviews	Taylor and Francis Ltd.	1751-8253 (1751-7192)	3.963	8	10W, 1E-19E S53, S54, S168, S169, S184, 2W, 5W, 6W
Physical Sciences Reviews	De Gruyter	2365-659X (2365-659X)	0.811	7	S14, S24, S48, S109, S136, S144, S230
Chemistry Education Research and Practice	Ioannina University School of Medicine	1109-4028 (1756-1108)	2.57	5	S8, S62, S98, S111, S210
Green and Sustainable Chemistry	Elsevier BV	2452-2236	5.546	4	S87, S52, S94, S197
Journal of Science Education	Taylor and Francis Ltd.	0950-0693 (1464-5289)	2.302	3	S43, S67, S207
Green chemistry	Royal Society of Chemistry	1463-9262 (1463-9270)	9.905	3	S232, 9W, 11W
ACS Chemical Health and Safety	American Chemical Society	1871-5532 (1878-0504)	1.196	2	S138, S199
ACS Symposium Series	American Chemical Society	0097-6156 (1947-5918)	0.474	2	S227, S228
Quimica Nova	Sociedade Brasileira de Quimica	0100-4042 (1678-7064)	0.739	2	S59, S155
Research in Science & Technological Education	Taylor and Francis Ltd.	0263-5143 (1470-1138)	1.764	2	S75, S172
Other journals with one identified paper each (listed alphabetically):ACS applied materials & interfaces, ACS Omega, ACS Sustainable Chemistry and Engineering, Analytical and Bioanalytical Chemistry, Applied Materials Today,Asia-Pacific Education Researcher, Asia-Pacific Forum on Science Learning and Teaching, Chemistry-Didactics-Ecology-Metrology, ChemSusChem, Chromatographia, ChimicaS149, S151, S112, S3Oggi, Educacion Quimica, Environmental Education Research, Indian Journal of Education and Research, International Journal of Sustainability in Higher Education, Journal of Science Teacher Education, Jurnal Pendidikan IPA Indonesia, for Education Social And Technological Sciences, Polish Journal of Environmental Studies, Sustainability, Sustainable Chemistry and Pharmacy, TrAC—Trends in Analytical Chemistry, Waste Management, World Transactions on Engineering and Technology Education.S149, S151, S12, S3					
	Total			263	

Table 2. Scientific journals with papers published between 1995 and 2020 dealing with experimental work from a green chemistry perspective.

* Note: According to the data published on the Academic Accelerator website [69].

Type of Paper	Frequency	Paper Code
		\$1-\$3, \$5-\$7, \$9, \$11, \$14-\$23, \$26-\$35, \$37-\$48, \$49-\$51, \$55-\$57, \$59, \$61-\$74, \$78-\$86, \$88-\$92, \$102-\$108, \$110, \$112-\$116, \$119, \$121-\$125, \$127-\$132, \$134-\$136, \$138,
Experience report	205	S141-S143, S147, S149, S151-S156, S158-S166, S170, S171, S173-S175, S177-S182, S184, S187-S196, S198-S202, S204-S209, S211-S214, S216-S233, 1W-4W, 6W, 9W, 10W, 11W, 1E-5E, 7E-19F
Evaluation study	41	S4, S10, S13, S24, S25, S36, S58, S60, S75-S77, S93-S101, S117, S118, S120, S126, S133, S139, S140, S145, S146, S148, S167-S169, S172, S176, S183, S203, S210, 7W, 8W, 6E
Review	17	S8, S12, S52-S54, S87, S109, S111, S137, S144, S150, S157, S185, S186, S197, S215, 5W
Total	263	

Table 3. Papers dealing with experimental work from green chemistry perspectives published between 1995 and 2020 according to the type of paper.

Table 4. Papers dealing with experimental work from green chemistry perspectives published between 1995 and 2020 according to the field of chemistry.

Field of Chemistry	Frequency *	Paper Code
Organic chemistry	150	 S1, S2, S4, S5, S7, S12, S16-S18, S20, S21, S23, S25, S27, S28, S33, S36, S38-S40, S42, S44, S47, S49, S50, S52-S56, S59-S62, S64, S67-S74, S78-S82, S84, S85, S90-S93, S102-S104, S108, S110, S114-S117, S120-S123, S125, S128, S131-S134, S136, S137, S139, S141, S142, S144-S147, S151-S157, S162, S163, S165, S166, S170, S174-S176, S178, S182, S183, S185-S187, S190, S191, S193-S195, S198, S201, S203-S207, S210, S212-S214, S217, S219, S222-S224, S227-S232, 1W-6W, 9W, 10W, 2E, 3E, 5E, 6E, 8E-12E, 14E, 16E, 17E
General chemistry	23	S6, S10, S12, S14, S29, S31, S32, S48, S101, S105, S127, S152, S156, S160, S164, S172, S173, S192, S198, S216, S220, S226, 18E
Analytical chemistry	21	S3, S30, S36, S37, S58, S66, S75, S111, S113, S118, S151, S157, S160, S164, S187, S202, S212, S221, S223, S209, 7E
Inorganic chemistry	15	S9, S17, S36, S41, S46, S57, S65, S70, S76, S90, S149, S189, S196, S220, 7W
Chemistry	12	S13, S94-S100, S109, S126, S150, S211
Polymer science	10	S35, S36, S88, S106, S107, S129, S140, S177, S200, S221
Physical chemistry	9	S36, S45, S159, S161, S172, S180, S206, S212, 13E
Environmental chemistry	7	S11, S51, S63, S112, S143, S148, 19E
Materials Science	3	S89, S135, S179
Biochemistry	2	S188, S218
Interdisciplinary	2	S26, S208
Industrial chemistry	1	S34
Organic catalysis	1	S158
Electrochemistry	1	S124
Chemical technology	1	S225
Other	5	S15, S19, S119, S130, S233
Not defined	23	S8, S22, S24, S43, S77, S83, S86, S87, S138, S167, S168, S169, S171, S181, S184, S197, S199, S215, 8W, 11W, 1E, 4E, 15E

Note: * Some reviewed papers describe or indicate implementation of experimental work from green chemistry perspectives for more than one field of chemistry.

3.2. What Are the Main Purposes of the Reviewed Papers?

The analysis of the presented systematic review attempts to provide an overview of the main purposes for integrating green chemistry into experimental work addressed in the papers (Table 5). The results show that most of the reviewed papers focus on the integration of green chemistry into traditional chemistry teaching (n = 228), e.g., with the optimization of experimental work in terms of green chemistry principles [70–77]. In a further 30 reviewed papers, the integration of green chemistry into the curriculum was mentioned, some also in the context of the main benefit of improving chemical safety. In addition, 31 papers addressed a strong synergy between chemical safety and green chemistry goals [27,78–80]. Some papers (n = 27) focus on integrating green chemistry metrics into traditional chemistry teaching [81], while others also compare traditional ex-

perimental work to experimental work optimized with green chemistry principles [82–84]. This is particularly important given the debate in the literature about what is or is not green chemistry [52,68]. Researchers also indicated the scope of their papers in promoting green chemistry education (n = 24) and also by solving socio-environmental problems from green chemistry perspectives (n = 21) [22,85,86]. The opportunity to promote systems thinking [87] (n = 17) and life-cycle thinking [88] (n = 16) within green chemistry education was also highlighted to provide innovative solutions to current and future sustainability challenges. Other indicated purposes of the reviewed papers include developing green and sustainable products (n = 17), identifying green chemistry approaches in green chemistry education (n = 15), improving and creating teaching materials (n = 9), and developing green skills (n = 9). Some studies (n = 6) also presented the use of innovative didactic tools in teaching and learning about green chemistry [89,90].

Table 5. Indicated purposes of papers dealing with experimental work from green chemistry perspectives published between 1995 and 2020.

Purpose of Papers	Frequency *	Paper Code
Interneting CC into the ditional		S1-S12, S14-S20, S23-S25, S27-S42, S44-S51, S53-S62, S65, S67-S70, S72-S75,
Integrating GC into traditional	228	S77-S97, S99-S142, S144-S149, S151-S166, S170-S199, S201-S207, S209, S213,
chemistry teaching		S217, S219, S224, S226, S228-S233, 1W-11W, 1E-5E, 7E-16E, 19E
		S1, S12, S35, S48, S76, S91, S109, S112, S118, S119, S126, S127, S131, S136-S138,
Fostering a culture of safety	31	S140, S141, S144, S157, S162, S164, S165, S185, S195, S197, S198, S199,
0		S211, 8W, 16E
	20	S10, S12, S41, S48, S51, S56, S76, S77, S83, S87, S109, S113, S119, S120, S124, S126,
Integrating GC into curriculum	30	S134, S137, S144, S157, S160, S165, S167, S171, S202, S223, S230, 6W, 8W, 7E
Integrating GC metrics into	07	S5, S38, S46, S52, S64, S66, S71, S83, S109, S115, S139, S145, S146, S167-S169,
traditional chemistry teaching	27	S185, S193, S197, S203, S226, 2W, 7W, 1E, 4E, 6E, 17E
Promoting green		S2, S13, S14, S26, S27, S37, S43, S47, S54, S57, S66, S97, S99, S109, S143, S151,
chemistry education	24	S152, S176, S186, S199, S203, S200, S233, W7
		S4, S24, S26, S96, S107, S143, S149, S157, S161, S164, S165, S171-S173, S176, S180,
Socio-scientific approach	21	S197, S199, S200, S204, S226
Development of	15	S10, S12, S26, S36, S45, S51, S87, S101, S115, S116, S129, S139, S143, S156, S179,
systems thinking	17	S204, S226
Development of green and		S2, S21, S22, S24, S28, S35, S63, S106, S107, S130, S150, S153, S158, S177, S200,
sustainable products	17	S212, S227
Development of	1.6	
life-cycle thinking	16	52, 510, 520, 536, 557, 562, 576, 5129, 5149, 5179, 5185, 5216, 5225, 5226, 2W, 4E
Identifying GC approaches for	4 -	
GC education	15	58, 513, 526, 551, 574, 575, 598, 5109, 5113, 5126, 5157, 5197, 5208, 5210, 5222
Improvement and creation of	0	
teaching material	9	537, 567, 5113, 5135, 5197, 5218, 5220, 5221, 5223
Development of green skills	9	S1, S2, S24, S133, S141, S146, S161, S214, 19E
Use of innovative didactic tools	6	S34, S62, S74, S87, S195, S197
Promoting chemistry education	1	S27
Other (informative)	1	S215

* Note: Some reviewed papers describe or indicate the implementation of experimental work from green chemistry perspectives for more than one field of chemistry.

3.3. Which Learning Type Is Predominant in the Reviewed Papers?

The learning type category (Table 6) sought to review the learning types that were formulated and/or discussed in each paper. In this sense, we used Laurillard's concept of learning types derived from her "conversational framework" model, i.e., acquisition, inquiry, practice, discussion, collaboration, and production [91]. As can be seen from Table 6, learning with practice predominates (n = 158) in the reviewed papers and most papers describe a laboratory setting in organic chemistry.

Learning Type	Frequency *	Paper Code
Learning through practice	158	S2-S5, S7, S9, S13-S15, S33, S35, S37-S42, S44, S45, S49, S50, S58, S63, S65, S68, S71, S74, S77, S79, S85, S89, S91, S92, S95-S97, S102, S104, S105, S112, S114, S115, S117, S118, S122, S123, S125-S127, S129, S131, S132, S134-S137, S139-S142, S144, S146, S149-S156, S158, S159, S161-S165, S167-S172, S174-S181, S183-S196, S199-S207, S209, S211, S213, S214, S216-S225, S227-S229, S232, S233, 1W-4W, 7W-9W, 11W, 1E-9E, 11E-15E, 17E, 18E, 19E
Learning through inquiry	86	S1, S6, S10, S11, S16-S32, S34, S36, S46, S47, S52, S55-S57, S59-S62, S64, S66, S67, S69, S70, S72, S73, S76, S78, S80-S84, S88, S90, S93, S94, S101, S103, S106-S108, S110, S116, S119-S121, S124, S128, S130, S133, S143, S145, S147, S148, S160, S166, S173, S178, S182, S183, S198, S208, S212, S226, S230, S231, 5W, 6W, 10W, 10E, 16E
Learning through collaboration	15	S2, S6, S26, S31, S34, S62, S69, S73, S74, S146, S176, S178, S183, S195, S231
Learning through discussion	13	S1, S13, S15, S20, S22, S26, S31, S41, S46, S115, S141, S172, S195
Learning through acquisition	2	S86, S163
Integrated teaching	1	S210
Other	2	S8, S43
Not defined/Not relevant	16	S12, S48, S51, S53, S54, S87, S98, S99, S100, S109, S111, S113, S138, S157, S197, S215

Table 6. Papers dealing with experimental work from green chemistry perspectives published between 1995 and 2020 according to the predominant learning type.

* Note: Some reviewed papers refer to more than one learning type.

With the intention to support students' development of high-order thinking skills in the laboratory, several papers identified the use of inquiry-based learning (n = 86). Learning through collaboration, sometimes related to problem- and project-based learning was mentioned in some papers (n = 15). Similarly, learning through discussion was highlighted (n = 13). A minority of papers (n = 2) were categorized in the framework of acquisition, e.g., experimental work optimized from green chemistry perspectives that can be performed as a demonstration. From some articles (n = 16), it was not possible to identify the learning type because they were, e.g., review papers or general descriptions of ideas for how green chemistry could be integrated into experimental work.

3.4. What Education Levels Do the Reviewed Papers Focus on?

According to the data presented in Table 7, most studies refer to tertiary education students in nonpedagogical study programs (n = 224). These students are typically older than 18 years. Fewer papers refer to secondary education (n = 33) with students aged 12–18 years and primary education (n = 2) with students aged 6–11 years. Some papers (n = 16) broadened their scope by proposing targeting students at two education levels (mainly tertiary and secondary) and several papers (n = 8) did not mention the target groups or the education level, which could indicate the less evident scope of these articles for the integration of green chemistry perspectives in education [68].

As can be seen from Table 7, only 12 papers targeted the teacher population. Preservice teachers (tertiary education—pedagogical studies) were addressed in nine articles. Some of these articles described examples of the integration of green chemistry experimental work [39,83,92–97], whereas others evaluated activities for integration of green chemistry into experimental work [95,97,98]. The incorporation of green chemistry experiments into the education of pre-service teachers was recognized as a way to promote the development of students' pro-environmental attitudes, values, knowledge, and motivation [39,95–97]. On the other hand, in-service teachers were specifically mentioned in only three papers. In this regard, in-service university teachers were supported with materials related to optimization of the use of solvents (green chemistry principle 5) in organic experiments in courses for undergraduate students [56,57] and only one article addressed [99] in-service teacher training focused on green chemistry experiments for secondary school teachers.

Education Level	Frequency *	Paper Code
Tertiary education—nonpedagogical studies (19-years old)	224	S1-S12, S14-S21, S23-S25, S29, S30, S32-S36, S38-S42, S44-S49, S51, S52, S55-S59, S61, S64, S65, S67-S82, S84, S85, S88-S93, S101-S105, S108, S110, S112-S125, S127-S139, S141, S142, S144-S146, S148-S167, S169, S170, S172-S183, S185-S188, S190-S196, S198, S201-S209, S211-S214, S216-S219, S221-S226, S228, S229, S231-S233 1W-3W, 5W, 6W, 8W-10W, 1E-5E, 7E-14E, 16E, 17E, 19E S13, S22, S28, S31, S32, S50, S60, S62, S83, S86, S95, S96, S106, S107
Secondary education (12–18 years old)	33	S11, S12, S22, S31, S32, S30, S00, S02, S33, S30, S30, S10, S10, S107, S111, S114, S126, S140, S143, S147, S167, S184, S189, S198, S199, S200, S210, S220, S230, 4W, 6E, 15E, 18E
Tertiary education—pedagogical studies (19-years old)	9	S26, S27, S50, S66, S97, S98, S99, S100, 7W
Primary education (6–11 years old)	2	S43, S86
In-service teacher education	3	S53, S54, S94
All levels	1	S87
Not defined	8	S37, S63, S109, S168, S171, S197, S227, 11W

Table 7. Papers dealing with experimental work from green chemistry perspectives published between 1995 and 2020 according to the education level they addressed.

* Note: Some reviewed papers address more than one education level and target groups.

3.5. Which Green Chemistry Principles Are Addressed in the Reviewed Papers?

A large number of papers included in the systematic literature review refer directly or indirectly to the 12 Principles of Green Chemistry, which is not surprising because the principles are a foundation of green chemistry. The results of the analysis are presented in Table 8, where the most frequently addressed green chemistry principles are listed first, while the least frequently addressed principles are shown at the bottom of the table.

Table 8 shows that a considerable number of papers deal with the substitution of solvents and other auxiliary substances (green chemistry principle 5, n = 107), waste prevention (green chemistry principle 1, n = 89), and the use of catalysts (green chemistry principle 9, n = 77). Some papers described the optimization of experimental work by also considering the following principles: design for energy efficiency (green chemistry principle 6, n = 71), use of renewable feedstock (green chemistry principle 7, n = 65), atom economy (green chemistry principle 2, n = 64), less hazardous synthesis (green chemistry principle 3, n = 62), inherently benign chemistry for accident prevention (green chemistry principle 12, n = 51), design for degradation (green chemistry principle 10, n = 30), and reduction of derivatives (green chemistry principle 8, n = 17), although to a lesser extent. In the reviewed papers, the principles of designing safer chemicals (green chemistry principle 11, n = 10) were the least covered, which is not surprising given that these two principles are usually excluded from teaching experiments because laboratory work does not involve the production of new products [83,100].

It is interesting to note that more than half of the papers (58.94%) considered one (n = 49), two (n = 58), or three (n = 48) green chemistry principles, and only some (4.56%) considered experimental work from green chemistry perspectives more holistically in terms of the many features that must be considered when the "greenness" of a chemical reaction is discussed. In this context, some papers addressed ten (n = 7), eleven (n = 2), or all green chemistry principles (n = 4, Table 9).

Table 8. Number of papers dealing with experimental work from green chemistry perspectives published between 1995 and 2020 according to the 12 green chemistry principles that they address.

Green Chemistry Principle	Frequency *	Paper Code
GC Principle 5: Safer solvents & auxiliaries.	107	S2, S9, S10, S13, S19, S20, S23, S25, S30, S37-S42, S44, S47, S53, S54, S58, S61, S62, S64-S68, S74, S78-S80, S82, S84-S86, S90-S92, S103, S106, S108, S110, S112, S116, S117, S122, S123, S125, S128, S130, S132, S134-S137, S139, S141, S145, S147, S153-S156, S160-S162, S165-S167, S169, S170, S176-S180, S182, S183, S186, S190, S191, S193, S198, S201, S203, S204, S210, S222, S226, S228, S229, S232, S233, 2W, 3W, 5W-7W, 10W, 1E, 2E, 4E, 6E, 8E, 9F, 11E, 17E
GC Principle 1: Prevent waste.	89	S10, S14, S18-S20, S32, S33, S38, S41, S49, S53, S55, S56, S62, S64, S66, S67, S69-S71, S74, S82, S91, S93, S102-S105, S110, S112, S117, S118, S120, S121, S124, S126, S128-S130, S133, S135-S141, S144-S146, S149, S153, S156, S163, S165, S167-S169, S176, S184, S191, S193, S194, S199, S200, S204, S210, S222, S226-S228, 3W, 5W-9W, 11W, 1E-3E, 6E-8E, 10E, 12E, 16E, 18E, 19E
GC Principle 9: Catalysis.	77	 S9, S16-S21, S35, S36, S40, S41, S43, S44, S46, S47, S56, S60, S61, S64, S66, S69, S74, S78, S80, S81, S89, S90, S93, S103, S114-S117, S120, S121, S125, S130, S134, S136, S137, S144, S146, S150, S156, S165, S167, S169, S171, S177, S181, S186, S187, S189, S193, S196, S200, S203, S204, S210, S221, S223, S226, S233, 1W-5W, 7W, 9W, 10W, 3E, 5E, 6E, 14E, 17E, 19E S2, S5, S7, S9, S10, S19, S20, S22, S25, S30, S37, S39, S43, S49, S53, S54
GC Principle 6: Design for energy efficiency.	71	S61, S64, S66, S67, S74, S85, S90, S93, S103, S117, S120, S127, S130, S132, S136, S137, S139, S141, S142, S144, S146, S147, S155, S158, S166, S167, S169, S172, S175, S181, S182, S184, S190, S192-S194, S202, S203, S205, S210, S226, S227, S229, S233, 1W, 5W, 6W, 7W, 8W, 10W, 2E, 3E, 4E, 6E, 10E 10E
GC Principle 7: Use of renewable feedstock.	65	S2, S10, S13, S19-S24, S28-S30, S59, S63, S64, S66, S74, S89, S91, S93, S98, S103, S106, S107, S117, S118, S120, S126, S129, S133, S136, S141, S149, S156, S158, S160, S167, S169, S171, S173, S177, S179, S184-S187, S189, S192, S200, S203, S204, S210, S226, S230, 2W, 4W, 5W-7W, 9W, 5E, 6E, 13E, 18E
GC Principle 2: Atom economy.	64	 S2, S5, S10, S14, S18-S20, S25, S29, S32, S38, S47, S52, S62, S64, S66, S67, S70, S71, S74, S78, S82, S90, S103, S110, S115, S120, S121, S128, S130, S133, S136, S137, S139, S145, S146, S167-S169, S182, S192-S194, S203-S205, S210, S219, S222, S226-S228, 1W, 2W, 5W-7W, 9W, 10W, 4E, 6E, 8E, 12E, 17E
GC Principle 3: Less hazardous synthesis.	62	 S2, S10, S19-S21, S25, S29, S31, S33, S38, S45, S64, S66, S69, S74, S88, S92, S103-S105, S108, S110-S112, S117, S118, S121, S128, S130, S131, S136, S137, S139, S141, S144, S147, S152, S154, S164, S165, S167, S169, S174, S180, S181, S185, S188, S198, S210, 5W, 7W, 8W, 10W, 11W, 4E, 6E, 10E-12E, 15E, 16E, 18E
GC Principle 12: Inherently benign chemistry for accident prevention.	51	S2, S19, S20, S30, S31, S33, S35, S64, S66, S74, S91, S92, S103, S112, S118, S126, S127, S131, S134-S141, S144, S147, S152, S162-S167, S169, S174, S176, S198, S199, S202, S210, S226, 5W, 7W, 8W, 10W, 2E, 6E, 8E, 11E, 16E
GC Principle 10: Design for degradation.	30	S2, S10, S13, S19, S20, S23, S30, S35, S64, S66, S74, S91, S103, S106, S107, S111, S120, S144, S160, S167, S169, S177, S179, S186, S200, S210, S226, 5W, 7W, 6E
GC Principle 8: Reduce derivatives.	17	S19, S20, S64, S66, S74, S103, S120, S139, S162, S167, S169, S187, S210, S226, 5W, 7W, 6E
GC Principle 4: Design safer chemicals. GC Principle 11: Real-time analysis for	14	S2, S10, S14, S17, S19, S20, S32, S103, S119, S139, S192, S210, S226, 8W
pollution prevention.	10	S10, S19, S20, S58, S103, S147, S167, S169, S210, 10W
General	21	S72, S73, S75, S83, S143, S148, S151, S159, S195, S206, S207, S209, S211, S212, S214, S216, S217, S218, S220, S224, S225
Not defined specifically	33	\$1, \$3, \$4, \$6, \$8, \$11, \$12, \$15, \$26, \$27, \$34, \$48, \$50, \$51, \$57, \$76, \$77, \$87, \$94-\$97, \$99-\$101, \$109, \$113, \$157, \$197, \$208, \$213, \$215, \$231

Note: * Some reviewed papers may address more than one principle of green chemistry.

No. of Green Chemistry Principles Addressed in the Papers	Frequency	Paper Code
2	58	 S5, S17, S22, S31, S37, S39, S40, S43, S44, S49, S54, S56, S58, S70, S71, S80, S85, S89, S104, S105, S107, S108, S111, S115, S116, S125, S127, S129, S131, S132, S138, S140, S149, S152-S155, S158, S163, S164, S166, S168, S171, S174, S180, S185, S189-S191, S199, S202, S205, S229, S233, 4W, 11W, 1E, 5E
1	49	S7, S16, S24, S28, S36, S42, S45, S46, S52, S55, S59, S60, S63, S65, S68, S79, S81, S84, S86, S88, S98, S102, S114, S119, S122-S124, S142, S150, S161, S170, S172, S173, S175, S178, S183, S188, S196, S201, S219, S221, S223, S230, S232, 7E, 9E, 13E-15E
3	48	S9, S13, S14, S18, S21, S23, S29, S32, S33, S35, S41, S47, S53, S61, S62, S69, S78, S82, S92, S106, S126, S133-S135, S145, S160, S162, S176, S179, S181, S182, S184, S187, S194, S198, S222, S227, S228, 1W, 3W, 3E, 10E-12E, 16E-19E
4	21	S25, S38, S67, S90, S93, S110, S112, S118, S121, S128, S146, S156, S177, S186, S192, S200, 2W, 9W, 2E, 4E, 8E
5	9	S30, S91, S147, S165, S193, S203, S204, 6W, 8W
10	7	S64, S66, S74, S226, 5W, 7W, 6E
6	4	S117, S130, S141, S144
12	4	S19, S20, S103, S210
7	3	S120, S137, 10W
8	3	S2, S136, S139
11	2	S167, S169
9	1	S10
General	21	S72, S73, S75, S83, S143, S148, S151, S159, S195, S206, S207, S209, S211, S212, S214, S216-S218, S220, S224, S225
Not defined specifically	33	S1, S3, S4, S6, S8, S11, S12, S15, S26, S27, S34, S48, S50, S51, S57, S76, S77, S87, S94-S97, S99, S100, S101, S109, S113, S157, S197, S208, S213, S215, S231
Total	263	

Table 9. Number of papers dealing with experimental work from green chemistry perspectives published between 1995 and 2020 according to the number of green chemistry principles they address.

4. Discussion and Conclusions

4.1. Key Findings and Implications

This systematic literature review was conducted to provide an overview and insight into the research literature on laboratory experimental work related to green chemistry to support quality education by engaging students in experimental activities according to the fourth SDG from the Agenda 2030 framework. In order to facilitate the development of this important topic for future science education, the review aimed to derive information on the purposes for implementation of green chemistry in science education experimental work at all education levels and how these learning activities are predominantly performed. The novelty of the present paper is its attempt to reach a holistic perspective by involving all fields of chemistry, all education levels, and the 12 green chemistry principles from the previous 25 years of literature. Special attention was given to green chemistry education in relation to experimental work, addressing both pre- and in-service teachers.

For the purposes of this paper, a total of 263 papers resulting from the literature review following the 2020 PRISMA guidelines were analyzed to answer the set objectives and proposed research questions.

The results indicate that from 2011 onwards, there was a significant wave of publication of scientific papers about the implementation of green chemistry in laboratory experimental work, especially in the form of experience reports, which point to many examples of good teaching practices. This finding is consistent with the increased number of publications in the wider field targeting green chemistry [68]. The primary field of chemistry covered in the papers is organic chemistry, as also described in the previous literature on the subject [12,52]. Over the years, the reviewed literature has responded to the need to develop educational materials for other fields of chemistry, particularly analytical, environmental, and physical chemistry. In doing so, many researchers [68,96] have pointed out the need to integrate green chemistry into existing curricula and teaching materials.

The results of the literature review suggest that updating chemistry teaching and learning with laboratory experimental work optimized from green chemistry perspectives simultaneously provides a safer approach to chemistry and ensures a safer environment by minimizing exposure to potentially hazardous chemicals and reducing the generated waste. Aubrecht et al. [27] pointed out the importance of teaching chemical safety by recognizing a significant overlap between reflection on the 12 green chemistry principles and the RAMP paradigm (recognize hazards, assess the risks of hazards, minimize the risks of hazards, and prepare for emergencies) [80].

Regarding the use of green chemistry in laboratory experimental work in science education at different education levels, our study revealed that it is used much more frequently in tertiary education compared with secondary and primary education. This finding is consistent with other recent studies that emphasize the need for novel activities, experiments, and case studies [24] in secondary and primary education, and highlight that incorporating green chemistry concepts into all education levels from primary to tertiary could be of great benefit to education as a whole [12,52]. Moreover, the present study also indicates the lack of research regarding the implementation of green chemistry in pre- and in-service teacher education.

The 12 green chemistry principles were referred to directly or indirectly in the reviewed papers. The results show that some of the green chemistry principles are predominantly used in the optimization of experimental work, e.g., the substitution of solvents and other auxiliary substances (green chemistry principle 5), waste prevention (green chemistry principle 1), and the use of catalysts (green chemistry principle 9). When analyzing the number of green chemistry principles addressed in each reviewed paper in the systematic literature review, it can be seen that most papers target one to three principles. Although not all principles were considered in most cases, it is important to keep in mind that even the application of a single green chemistry principle can make a big difference in experimental work. Therefore, the number of green chemistry principles involved should not be understood as just "all or nothing," but rather a striving for "the more, the better." It is important to develop students' green chemistry skills by asking simple questions, such as (1) "What is green about the experiment?"; (2) "What is not green?" and (3) "How could the experiment be optimized to be greener?" [12,52].

As a lack of studies on the integration of green chemistry principles into laboratory experimental work in secondary and primary education was identified, it would be beneficial to devote more attention to these education levels in the future. For example, it would be very valuable to develop teaching materials to support primary and secondary teachers in introducing green chemistry experimental work in their classes. Due to the crucial role of teachers in achieving the fourth SDG from the 2030 Agenda, special emphasis should be given to pre- and in-service teacher education, including didactical courses and corresponding teaching materials dealing with various possibilities for implementation of experimental work from green chemistry perspectives into the educational process at all education levels.

4.2. Limitations

The recently updated PRISMA guidelines were followed in this systematic literature review to make the results replicable and scientifically adequate. Three electronic databases (Scopus, WoS, and ERIC) were used in an attempt to identify as many eligible studies as possible to provide the broadest overview of laboratory experimental work related to green chemistry. However, by selecting only three electronic databases, potentially relevant publications may have been overlooked due to bias in the selection of databases or in the search terms used to identify eligible studies. In addition, review papers are usually limited by publication bias [101]. Furthermore, our systematic literature review is subject to language bias, as only English-language papers were included in the analysis.

Author Contributions: All authors have contributed equally. All authors have read and agreed to the published version of the manuscript.

Funding: The authors acknowledge the financial support from the Slovenian Research Agency (related to project No. J5-9328).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The nature of the study (review) already implies in itself unique and complementary material. There is no need to attach further material.

Acknowledgments: We would like to express our sincere appreciation to the reviewers and editors.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. Papers included in systematic literature review.

Paper Code	Author(s)	Year	Name of Journal	Title	Ref.
S1	Abraham, L.; Stachow, L; Du, H.	2020	Journal of Chemical Education	Cinnamon Oil: An Alternate and Inexpensive Resource for Green Chemistry Experiments in Organic Chemistry Laboratory	[42]
S2	Abraham, L.	2020	Journal of Chemical Education	A Green Nucleophilic Aromatic Substitution Reaction	[102]
S3	Alberich, A.; Serrano, N.; Díaz-Cruz, J.M.; Ariño, C.; Esteban, M.	2013	Journal of Chemical Education	Substitution of mercury electrodes by bismuth-coated screen-printed electrodes in the determination of quinine in tonic water	[103]
S4	Ali, Z.M.; Harris, V.H.; Lalonde, R.L.	2020	Journal of Chemical Education	Beyond Green Chemistry: Teaching Social Justice in Organic Chemistry	[104]
S5	Alwaseem, H.; Donahue, C.J.; Marincean, S.	2014	Journal of Chemical Education	Catalytic transfer hydrogenation of castor oil	[105]
S6	Amaris, Z.N.; Freitas, D.N.; Mac, K.; Gerner, K.T.; Nameth, C.; Wheeler, K.E.	2017	Journal of Chemical Education	Nanoparticle Synthesis, Characterization, and Ecotoxicity: A Research-Based Set of Laboratory Experiments for a General Chemistry Course	[106]
S7	Amin, S.; Barnes, A.; Buckner, C.; Jones, J.; Monroe, M.; Nurmomade, L.; Pinto, T.; Starkey, S.; Agee, B.M.; Crouse, D.J.; Swartling, D.J.	2015	Journal of Chemical Education	Diels-alder reaction using a solar irradiation heat source designed for undergraduate organic chemistry laboratories	[107]
S8	Andraos, J.; Dicks, A.P.	2012	Chemistry Education Research and Practice	Green chemistry teaching in higher education: A review of effective practices	[12]
S9	Armstrong, C.; Burnham, J.A.J.; Warminski, E.E.	2017	Journal of Chemical Education	Combining Sustainable Synthesis of a Versatile Ruthenium Dihydride Complex with Structure Determination Using Group Theory and Spectroscopy	[108]
S10	Armstrong, L.B.; Rivas, M.C.; Zhou, Z.; Irie, L.M.; Kerstiens, G.A.; Robak, M.T.; Douskey, M.C.; Baranger, A.M.	2019	Journal of Chemical Education	Developing a Green Chemistry Focused General Chemistry Laboratory Curriculum: What Do Students Understand and Value about Green Chemistry?	[28]
S11	Arrebola, J.C.; Rodríguez-Fernández, N.; Caballero, Á.	2020	Journal of Chemical Education	Decontamination of Wastewater Using Activated Biochar from Agricultural Waste: A Practical Experiment for Environmental Sciences Students	[109]

Paper Code	Author(s)	Year	Name of Journal	Title	Ref.
S12	Aubrecht, K.B.; Bourgeois, M.; Brush, E.J.; Mackellar, J.; Wissinger, J.E.	2019	Journal of Chemical Education	Integrating Green Chemistry in the Curriculum: Building Student Skills in Systems Thinking, Safety, and Sustainability	[27]
S13	Aubrecht, K.B.; Padwa, L.; Shen, X.; Bazargan, G.	2015	Journal of Chemical Education	Development and implementation of a series of laboratory field trips for advanced high school students to connect chemistry to sustainability	[110]
S14	Bachofer, S.J.; Lingwood, M.D.	2019	Physical Sciences Reviews	A green determination of an equilibrium constant: teaching new skills	[111]
S15	Bailey, A.; Andrews, L.; Khot, A.; Rubin, L.; Young, J.; Allston, T.D.; Takacs, G.A.	2015	Journal of Chemical Education	Hydrogen storage experiments for an undergraduate laboratory course-clean energy: Hydrogen/fuel cells	[112]
S16	Ballard, C.E.	2013	Journal of Chemical Education	Green oxidative homocoupling of 1-methylimidazole	[113]
S17	Ballard, C.E.	2011	Journal of Chemical Education	Green reductive homocoupling of bromobenzene	[114]
S18	Bannin, T.J.; Datta, P.P.; Kiesewetter, E.T.; Kiesewetter, M.K.	2019	Journal of Chemical Education	Synthesizing Stilbene by Olefin Metathesis Reaction Using Guided Inquiry to Compare and Contrast Wittig and Metathesis Methodologies	[115]
S19	Barcena, H.; Maziarz, K.	2017	Journal of Chemical Education	Chemical upcycling of expired drugs: Synthesis of guaifenesin acetonide	[116]
S20	Barcena, H.; Tuachi, A.; Zhang, Y.	2017	Journal of Chemical Education	Teaching Green Chemistry with Epoxidized Soybean Oil	[117]
S21	Behnia, M.S.; Emerson, D.W.; Steinberg, S.M.; Alwis, R.M.; Duenas, J.A.; Serafino, J.O.	2011	Journal of Chemical Education	A simple, safe method for preparation of biodiesel	[118]
S22	Bendall, S.; Birdsall-Wilson, M.; Jenkins, R.; Chew, Y.M.J.; Chuck, C.J.	2015	Journal of Chemical Education	Showcasing chemical engineering principles through the production of biodiesel from spent coffee grounds	[119]
S23	Bennett, G.D.	2005	Journal of Chemical Education	A green polymerization of aspartic acid for the undergraduate organic laboratory	[120]
S24	Berger, M.; Karod, M.; Goldfarb, J.L.	2019	Physical Sciences Reviews	Invasive species or sustainable water filters? A student-led laboratory investigation into locally sourced biomass-based adsorbents for sustainable water treatment	[121]

Table A1. Cont.

Paper Code	Author(s)	Year	Name of Journal	Title	Ref.
S25	Biswas, R.; Mukherjee, A.	2017	Journal of Chemical Education	Introducing the Concept of Green Synthesis in the Undergraduate Laboratory: Two-Step Synthesis of 4-Bromoacetanilide from Aniline	[122]
S26	Blatti, J.L.; Garcia, J.; Cave, D.; Monge, F.; Cuccinello, A.; Portillo, J.; Juarez, B.; Chan, E.; Schwebel, F.	2019	Journal of Chemical Education	Systems Thinking in Science Education and Outreach toward a Sustainable Future	[92]
S27	Blatti, J.L.	2017	Journal of Chemical Education	Colorful and Creative Chemistry: Making Simple Sustainable Paints with Natural Pigments and Binders	[94]
S28	Blatti, J.L.; Burkart, M.D.	2012	Journal of Chemical Education	Releasing stored solar energy within pond scum: Biodiesel from algal lipids	[123]
S29	Bodsgard, B.R.; Lien, N.R.; Waulters, Q.T.	2016	Journal of Chemical Education	Liquid CO ₂ Extraction and NMR Characterization of Anethole from Fennel Seed: A General Chemistry Laboratory	[124]
S30	Buckley, H.L.; Beck, A.R.; Mulvihill, M.J.; Douskey, M.C.	2013	Journal of Chemical Education	Fitting it all in: Adapting a green chemistry extraction experiment for inclusion in an undergraduate analytical laboratory	[70]
S31	Cacciatore, K.L.; Amado, J.; Evans, J.J.; Sevian, H.	2008	Journal of Chemical Education	Connecting solubility, equilibrium, and periodicity in a green, inquiry experiment for the general chemistry laboratory	[125]
S32	Cacciatore, K.L.; Sevian, H.	2006	Journal of Chemical Education	Teaching lab report writing through inquiry: A green chemistry stoichiometry experiment for general chemistry	[126]
S33	Cardinal, P.; Greer, B.; Luong, H.; Tyagunova, Y.	2012	Journal of Chemical Education	A multistep synthesis incorporating a green bromination of an aromatic ring	[71]
S34	Cavalcante Dos Santos, R.; Cabral Cavalcanti, J.N.; Werneck Do Carmo, E.C.; De Souza, F.C.; Soares, W.G.; Gimenes De Souza, C.; França De Andrade, D.; D'Avila, L.A.	2020	Journal of Chemical Education	Approaching Diesel Fuel Quality in Chemistry Lab Classes: Undergraduate Student's Achievements on Determination of Biodiesel Content in Diesel Oil Applying Solvatochromic Effect	[127]
S35	Chan, J.M.W.; Zhang, X.; Brennan, M.K.; Sardon, H.; Engler, A.C.; Fox, C.H.; Frank, C.W.; Waymouth, R.M.; Hedrick, J.L.	2015	Journal of Chemical Education	Organocatalytic ring-opening polymerization of trimethylene carbonate to yield a biodegradable polycarbonate	[128]

Table A1. Cont.

Paper Code	Author(s)	Year	Name of Journal	Title	Ref.
S36	Chapman, S.; Herniman, J.M.; Langley, G.J.; Raja, R.; Logothetis, T.A.	2019	Journal of Chemical Education	Redox Aluminophosphates: Applying Fundamental Undergraduate Theory to Solve Global Challenges in the Chemical Industry	[129]
S37	Chemat, F.; Perino-Issartier, S.; Petitcolas, E.; Fernandez, X.	2012	Analytical and Bioanalytical Chemistry	"In situ" extraction of essential oils by use of Dean-Stark glassware and a Vigreux column inside a microwave oven: A procedure for teaching green analytical chemistry	[130]
S38	Cheney, M.L.; Zaworotko, M.J.; Beaton, S.; Singer, R.D.	2008	Journal of Chemical Education	Cocrystal controlled solid-state synthesis. A green chemistry experiment for undergraduate organic chemistry	[131]
S39	Cheung, L.L.W.; Styler, S.A.; Dicks, A.P.	2010	Journal of Chemical Education	Rapid and convenient synthesis of the 1,4-dihydropyridine privileged structure	[132]
S40	Christensen, J.E.; Huddle, M.G.; Rogers, J.L.; Yung, H.; Mohan, R.S.	2008	Journal of Chemical Education	The discovery-oriented approach to organic chemistry. 7. Rearrangement of trans-stilbene oxide with bismuth trifluoromethanesulfonate and other metal triflates: A microscale green organic chemistry laboratory experiment	[133]
S41	Clark, R.A.; Stock, A.E.; Zovinka, E.P.	2012	Journal of Chemical Education	Metalloporphyrins as oxidation catalysts: Moving toward "greener" chemistry in the inorganic chemistry laboratory	[134]
S42	Colacino, E.; Dayaker, G.; Morère, A.; Friščić, T.	2019	Journal of Chemical Education	Introducing Students to Mechanochemistry via Environmentally Friendly Organic Synthesis Using a Solvent-Free Mechanochemical Preparation of the Antidiabetic Drug Tolbutamide	[135]
S43	Colmenares, J.C.; Arévalo-García, E.B.; Colmenares-Quintero, R.F.	2015	Journal of Science Education	A simple method of water purification and energy extraction from organic wastewater: An application of green chemistry principles in everyday life	[20]
S44	Contreras-Cruz, D.A.; Cantú-Reyes, M.; García-Sánchez, J.M.; Peña-Ortíz, D.; Sánchez-Carmona, M.A.; Miranda, L.D.	2019	Journal of Chemical Education	Shedding blue light on the undergraduate laboratory: an easy-to-assemble LED Photoreactor for Aromatization of a 1,4-Dihydropyridine	[136]
S45	Cooper, P.D.; Walser, J.	2019	Journal of Chemical Education	Total Chemical Footprint of an Experiment: A Systems Thinking Approach to Teaching Rovibrational Spectroscopy	[137]

Table A1. Cont.

Paper Code	Author(s)	Year	Name of Journal	Title	Ref.
S46	Cosio, M.N.; Cardenal, A.D.; Maity, A.; Hyun, SM.; Akwaowo, V.E.; Hoffman, C.W.; Powers, T.M.; Powers, D.C.	2020	Journal of Chemical Education	Exploring Green Chemistry with Aerobic Hypervalent Iodine Catalysis	[138]
S47	Costa, N.E.; Pelotte, A.L.; Simard, J.M.; Syvinski, C.A.; Deveau, A.M.	2012	Journal of Chemical Education	Discovering green, aqueous Suzuki coupling reactions: Synthesis of ethyl (4-phenylphenyl)acetate, a biaryl with anti-arthritic potential	[139]
S48	Desmond, S.; Ray, C.; Andino Martínez, J.G.	2019	Physical Sciences Reviews	Educational benefits of green chemistry	[140]
S49	Dhingra, S.; Angrish, C.	2011	Journal of Chemical Education	Qualitative organic analysis: An efficient, safer, and economical approach to preliminary tests and functional group analysis	[141]
S50	Dias, A.M.; Ferreira, M.L.S.	2015	Journal of Chemical Education	"Supermarket column chromatography of leaf pigments" revisited: Simple and ecofriendly separation of plant carotenoids, chlorophylls, and flavonoids from green and red leaves	[93]
S51	Dicks, A.P.; D'Eon, J.C.; Morra, B.; Kutas Chisu C.; Quinlan, K.B.; Cannon, A.S.	2019	Journal of Chemical Education	A Systems Thinking Department: Fostering a Culture of Green Chemistry Practice among Students	[142]
S52	Dicks, A.P.	2018	Current Opinion in Green and Sustainable Chemistry	Teaching reaction efficiency through the lens of green chemistry: Should students focus on the yield, or the process?	[55]
S53	Dicks, A.P.	2009	Green Chemistry Letters and Reviews	Solvent-free reactivity in the undergraduate organic laboratory	[56]
S54	Dicks, A.P.	2009	Green Chemistry Letters and Reviews	A review of aqueous organic reactions for the undergraduate teaching laboratory	[57]
S55	Dintzner, M.R.; Kinzie, C.R.; Pulkrabek, K.; Arena, A.F.	2012	Journal of Chemical Education	The cyclohexanol cycle and synthesis of nylon 6,6: Green chemistry in the undergraduate organic laboratory	[143]
S56	Dintzner, M.R.; Maresh, J.J.; Kinzie, C.R.; Arena, A.F.; Speltz, T.	2012	Journal of Chemical Education	A research-based undergraduate organic laboratory project: Investigation of a one-pot, multicomponent, environmentally friendly prins-friedel-crafts-type reaction	[144]
S57	Divya, D.; Raj, K.G.	2019	Journal of Chemical Education	From Scrap to Functional Materials: Exploring Green and Sustainable Chemistry Approach in the Undergraduate Laboratory	[145]

Table A1. Cont.

S69

Ginzburg, A.L.; Baca, N.A.; Hampton, P.D.

2014

Paper Code	Author(s)	Year	Name of Journal	Title	Ref.
S58	Dorney, K.M.; Baker, J.D.; Edwards, M.L.; Kanel, S.R.; O'Malley, M.; Sizemore, I.E.P.	2014	Journal of Chemical Education	Tangential flow filtration of colloidal silver nanoparticles: A "green" laboratory experiment for chemistry and engineering students	[146]
S59	dos Santos, R.V.; Viana, G.M.; Moreira, A.F.S.; Nóbrega, V.S.; da Silva, V.A.S.; Malta, L.F.B.; Aguiar; L.C.S.; Senra, J.D.	2019	Quimica Nova	Revisiting the nucleophilicity concept in a comprehensive biomass valorization experiment: From papaya seeds to thiourea motifs	[147]
S60	Duangpummet, P.; Chaiyen, P.; Chenprakhon, P.	2019	Journal of Chemical Education	Lipase-Catalyzed Esterification: An Inquiry-Based Laboratory Activity to Promote High School Students' Understanding and Positive Perceptions of Green Chemistry	[72]
S61	Edgar, L.J.G.; Koroluk, K.J.; Golmakani, M.; Dicks, A.P.	2014	Journal of Chemical Education	Green chemistry decision-making in an upper-level undergraduate organic laboratory	[148]
S62	Eissen, M.	2012	Chemistry Education Research and Practice	Sustainable production of chemicals—an educational perspective	[149]
S63	Félix, S.; Araújo, J.; Pires, A.M.; Sousa, A.C.	2017	Waste Management	Soap production: A green prospective	[150]
S64	Fennie, M.W.; Roth, J.M.	2016	Journal of Chemical Education	Comparing Amide-Forming Reactions Using Green Chemistry Metrics in an Undergraduate Organic Laboratory	[82]
S65	Förster, C.; Heinze, K.	2020	Journal of Chemical Education	Preparation and Thermochromic Switching between Phosphorescence and Thermally Activated Delayed Fluorescence of Mononuclear Copper(I) Complexes	[151]
S66	Gabriela, M.; Ribeiro, T.C.; MacHado, A.A.S.C.	2011	Journal of Chemical Education	Metal-acetylacetonate synthesis experiments: Which is greener?	[83]
S67	Garner, N.; Siol, A.; Eilks, I.	2016	Journal of Science Education	The synthesis of vanillin—learning about aspects of sustainable chemistry by comparing different syntheses	[73]
S68	Geiger, H.C.; Donohoe, J.S.	2012	Journal of Chemical Education	Green oxidation of menthol enantiomers and analysis by circular dichroism spectroscopy: An advanced organic chemistry laboratory	[152]
6(0	Cicles AL Des NA Hardes DD	2014		The Isomerization of $(-)$ -Menthone to $(+)$ -Isomenthone	[74]

Journal of Chemical Education

Table A1. Cont.

[74]

Catalyzed by an Ion-Exchange Resin

Paper Code	Author(s)	Year	Name of Journal	Title	Ref.
S70	Go, E.B.; Srisuknimit, V.; Cheng, S.L.; Vosburg, D.A.	2016	Journal of Chemical Education	Self-Assembly, Guest Capture, and NMR Spectroscopy of a Metal-Organic Cage in Water	[153]
S71	Gómez-Biagi, R.F.; Dicks, A.P.	2015	Journal of Chemical Education	Assessing Process Mass Intensity and Waste via an aza-Baylis-Hillman Reaction	[81]
S72	Goodwin, T.E.	2004	Journal of Chemical Education	An asymptotic approach to the development of a green organic chemistry laboratory	[154]
S73	Graham, K.J.; Jones, T.N.; Schaller, C.P.; McIntee, E.J.	2014	Journal of Chemical Education	Implementing a student-designed green chemistry laboratory project in organic chemistry	[75]
S74	Grieger, K.; Leontyev, A.	2020	Journal of Chemical Education	Promoting student awareness of green chemistry principles via student-generated presentation videos	[90]
S75	Günter, T.; Akkuzu, N.; Alpat, Ş.	2017	Research in Science and Technological Education	Understanding 'green chemistry' and 'sustainability': an example of problem-based learning (PBL)	[155]
S76	Guron, M.; Paul, J.J.; Roeder, M.H.	2016	Journal of Chemical Education	Incorporating Sustainability and Life Cycle Assessment into First-Year Inorganic Chemistry Major Laboratories	[88]
S77	Haack, J.A.; Hutchison, J.E.; Kirchhoff, M.M.; Levy, I.J.	2005	Journal of Chemical Education	Going green: Lecture assignments and lab experiences for the college curriculum	[11]
S78	Hamilton, A.E.; Buxton, A.M.; Peeples, C.J.; Chalker, J.M.	2013	Journal of Chemical Education	An operationally simple aqueous Suzuki-Miyaura cross-coupling reaction for an undergraduate organic chemistry laboratory	[156]
S79	Hie, L.; Chang, J.J.; Garg, N.K.	2015	Journal of Chemical Education	Nickel-catalyzed Suzuki-Miyaura cross-coupling in a green alcohol solvent for an undergraduate organic chemistry laboratory	[157]
S80	Hill, N.J.; Bowman, M.D.; Esselman, B.J.; Byron, S.D.; Kreitinger, J.; Leadbeater, N.E.	2014	Journal of Chemical Education	Ligand-free suzuki-miyaura coupling reactions using an inexpensive aqueous palladium source: A synthetic and computational exercise for the undergraduate organic chemistry laboratory	[158]
S81	Hill, N.J.; Hoover, J.M.; Stahl, S.S.	2013	Journal of Chemical Education	Aerobic alcohol oxidation using a copper(I)/TEMPO catalyst system: A green, catalytic oxidation reaction for the undergraduate organic chemistry laboratory	[159]

Paper Code	Author(s)	Year	Name of Journal	Title	Ref.
S82	Hoang, G.T.; Kubo, T.; Young, V.G., Jr.; Kautzky, J.A.; Wissinger, J.E.	2015	Journal of Chemical Education	Illustrating the Utility of X-ray Crystallography for Structure Elucidation through a Tandem Aldol Condensation/Diels-Alder Reaction Sequence	[160]
S83	Hoffman, K.C.; Dicks, A.P.	2020	Sustainable Chemistry and Pharmacy	Shifting the paradigm of chemistry education by Greening the high school laboratory	[23]
S84	Hopson, R.; Lee, P.Y.B.; Hess, K.M.	2018	Journal of Chemical Education	1-Dimensional Selective Nuclear Overhauser Effect NMR Spectroscopy to Characterize Products from a Two-Step Green Chemistry Synthesis	[161]
S85	Horta, J.E.	2011	Journal of Chemical Education	Simple microwave-assisted Claisen and Dieckmann condensation experiments for the undergraduate organic chemistry laboratory	[162]
S86	Hudson, R.; Ackerman, H.M.; Gallo, L.K.; Gwinner, A.S.; Krauss, A.; Sears, J.D.; Bishop, A.; Esdale, K.N.; Katz, J.L.	2017	Journal of Chemical Education	CO ₂ Dry Cleaning: A Benign Solvent Demonstration Accessible to K-8 Audiences	[21]
S87	Hurst, G.A.	2020	Current Opinion in Green and Sustainable Chemistry	Systems thinking approaches for international green chemistry education	[87]
S88	Hurst, G.A.	2017	Journal of Chemical Education	Green and Smart: Hydrogels to Facilitate Independent Practical Learning	[163]
S89	Hwang, H.L.; Jadhav, S.R.; Silverman, J.R.; John, G.	2014	Journal of Chemical Education	Sweet and Sustainable: Teaching the Biorefinery Concept through Biobased Gelator Synthesis	[164]
S90	Ison, E.A.; Ison, A.	2012	Journal of Chemical Education	Synthesis of well-defined copper N-heterocyclic carbene complexes and their use as catalysts for a "click reaction": A multistep experiment that emphasizes the role of catalysis in green chemistry	[165]
S91	Johnston, A.; Scaggs, J.; Mallory, C.; Haskett, A.; Warner, D.; Brown, E.; Hammond, K.; McCormick, M.M.; McDougal, O.M.	2013	Journal of Chemical Education	A green approach to separate spinach pigments by column chromatography	[166]
S92	Jones-Wilson, T.M.; Burtch, E.A.	2005	Journal of Chemical Education	A green starting material for electrophilic aromatic substitution for the undergraduate organic laboratory	[167]

Table A1. Cont.

Paper Code	Author(s)	Year	Name of Journal	Title	Ref.
S93	Josephson, P.; Nykvist, V.; Qasim, W.; Blomkvist, B.; DInér, P.	2019	Journal of Chemical Education	Student-Driven Development of Greener Chemistry in Undergraduate Teaching: Synthesis of Lidocaine Revisited	[76]
S94	Karpudewan, M.; Kulandaisamy, Y.	2018	Current Opinion in Green and Sustainable Chemistry	Malaysian teachers' insights into implementing green chemistry experiments in secondary schools	[99]
S95	Karpudewan, M.; Mathanasegaran, K.	2018	Asia-Pacific Forum on Science Learning and Teaching	Exploring the use of context-based green chemistry experiments in understanding the effects of concentration and catalyst on the rate of reaction	[168]
S96	Karpudewan, M.; Roth, WM.; Ismail, Z.	2013	Asia-Pacific Education Researcher	The Effects of "Green Chemistry" on Secondary School Students' Understanding and Motivation	[169]
S97	Karpudewan, M.; Ismail, Z.; Roth, WM.	2012	Journal of Science Teacher Education	Fostering Pre-service Teachers' Self-Determined Environmental Motivation Through Green Chemistry Experiments	[95]
S98	Karpudewan, M.; Ismail, Z.; Roth, WM.	2012	Chemistry Education Research and Practice	Ensuring sustainability of tomorrow through green chemistry integrated with sustainable development concepts (SDCs)	[96]
S99	Karpudewan, M.; Ismail, Z.; Roth, WM.	2012	Environmental Education Research	Promoting pro-environmental attitudes and reported behaviors of Malaysian pre-service teachers using green chemistry experiments	[97]
S100	Karpudewan, M.; Ismail, Z.H.; Mohamed, N.	2009	International Journal of Sustainability in Higher Education	The integration of green chemistry experiments with sustainable development concepts in pre-service teachers' curriculum: Experiences from Malaysia	[39]
S101	Keen, C.; Couture, S.; Abd El Meseh, N.; Sevian, H.	2020	Journal of Chemical Education	Connecting Theory to Life: Learning Greener Electrochemistry by Taking Apart a Common Battery	[170]
S102	Kelly, M.J.B.; Fallot, L.B.; Gustafson, J.L.; Bergdahl, B.M.	2016	Journal of Chemical Education	Water Mediated Wittig Reactions of Aldehydes in the Teaching Laboratory: Using Sodium Bicarbonate for the in Situ Formation of Stabilized Ylides	[171]
S103	Khuong, K.S.	2017	Journal of Chemical Education	Greener Oxidation of Benzhydrol: Evaluating Three Oxidation Procedures in the Organic Laboratory	[172]
S104	Klingshirn, M.A.; Wyatt, A.F.; Hanson, R.M.; Spessard, G.O.	2008	Journal of Chemical Education	Determination of the formula of a hydrate: A greener alternative	[173]

Table A1. Cont.

Paper Code	Author(s)	Year	Name of Journal	Title	Ref.
S105	Klotz, E., Doyle, R., Gross, E.; Mattson, B.	2011	Journal of Chemical Education	The equilibrium constant for bromothymol blue: A general chemistry laboratory experiment using spectroscopy	[174]
S106	Knutson, C.M.; Hilker, A.P.; Tolstyka, Z.P.; Anderson, C.B.; Wilbon, P.A.; Mathers, R.T.; Wentzel, M.T.; Perkins, A.L.; Wissinger, J.E.	2019	Journal of Chemical Education	Dyeing to Degrade: A Bioplastics Experiment for College and High School Classrooms	[175]
S107	Knutson, C.M.; Schneiderman, D.K.; Yu, M.; Javner, C.H.; Distefano, M.D.; Wissinger, J.E.	2017	Journal of Chemical Education	Polymeric Medical Sutures: An Exploration of Polymers and Green Chemistry	[176]
S108	Koch, A.S.; Chimento, C.A.; Berg, A.N.; Mughal, F.D.; Spencer, JP.; Hovland, D.E.; Mbadugha, B.; Hovland, A.K.; Eller, L.R.	2015	Journal of Chemical Education	Extraction of maltol from Fraser fir: A comparison of microwave-assisted extraction and conventional heating protocols for the organic chemistry laboratory	[177]
S109	Kolopajlo, L.	2017	Physical Sciences Reviews	Green chemistry pedagogy	[24]
S110	Koroluk, K.J.; Jackson, D.A.; Dicks, A.P.	2012	Journal of Chemical Education	The Petasis reaction: Microscale synthesis of a tertiary amine antifungal analog	[178]
S111	Kradtap Hartwell, S.	2012	Chemistry Education Research and Practice	Exploring the potential for using inexpensive natural reagents extracted from plants to teach chemical analysis	[179]
S112	Krenz, J.; Simcox, N.; Stoddard Tepe, J.; Simpson, C.D.	2016	ACS Sustainable Chemistry and Engineering	Transitioning to safer chemicals in academic research laboratories: Lessons learned at the University of Washington	[78]
S113	Kurowska-Susdorf, A.; Zwierżdżyński, M.; Bevanda, A.M.; Talić, S.; Ivanković, A.; Płotka-Wasylka, J.	2019	TrAC—Trends in Analytical Chemistry	Green analytical chemistry: Social dimension and teaching	[180]
S114	Lam, C.H.; Jackson, J.E.	2020	Journal of Chemical Education	Teaching Electrochemistry with Common Objects: Electrocatalytic Hydrogenation of Acetol with U.S. Coins	[181]
S115	Lam, C.H.; Escande, V.; Mellor, K.E.; Zimmerman, J.B.; Anastas, P.T.	2019	Journal of Chemical Education	Teaching Atom Economy and E-Factor Concepts through a Green Laboratory Experiment: Aerobic Oxidative Cleavage of meso-Hydrobenzoin to Benzaldehyde Using a Heterogeneous Catalyst	[84]
S116	Landstrom, E.B.; Nichol, M.; Lipshutz, B.H.; Gainer, M.J.	2019	Journal of Chemical Education	Discovery-Based S _N Ar Experiment in Water Using Micellar Catalysis	[182]

Paper Code	Author(s)	Year	Name of Journal	Title	Ref.
S117	Lang, P.T.; Harned, A.M.; Wissinger, J.E.	2011	Journal of Chemical Education	Oxidation of borneol to camphor using oxone and catalytic sodium chloride: A green experiment for the undergraduate organic chemistry laboratory	[183]
S118	Lapanantnoppakhun, S.; Tengjaroensakul, U.; Mungkornasawakul, P.; Puangpila, C.; Kittiwachana, S.; Saengtempiam, J.; Hartwell, S.K.	2020	Journal of Chemical Education	Green Analytical Chemistry Experiment: Quantitative Analysis of Iron in Supplement Tablets with Vis spectrophotometry Using Tea Extract as a Chromogenic Agent	[184]
S119	Lasker, G.A.; Simcox, N.J.; Mellor, K.E.; Mullins, M.L.; Nesmith, S.M.; Van Bergen, S.; Anastas, P.T.	2019	Journal of Chemical Education	Introducing Toxicology into the Undergraduate Chemistry Laboratory Using Safety Data Sheets and Sunscreen Activities	[185]
S120	Lee, N.E.; Gurney, R.; Soltzberg, L.	2014	Journal of Chemical Education	Using green chemistry principles as a framework to incorporate research into the organic laboratory curriculum	[79]
S121	Leslie, J.M.; Tzeel, B.A.	2016	Journal of Chemical Education	Gold(III)-Catalyzed Hydration of Phenylacetylene	[186]
S122	Leslie, R.; Leeb, E.; Smith, R.B.	2012	Journal of Chemical Education	Synthesis of ethyl nalidixate: A medicinal chemistry experiment	[187]
S123	Leung, S.H.; Angel, S.A.	2004	Journal of Chemical Education	Solvent-free wittig reaction: A green organic chemistry laboratory experiment	[188]
S124	Lin, Y.; Zhao, H.; Yu, F.; Yang, J.	2018	Sustainability	Design of an extended experiment with electrical double layer capacitors: Electrochemical energy storage devices in green chemistry	[189]
S125	Lipshutz, B.H.; Bošković, Z.; Crowe, C.S.; Davis, V.K.; Whittemore, H.C.; Vosburg, D.A.; Wenzel, A.G.	2013	Journal of Chemical Education	"Click" and olefin metathesis chemistry in water at room temperature enabled by biodegradable micelles	[190]
S126	Listyarini, R.V.; Pamenang, F.D.N.; Harta, J.; Wijayanti, L.W.; Asy'ari, M.; Lee, W.	2019	Jurnal Pendidikan IPA Indonesia	The integration of green chemistry principles into small scale chemistry practicum for senior high school students	[16]
S127	Liu, Y.; Myers, E.J.; Rydahl, S.A.; Wang, X.	2019	Journal of Chemical Education	Ultrasonic-Assisted Synthesis, Characterization, and Application of a Metal-Organic Framework: A Green General Chemistry Laboratory Project	[191]
S128	Lu, GP.; Chen, F.; Cai, C.	2017	Journal of Chemical Education	Thiourea in the Construction of C-S Bonds as Part of an	[192]

Table A1. Cont.

Undergraduate Organic Chemistry Laboratory Course

Paper Code	Author(s)	Year	Name of Journal	Title	Ref.
S129	Mackenzie, L.S.; Tyrrell, H.; Thomas, R.; Matharu, A.S.; Clark, J.H.; Hurst, G.A.	2019	Journal of Chemical Education	Valorization of Waste Orange Peel to Produce Shear-Thinning Gels	[193]
S130	Manchanayakage, R.	2013	Journal of Chemical Education	Designing and incorporating green chemistry courses at a liberal arts college to increase students' awareness and interdisciplinary collaborative work	[194]
S131	Marcos, C.F.; Neo, A.G.; Díaz, J.; Martínez-Caballero, S.	2020	Journal of Chemical Education	A Safe and Green Benzylic Radical Bromination Experiment	[195]
S132	Martin, E.; Kellen-Yuen, C.	2007	Journal of Chemical Education	Microwave-assisted organic synthesis in the organic lab: A simple, greener Wittig reaction	[196]
S133	McAllister, G.D.; Parsons, A.F.	2019	Journal of Chemical Education	Going Green in Process Chemistry: Optimizing an Asymmetric Oxidation Reaction to Synthesize the Antiulcer Drug Esomeprazole	[197]
S134	McKee, J.R.; Zanger, M.; Chiariello, C.; McKee, J.A.; Dorfner, W.; Fasella, E.; Koo, Y.	2019	Journal of Chemical Education	Semimicro/Microscale Adaptation of the Cobalt Chloride/Sodium Borohydride Reduction of Methyl Oleate	[198]
S135	McKenzie, L.C.; Huffman, L.M.; Parent, K.E.; Hutchison, J.E.; Thompson, J.E.	2004	Journal of Chemical Education	Patterning Self-Assembled Monolayers on Gold: Green Materials Chemistry in the Teaching Laboratory	[199]
S136	Mio, M.J.	2017	Physical Sciences Reviews	How the principles of green chemistry changed the way organic chemistry labs are taught at the university of detroit mercy	[200]
S137	Mohan, R.S.; Mejia, M.P.	2020	Journal of Chemical Education	Environmentally Friendly Organic Chemistry Laboratory Experiments for the Undergraduate Curriculum: A Literature Survey and Assessment	[201]
S138	Mooney, D.	2004	Chemical Health and Safety	Effectively minimizing hazardous waste in academia: The Green Chemistry approach	[202]
S139	Mooney, M.; Vreugdenhil, A.J.; Shetranjiwalla, S.	2020	Journal of Chemical Education	A Toolkit of Green Chemistry and Life-Cycle Analysis for Comparative Assessment in Undergraduate Organic Chemistry Experiments: Synthesis of (E)-Stilbene	[203]
S140	Morris, R.K.; Hilker, A.P.; Mattice, T.M.; Donovan, S.M.; Wentzel, M.T.; Willoughby, P.H.	2019	Journal of Chemical Education	Simple and Versatile Protocol for Preparing Self-Healing Poly(vinyl alcohol) Hydrogels	[204]

Paper Code	Author(s)	Year	Name of Journal	Title	Ref.
S141	Morsch, L.A.; Deak, L.; Tiburzi, D.; Schuster, H.; Meyer, B.	2014	Journal of Chemical Education	Green aqueous wittig reaction: Teaching green chemistry in organic teaching laboratories	[205]
S142	Mullins, J.J.; Prusinowski, A.F.	2019	Journal of Chemical Education	Microwave-Promoted Synthesis of a Carbocyclic Curcuminoid: An Organic Chemistry Laboratory Experiment	[206]
S143	Murphy, K.C.; Dilip, M.; Quattrucci, J.G.; Mitroka, S.M.; Andreatta, J.R.	2019	Journal of Chemical Education	Sustainable Consumer Choices: An Outreach Program Exploring the Environmental Impact of Our Consumer Choices Using a Systems Thinking Model and Laboratory Activities	[207]
S144	Narayan, S.	2020	Physical Sciences Reviews	Sustainability and some green initiatives in undergraduate education	[58]
S145	Nigam, M.; Rush, B.; Patel, J.; Castillo, R.; Dhar, P.	2016	Journal of Chemical Education	Aza-Michael Reaction for an Undergraduate Organic Chemistry Laboratory	[208]
S146	Obhi, N.K.; Mallov, I.; Borduas-Dedekind, N.; Rousseaux, S.A.L.; Dicks, A.P.	2019	Journal of Chemical Education	Comparing Industrial Amination Reactions in a Combined Class and Laboratory Green Chemistry Assignment	[209]
S147	Orwat, K.; Bernard, P.; Wróblewski, S.; Mendez, J.D.	2018	Macedonian Journal of Chemistry and Chemical Engineering	Traditional vs. UV-cured coatings—An inquiry-based experiment for introducing green chemistry	[77]
S148	Paluri, S.L.A.; Edwards, M.L.; Lam, N.H.; Williams, E.M.; Meyerhoefer, A.; Sizemore, I.E.P.	2015	Journal of Chemical Education	Introducing green and nongreen aspects of noble metal nanoparticle synthesis: An inquiry-based laboratory experiment for chemistry and engineering students	[210]
S149	Panda, D.; Patra, S.; Awasthi, M.K.; Singh, S.K.	2020	ACS applied materials & interfaces	Lab Cooked MOF for CO ₂ Capture: A Sustainable Solution to Waste Management	[211]
S150	Pandarus, V.; Ciriminna, R.; Béland, F.; Pagliaro, M.	2020	Applied Materials Today	Making fine chemicals, nanomaterials and pharmaceutical ingredients over SiliaCat catalysts	[212]
S151	Panzarasa, G.	2018	ACS Omega	Just Add Luminol to Turn the Spotlight on Radziszewski Amidation	[213]
S152	Panzarasa, G.; Sparnacci, K.	2012	Journal of Chemical Education	Glowing teacup demonstration: Trautz-schorigin reaction of natural polyphenols	[214]

Paper Code	Author(s)	Year	Name of Journal	Title	Ref.
S153	Patterson, A.L.; May, M.D.; Visser, B.J.; Kislukhin, A.A.; Vosburg, D.A.	2013	Journal of Chemical Education	Solvent-free synthesis and fluorescence of a thiol-reactive sensor for undergraduate organic laboratories	[215]
S154	Peng, HC.; Bryan, J.; Henson, W.; Zhdankin, V.V.; Gandhi, K.; David, S.	2019	Journal of Chemical Education	New, Milder Hypervalent Iodine Oxidizing Agent: Using μ-Oxodi(phenyliodanyl) Diacetate, a (Diacetoxyiodo)benzene Derivative, in the Synthesis of Quinones	[216]
S155	Pereira, T.M.;Franco, D.F.P.; Vitório, F.; Amaral, R.C.; Ponzoni, A.C.; Kümmerle, A.E.	2018	Quimica Nova	Microwave-assisted synthesis and pka determination of umbelliferone: An experiment for the undergraduate organic chemistry laboratory	[217]
S156	Pfab, E.; Filiciotto, L.; Luque, R.	2019	Journal of Chemical Education	The Dark Side of Biomass Valorization: A Laboratory Experiment to Understand Humin Formation, Catalysis, and Green Chemistry	[218]
S157	Płotka-Wasylka, J.; Kurowska-Susdorf, A.; Sajid, M.; de la Guardia, M.; Namieśnik, J.; Tobiszewski, M.	2018	ChemSusChem	Green Chemistry in Higher Education: State of the Art, Challenges, and Future Trends	[52]
S158	Pohl, N.L.B.; Streff, J.M.; Brokman, S.	2012	Journal of Chemical Education	Evaluating sustainability: Soap versus biodiesel production from plant oils	[219]
S159	Priest, M.A.; Padgett, L.W.; Padgett, C.W.	2011	Journal of Chemical Education	Demonstrating the temperature dependence of density via construction of a Galilean thermometer	[220]
S160	Purcell, S.C.; Pande, P.; Lin, Y.; Rivera, E.J.; Latisha, P.U.; Smallwood, L.M.; Kerstiens, G.A.; Armstrong, L.B.; Robak, M.T.; Baranger, A.M.; Douskey, M.C.	2016	Journal of Chemical Education	Extraction and Antibacterial Properties of Thyme Leaf Extracts: Authentic Practice of Green Chemistry	[221]
S161	Raghuwanshi, V.S.; Wendt, R.; O'Neill, M.; Ochmann, M.; Som, T.; Fenger, R.; Mohrmann, M.; Hoell, A.; Rademann, K.	2017	Journal of Chemical Education	Bringing Catalysis with Gold Nanoparticles in Green Solvents to Graduate Level Students	[222]
S162	Rajapaksha, S.M.; Samarasekara, D.; Brown, J.C.; Howard, L.; Gerken, K.; Archer, T.; Lathan, P.; Mlsna, T.; Mlsna, D.	2018	Journal of Chemical Education	Determination of Xylitol in Sugar-Free Gum by GC-MS with Direct Aqueous Injection: A Laboratory Experiment for Chemistry Students	[223]
S163	Rajchakit, U.; Limpanuparb, T.	2016	Journal of Chemical Education	Greening the Traffic Light: Air Oxidation of Vitamin C Catalyzed by Indicators	[224]

S175

Santandrea, J.; Kairouz, V.; Collins, S.K.

2018

Journal of Chemical Education

Paper Code	Author(s)	Year	Name of Journal	Title	Ref.
S164	Rattanakit, P.; Maungchang, R.	2019	Journal of Chemical Education	Determining Iron(III) Concentration in a Green Chemistry Experiment Using <i>Phyllanthus emblica</i> (Indian Gooseberry) Extract and Spectrophotometry	[225]
S165	Reed, S.M.; Hutchison, J.E.	2000	Journal of Chemical Education	Green Chemistry in the Organic Teaching Laboratory: An Environmentally Benign Synthesis of Adipic Acid	[67]
S166	Reilly, M.K., King, R.P., Wagner, A.J. and King, S.M.	2014	Journal of Chemical Education	Microwave-Assisted Esterification: A Discovery-Based Microscale Laboratory Experiment	[226]
S167	Ribeiro, M.G.T.C.; MacHado, A.A.S.C.	2013	Journal of Chemical Education	Holistic metrics for assessment of the greenness of chemical reactions in the context of chemical education	[100]
S168	Ribeiro, M.G.T.C.; Machado, A.A.S.C.	2013	Green Chemistry Letters and Reviews	Greenness of chemical reactions—limitations of mass metrics	[227]
S169	Ribeiro, M.G.T.C.; Costa, D.A.; Machado, A.A.S.C.	2010	Green Chemistry Letters and Reviews	"Green Star": A holistic green chemistry metric for evaluation of teaching laboratory experiments	[38]
S170	Rosatella, A.A.; Afonso, C.A.M.; Branco, L.C.	2010	Journal of Chemical Education	Oxidation of cyclohexene to trans-1,2-cyclohexanediol promoted by p-toluenesulfonic acid without organic solvents	[228]
S171	Rubner, I.; Berry, A.J.; Grofe, T.; Oetken, M.	2019	Journal of Chemical Education	Educational Modules on the Power-to-Gas Concept Demonstrate a Path to Renewable Energy Futures	[229]
S172	Salman Ashraf S.; Rauf, M.A.; Abdullah, F.H.	2012	Research in Science and Technological Education	A hands-on approach to teaching environmental awareness and pollutant remediation to undergraduate chemistry students	[230]
S173	Samet, C.; Valiyaveettil, S.	2018	Journal of Chemical Education	Fruit and Vegetable Peels as Efficient Renewable Adsorbents for Removal of Pollutants from Water: A Research Experience for General Chemistry Students	[231]
S174	Sampaio, C.I.; Sousa, L.F.; Dias, A.M.	2020	Journal of Chemical Education	Separation of Anthocyaninic and Nonanthocyaninic Flavonoids by Liquid-Liquid Extraction Based on Their	[232]

Acid-Base Properties: A Green Chemistry Approach Continuous Flow Science in an Undergraduate Teaching

Laboratory: Photocatalytic Thiol-Ene Reaction Using

Visible Light

[233]

Table A1.	Cont.
-----------	-------

Paper Code	Author(s)	Year	Name of Journal	Title	Ref.
S176	Schaber, P.M.; Larkin, J.E.; Pines, H.A.; Berchou, K.; Wierchowski, E.; Marconi, A.; Suriani, A.	2012	Journal of Chemical Education	Supercritical fluid extraction versus traditional solvent extraction of caffeine from tea leaves: A laboratory-based case study for an organic chemistry course	[234]
S177	Schneiderman, D.K.; Gilmer, C.; Wentzel, M.T.; Martello, M.T.; Kubo, T.; Wissinger, J.E.	2014	Journal of Chemical Education	Sustainable polymers in the organic chemistry laboratory: Synthesis and characterization of a renewable polymer from δ -decalactone and L-lactide	[235]
S178	Serafin, M.; Priest, O.P.	2015	Journal of Chemical Education	Identifying Passerini products using a green, guided-inquiry, collaborative approach combined with spectroscopic lab techniques	[236]
S179	Sharma, R.K., Yadav, S., Gupta, R. and Arora, G.	2019	Journal of Chemical Education	Synthesis of Magnetic Nanoparticles Using Potato Extract for Dye Degradation: A Green Chemistry Experiment	[237]
S180	Sharma, R.K.; Gulati, S.; Mehta, S.	2012	Journal of Chemical Education	Preparation of gold nanoparticles using tea: A green chemistry experiment	[41]
S181	Sharma, R.K.; Sharma, C.; Sidhwani, I.T.	2011	Journal of Chemical Education	Solventless and one-pot synthesis of Cu(II) phthalocyanine complex: A green chemistry experiment	[238]
S182	Shell, T.A.; Shell, J.R.; Poole, K.A.; Guetzloff, T.F.	2011	Journal of Chemical Education	Microwave-assisted synthesis of N-phenylsuccinimide	[239]
S183	Shimizu, E.A.; Cory, B.; Hoang, J.; Castro, G.G.; Jung, M.E.; Vosburg, D.A.	2019	Journal of Chemical Education	Aqueous Dearomatization/Diels-Alder Cascade to a Grandifloracin Precursor	[240]
S184	Silveira, G.; Ikegaki, M.; Schneedorf, J.M.	2017	Green Chemistry Letters and Reviews	A low-cost yeast-based biofuel cell: An educational green approach	[241]
S185	Silverman, J.R.; Hudson, R.	2020	Journal of Chemical Education	Evaluating Feedstocks, Processes, and Products in the Teaching Laboratory: A Framework for Students to Use Metrics to Design Greener Chemistry Experiments	[54]
S186	Silverman, J.R.	2016	Journal of Chemical Education	Biobased Organic Chemistry Laboratories as Sustainable Experiment Alternatives	[242]
S187	Simeonov, S.P.; Afonso, C.A.M.	2013	Journal of Chemical Education	Batch and flow synthesis of 5-hydroxymethylfurfural (HMF) from fructose as a bioplatform intermediate: An experiment for the organic or analytical laboratory	[243]

Paper Code	Author(s)	Year	Name of Journal	Title	Ref.
S188	Sims, P.A.; Branscum, K.M.; Kao, L.; Keaveny, V.R.	2010	Journal of Chemical Education	An inexpensive, relatively green, and rapid method to purify genomic DNA from <i>Escherichia coli</i> : An experiment for the undergraduate biochemistry laboratory	[244]
S189	Smith, M.K.; Angle, S.R.; Northrop, B.H.	2015	Journal of Chemical Education	Preparation and analysis of cyclodextrin-based metal-organic frameworks: Laboratory experiments adaptable for high school through advanced undergraduate students	[245]
S190	Soares, P.; Fernandes, C.; Chavarria, D.; Borges, F.	2015	Journal of Chemical Education	Microwave-assisted synthesis of 5-phenyl-2-hydroxyacetophenone derivatives by a green Suzuki coupling reaction	[246]
S191	Sobral, A.J.F.N.	2006	Journal of Chemical Education	Synthesis of meso-diethyl-2,2'-dipyrromethane in water. An experiment in green organic chemistry	[247]
S192	Solomon, S.D.; Rutkowsky, S.A.; Mahon, M.L.; Halpern, E.M.	2011	Journal of Chemical Education	Synthesis of copper pigments, malachite and verdigris: Making tempera paint	[248]
S193	Stacey, J.M.; Dicks, A.P.; Goodwin, A.A.; Rush, B.M.; Nigam, M.	2013	Journal of Chemical Education	Green carbonyl condensation reactions demonstrating solvent and organocatalyst recyclability	[249]
S194	Steele, J.H.; Bozor, M.X.; Boyce, G.R.	2020	Journal of Chemical Education	Transmutation of Scent: An Evaluation of the Synthesis of Methyl Cinnamate, a Commercial Fragrance, via a Fischer Esterification for the Second-Year Organic Laboratory	[250]
S195	Strachan, J.; Barnett, C.; Maschmeyer, T.; Masters, A.F.; Motion, A; Yuen, A.K.L.	2020	Journal of Chemical Education	Nanoparticles for Undergraduates: Creation, Characterization, and Catalysis	[251]
S196	Sues, P.E.; Cai, K.; McIntosh, D.F.; Morris, R.H.	2015	Journal of Chemical Education	Template effect and ligand substitution methods for the synthesis of iron catalysts: A two-part experiment for inorganic chemistry	[252]
S197	Summerton, L.; Hurst, G.A.; Clark, J.H.	2018	Current Opinion in Green and Sustainable Chemistry	Facilitating active learning within green chemistry	[34]
S198	Sutheimer, S.; Caster, J.M.; Smith, S.H.	2015	Journal of Chemical Education	Green Soap: An Extraction and Saponification of Avocado Oil	[253]

Table A1. Cont.

Paper Code	Author(s)	Year	Name of Journal	Title	Ref.
S199	Tallmadge, W.; Homan, M.; Ruth, C.; Bilek, G.	2004	Chemical Health and Safety	A local pollution prevention group collaborates with a high school intermediate unit bringing the benefits of microscale chemistry to high school chemistry labs in the Lake Erie watershed	[85]
S200	Tamburini, F.; Kelly, T.; Weerapana, E.; Byers, J.A.	2014	Journal of Chemical Education	Paper to Plastics: An Interdisciplinary Summer Outreach Project in Sustainability	[22]
S201	Teixeira, J.M.; Byers, J.N.; Perez, M.G.; Holman, R.W.	2010	Journal of Chemical Education	The question-driven laboratory exercise: A new pedagogy applied to a green modification of grignard reagent formation and reaction	[98]
S202	Tian, J.; Yan, L.; Sang, A.; Yuan, H.; Zheng, B.; Xiao, D.	2014	Journal of Chemical Education	Microwave-Assisted Synthesis of Red-Light Emitting Au Nanoclusters with the Use of Egg White	[254]
S203	Timmer, B.J.J.; Schaufelberger, F.; Hammarberg, D.; Franzén, J.; Ramström, O.; Dinér, P.	2018	Journal of Chemical Education	Simple and Effective Integration of Green Chemistry and Sustainability Education into an Existing Organic Chemistry Course	[255]
S204	Touaibia, M.; Selka, A.; Levesque, N.A.; St-Onge, P.A.	2020	Journal of Chemical Education	Green hydrogenation: Solvent-free hydrogenation of pinenes for an undergraduate organic chemistry laboratory	[256]
S205	Vargas, B.P.; Rosa, C.H.; Rosa, D.D.S.; Rosa, G.R.	2016	Educacion Quimica	"Green" Suzuki-Miyaura cross-coupling: An exciting mini-project for chemistry undergraduate students	[257]
S206	Verdía. P.; Santamarta, F.; Tojo, E.	2017	Journal of Chemical Education	Synthesis of (3-Methoxycarbonyl)coumarin in an Ionic Liquid: An Advanced Undergraduate Project for Green Chemistry	[258]
S207	Villalba, M.M.; Leslie, R.; Davis, J.; Smith, R.B.	2011	Journal of Science Education	Designer experiments to assist in the teaching of NMR spectroscopy. A spectroscopic experiment in green chemistry	[259]
S208	Villanueva, O.; Zimmermann, K.	2020	Journal of Chemical Education	Transitioning an Upper-Level, Integrated Laboratory Course to Remote and Online Instruction during the COVID-19 Pandemic	[18]
S209	Virot, M.; Tomao, V.; Ginies, C.; Chemat, F.	2008	Chromatographia	Total lipid extraction of food using d-limonene as an alternative to n-hexane	[260]

Table A1. Cont.

Table A1. Cont.

Paper Code	Author(s)	Year	Name of Journal	Title	Ref.
S210	Vogelzang, J.; Admiraal, W.F.; Van Driel, J.H.	2020	Chemistry Education Research and Practice	Effects of Scrum methodology on students' critical scientific literacy: the case of Green Chemistry	[261]
S211	Von Dollen, J.; Oliva, S.; Max, S.; Esbenshade, J.	2018	Journal of Chemical Education	Recovery of Silver Nitrate from Silver Chloride Waste	[262]
S212	Wagner, E.P.; Koehle, M.A.; Moyle, T.M.; Lambert, P.D.	2010	Journal of Chemical Education	How green is your fuel? Creation and comparison of automotive biofuels	[263]
S213	Wang, X.; Chrzanowski, M.; Liu, Y.	2020	Journal of Chemical Education	Ultrasonic-Assisted Transesterification: A Green Miniscale Organic Laboratory Experiment	[264]
S214	Wang, Y.; Zhang, M.; Hu, Y.	2010	Journal of Chemical Education	Foam fractionation of lycopene: An undergraduate chemistry experiment	[265]
S215	Wardencki, W.; Curyło, J.; Namieśnik, J.	2005	Polish Journal of Environmental Studies	Green chemistry—Current and future issues	[53]
S216	Weires. N.A.; Johnston, A.; Warner, D.L.; McCormick, M.M.; Hammond, K.; McDougal, O.M.	2013	Journal of Chemical Education	Recycling of Waste Acetone by Fractional Distillation	[266]
S217	Williamson, C.L.; Maly, K.E.; Macneil, S.L.	2013	Journal of Chemical Education	Synthesis of imidazolium room-temperature ionic liquids: A follow-up to the procedure of Dzyuba, Kollar, and Sabnis	[267]
S218	Winter, R.T.; Van Beek, H.L.; Fraaije, M.W.	2012	Journal of Chemical Education	The nose knows: Biotechnological production of vanillin	[268]
S219	Wixtrom, A.; Buhler, J.; Abdel-Fattah, T.	2014	Journal of Chemical Education	Mechanochemical Synthesis of Two Polymorphs of the Tetrathiafulvalene-Chloranil Charge Transfer Salt: An Experiment for Organic Chemistry	[269]
S220	Worley, B.; Villa, E.M.; Gunn, J.M.; Mattson, B.	2019	Journal of Chemical Education	Visualizing Dissolution, Ion Mobility, and Precipitation through a Low-Cost, Rapid-Reaction Activity Introducing Microscale Precipitation Chemistry	[270]
S221	Wu, K.; Yu, L.; Ding, J.	2020	Journal of Chemical Education	Synthesis of PCL–PEG–PCL Triblock Copolymer via Organocatalytic Ring-Opening Polymerization and Its Application as an Injectable Hydrogel—An Interdisciplinary Learning Trial	[271]
S222	Wu, N.; Kubo, T.; Sekoni, K.N.; Hall, A.O.; Phadke, S.; Zurcher, D.M.; Wallace, R.L.; Kothari, D.B.; McNeil, A.J.	2019	Journal of Chemical Education	Student-Designed Green Chemistry Experiment for a Large-Enrollment, Introductory Organic Laboratory Course	[272]

Paper Code	Author(s)	Year	Name of Journal	Title	Ref.
S223	Xie, Y.; Liu, X.; Tao, M.	2016	Journal of Chemical Education	Synthesizing Substituted 2-Amino-2-chromenes Catalyzed by Tertiaryamine-Functionalized Polyacrylonitrile Fiber for Students to Investigate Multicomponent Reactions and Heterogeneous Catalysis	[273]
S224	Yadav, U.; Mande, H.; Ghalsasi, P.	2012	Journal of Chemical Education	Nitration of phenols using Cu(NO ₃) ₂ : Green chemistry laboratory experiment	[40]
S225	Zhou, H.; Zhan, W.; Wang, L.; Guo, L.; Liu, Y.	2018	Journal of Chemical Education	Making Sustainable Biofuels and Sunscreen from Corncobs to Introduce Students to Integrated Biorefinery Concepts and Techniques	[274]
S226	Zuin, V.G.; Segatto, M.L.; Zandonai, D.P.; Grosseli, G.M.; Stahl, A.; Zanotti, K.; Andrade, R.S.	2019	Journal of Chemical Education	Integrating Green and Sustainable Chemistry into Undergraduate Teaching Laboratories: Closing and Assessing the Loop on the Basis of a Citrus Biorefinery Approach for the Biocircular Economy in Brazil	[86]
S227	Bumbaugh, R.E.; Ott, L.S.	2020	ACS Symposium Series	Preparing and Testing Novel Deep Eutectic Solvents from Biodiesel Co-Product Glycerol for Use as Green Solvents in Organic Chemistry Teaching Laboratories	[275]
S228	Chateauneuf, J.E.; Nie, K.	2002	ACS Symposium Series	An investigation of Friedel-Crafts alkylation reactions in super- and subcritical CO_2 and under solventless reaction conditions	[276]
S229	Ferhat, M.A.; Meklati, B.Y.; Visinoni, F.; Vian, M.A.; Chemat, F.	2008	Chimica Oggi	Solvent free microwave extraction of essential oils Green chemistry in the teaching laboratory	[277]
S230	Kohn, C.	2019	Physical Sciences Reviews	The development of a bioenergy-based green chemistry curriculum for high schools	[278]
S231	Slater, C.S.; Savelski, M.J.	2011	World Transactions on Engineering and Technology Education	Partnerships with the pharmaceutical industry to promote sustainability	[279]
S232	Warner, M.G.; Succawa, G.L.; Hutchison, J.E.	2001	Green Chemistry	Solventless syntheses of mesotetraphenylporphyrin: new experiments for a greener organic chemistry laboratory curriculum	[280]
S233	Joshi, U.J.; Gokhale, K.M.; Kanitkar, A.P.	2011	Indian Journal of Pharmaceutical Education and Research	Green chemistry: Need of the hour	[281]

Table A1. Cont.

Paper Code	Author(s)	Year	Name of Journal	Title	Ref
1W	Cunningham, A.D.; Ham, E.Y.; Vosburg, D.A.	2011	Journal of Chemical Education	Chemoselective Reactions of Citral: Green Syntheses of Natural Perfumes for the Undergraduate Organic Laboratory	[282]
2W	Dicks, A.P.; Hent, A.; Koroluk, K.J.	2018	Green Chemistry Letters and Reviews	The EcoScale as a framework for undergraduate green chemistry teaching and assessment	[283]
3W	Gregor, R.W.; Goj, L.A.	2011	Journal of Chemical Education	Solvent-Free Synthesis of 2,2'-Dinitrobiphenyl: An Ullmann Coupling in the Introductory Organic Laboratory	[284]
4W	Lacuskova, D.; Drozdikova, A.	2017	Chemistry-Didactics-Ecology-Metrology	Biocatalytic Reduction of Ketones in A Secondary School Laboratory	[285]
5W	Lee, D.B.	2019	Green Chemistry Letters and Reviews	Re-casting traditional organic experiments into green guided-inquiry based experiments: student perceptions	[59]
6W	Palesch, J.J.; Gilles, B.C.; Chycota, J.; Haj, M.K.; Fahnhorst, G.W.; Wissinger, J.E.	2019	Green Chemistry Letters and Reviews	Iodination of vanillin and subsequent Suzuki-Miyaura coupling: two-step synthetic sequence teaching green chemistry principles	[286]
7W	Gabriela, M.; Ribeiro, T.C.; MacHado, A.A.S.C.	2011	Journal of Chemical Education	Metal-Acetylacetonate Synthesis Experiments: Which Is Greener?	[83]
8W	Rojas-Fernandez, A.G.; Aguilar-Santelises, L.; Millan, M.C.; Aguilar-Santelises, M.; Garcia-del Valle, A.	2017	Multidisciplinary Journal for Education Social and Technological Sciences	Teaching chemistry with sustainability	[287]
9W	Tavener, S.; Hardy J.; Hart, N.; Goddard, A.	2003	Green chemistry	Teaching green chemistry: from lemons to lemonade bottles	[288]
10W	Young, D.M.; Welker, J.J.C.; Doxsee, K.M.	2011	Journal of Chemical Education	Green Synthesis of a Fluorescent Natural Product	[289]
11W	Houri, A.; Wehbe, H.	2003	Green Chemistry	Towards an environmentally friendly chemistry laboratory: managing expired chemicals	[290]
1E	van Arnum, S.D.	2005	Journal of Chemical Education	An Approach towards Teaching Green Chemistry Fundamentals	[291]
2E	McKenzie, L.C.; Huffman, L.M.; Hutchison, J.E.; Rogers, C.E.; Goodwin, T.E.; Spessard, G.O.	2009	Journal of Chemical Education	Greener "Solutions" for the Organic Chemistry Teaching Lab: Exploring the Advantages of Alternative Reaction Media	[292]

Table A1. Cont.

Table .	A1 . C	ont.
---------	---------------	------

Paper Code	Author(s)	Year	Name of Journal	Title	Ref.
3E	Dintzner, M.R.; Wucka, P.R.; Lyons, T.W.	2006	Journal of Chemical Education	Microwave-Assisted Synthesis of a Natural Insecticide on Basic Montmorillonite K10 Clay. Green Chemistry in the Undergraduate Organic Laboratory	[293]
4E	Stark, A.; Ott, D.; Kralisch, D.; Kreisel, G.; Ondruschka, B.	2010	Journal of Chemical Education	Ionic Liquids and Green Chemistry: A Lab Experiment	[294]
5E	Ravia, S.; Gamenara, D.; Schapiro, V.; Bellomo, A.; Adum, J.; Seoane, G.; Gonzalez, D.	2006	Journal of Chemical Education	Enantioselective Reduction by Crude Plant Parts: Reduction of Benzofuran-2-yl Methyl Ketone with Carrot (" <i>Daucus carota</i> ") Bits	[295]
6E	Ribeiro, M.G.T.C.; Yunes, S.F.; Machado, A.A.S.C.	2014	Journal of Chemical Education	Assessing the Greenness of Chemical Reactions in the Laboratory Using Updated Holistic Graphic Metrics Based on the Globally Harmonized System of Classification and Labelling of Chemicals	[296]
7E	Armenta, S.; de la Guardia, M.	2011	Journal of Chemical Education	Determination of Mercury in Milk by Cold Vapor Atomic Fluorescence: A Green Analytical Chemistry Laboratory Experiment	[297]
8E	Sauvage, X.; Delaude, L.	2008	Journal of Chemical Education	The Synthesis of "N"-Benzyl-2-Azanorbornene via Aqueous Hetero Diels-Alder Reaction: An Undergraduate Project in Organic Synthesis and Structural Analysis	[298]
9E	Hooper, M.M.; DeBoef, B.	2009	Journal of Chemical Education	A Green Multicomponent Reaction for the Organic Chemistry Laboratory: The Aqueous Passerini Reaction	[299]
10E	Phonchaiya, S.; Panijpan, B.; Rajviroongit, S.; Wright, T.; Blanchfield, J.T.	2009	Journal of Chemical Education	A Facile Solvent-Free Cannizzaro Reaction: An Instructional Model for Introductory Organic Chemistry Laboratory	[300]
11E	Ballard, C.E.	2010	Journal of Chemical Education	pH-Controlled Oxidation of an Aromatic Ketone: Structural Elucidation of the Products of Two Green Chemical Reactions	[301]
12E	Tundo, P.; Rosamilia, A.E.; Arico, F.	2010	Journal of Chemical Education	Methylation of 2-Naphthol Using Dimethyl Carbonate under Continuous-Flow Gas-Phase Conditions	[302]
13E	Akers, Stephen M.; Conkle, Jeremy L.; Thomas, Stephanie N.; Rider, Keith B.	2006	Journal of Chemical Education	Determination of the Heat of Combustion of Biodiesel Using Bomb Calorimetry: A Multidisciplinary Undergraduate Chemistry Experiment	[303]
14E	Lazarski, K.E.; Rich, A.A.; Mascarenhas, C.M.	2008	Journal of Chemical Education	A One-Pot, Asymmetric Robinson Annulation in the Organic Chemistry Majors Laboratory	[304]

Paper Code	Author(s)	Year	Name of Journal	Title	Ref.
15E	Sidhwani, I.T.; Chowdhury, S.	2008	Journal of Chemical Education	Greener Alternative to Qualitative Analysis for Cations without H_2S and Other Sulfur-Containing Compounds	[305]
16E	Eby, E.; Deal, S.T.	2008	Journal of Chemical Education	Aromatic Substitution for the Organic Chemistry Laboratory	[306]
17E	Andraos, J.; Sayed, M.	2007	Journal of Chemical Education	On the Use of "Green" Metrics in the Undergraduate Organic Chemistry Lecture and Lab to Assess the Mass Efficiency of Organic Reactions	[35]
18E	Bopegedera, A.M.R.P.; Perera, K.N.R.	2017	Journal of Chemical Education	"Greening" a Familiar General Chemistry Experiment: Coffee Cup Calorimetry to Determine the Enthalpy of Neutralization of an Acid-Base Reaction and the Specific Heat Capacity of Metals	[307]
19E	Santos, E.S.; Garcia, G.; Cruz, I.; Gomez, L.; Florencia, E.	2004	Journal of Chemical Education	Caring for the Environment while Teaching Organic Chemistry	[308]

References

- UNESCO Institute for Statistics. School Closures and Regional Policies to Mitigate Learning Loss due to COVID-19: A Focus on the Asia-Pacific. Available online: https://unesdoc.unesco.org/ark:/48223/pf0000378429/PDF/378429eng.pdf.multi (accessed on 21 September 2021).
- United Nations Sustainable Development Knowledge Platform. Transforming Our World: The 2030 Agenda for Sustainable Development. Available online: https://sdgs.un.org/sites/default/files/publications/21252030AgendaforSustainableDevelopmentweb.pdf (accessed on 21 September 2021).
- United Nations Sustainable Development Knowledge Platform. COVID-19 Recovery: Implications for the Decade of Action. Available online: https://sdgs.un.org/events/green-economy-covid-19-recovery-implications-decade-action-27340 (accessed on 21 September 2021).
- 4. United Nations Sustainable Development Knowledge Platform. Sustainable Development Goals, 4th Goal: Quality Education. Available online: https://www.un.org/sustainabledevelopment/education/ (accessed on 21 September 2021).
- SDG Knowledge Hub Platform. As Decade of Action Has Become a Decade of Recovery, HLPF Focuses on Pandemic Response. Available online: https://sdg.iisd.org/news/as-decade-of-action-has-become-a-decade-of-recovery-hlpf-focuses-on-pandemic-response/ (accessed on 21 September 2021).
- 6. ACS Committee on Environmental Improvement. Available online: https://www.acs.org/content/acs/en/about/governance/ committees/cei.html (accessed on 21 September 2021).
- ACS Committee on Professional Training. Available online: https://www.acs.org/content/acs/en/about/governance/ committees/training.html (accessed on 21 September 2021).
- KTH, Royal Institute of Technology. Available online: https://intra.kth.se/en/styrning/miljo-hallbar-utveckling/policy-forhallbar-utveckling-for-kth-1.553616 (accessed on 21 September 2021).
- 9. Anastas, P.T.; Warner, J.C. Green Chemistry: Theory and Practice; Oxford University Press: New York, NY, USA, 1998.
- 10. ACS. What Is Green Chemistry? Available online: https://www.acs.org/content/acs/en/greenchemistry/what-is-green-chemistry.html (accessed on 21 September 2021).
- 11. Haack, J.A.; Hutchison, J.E.; Kirchhoff, M.M.; Levy, I.J. Going Green: Lecture Assignments and Lab Experiences for the College Curriculum. *J. Chem. Educ.* 2005, *82*, 974–976. [CrossRef]
- Andraos, J.; Dicks, A.P. Green Chemistry Teaching in Higher Education: A Review of Effective Practices. *Chem. Educ. Res. Pract.* 2012, 13, 69–79. [CrossRef]
- 13. Collins, T.J. Introducing Green Chemistry in Teaching and Research. J. Chem. Educ. 1995, 72, 965–966. [CrossRef]
- 14. Braun, B.; Charney, R.; Clarens, A.; Farrugia, J.; Kitchens, C.; Lisowski, C.; Naistat, D.; O'Neil, A. Completing Our Education. Green Chemistry in the Curriculum. *J. Chem. Educ.* **2006**, *83*, 1126. [CrossRef]
- 15. Eilks, I.; Rauch, F. Sustainable Development and Green Chemistry in Chemistry Education. *Chem. Educ. Res. Pract.* **2012**, *13*, 57–58. [CrossRef]
- 16. Listyarini, R.V.; Pamenang, F.D.N.; Harta, J.; Wijayanti, L.W.; Asy'ari, M.; Lee, W. The Integration of Green Chemistry Principles into Small Scale Chemistry Practicum for Senior High School Students. *J. Pendidik. IPA Indones.* **2019**, *8*, 371–378. [CrossRef]
- 17. Avsec, S.; Jagiełło-Kowalczyk, M. Investigating Possibilities of Developing Self-Directed Learning in Architecture Students Using Design Thinking. *Sustainability* **2021**, *13*, 4369. [CrossRef]
- 18. Villanueva, O.; Zimmermann, K. Transitioning an Upper-Level, Integrated Laboratory Course to Remote and Online Instruction during the COVID-19 Pandemic. *J. Chem. Educ.* 2020, 97, 3114–3120. [CrossRef]
- 19. Avsec, S.; Ferk Savec, V. Pre-Service Teachers' Perceptions of, and Experiences with, Technology-Enhanced Transformative Learning towards Education for Sustainable Development. *Sustainability* **2021**, *13*, 10443. [CrossRef]
- 20. Colmenares, J.C.; Arévalo-García, E.B.; Colmenares-Quintero, R. A Simple Method of Water Purification and Energy Extraction from Organic Wastewater: An Application of Green Chemistry Principles in Everyday Life. *J. Sci. Educ.* **2015**, *16*, 17–19.
- Hudson, R.; Ackerman, H.M.; Gallo, L.K.; Gwinner, A.S.; Krauss, A.; Sears, J.D.; Bishop, A.; Esdale, K.N.; Katz, J.L. CO₂ Dry Cleaning: A Benign Solvent Demonstration Accessible to K-8 Audiences. J. Chem. Educ. 2017, 94, 480–482. [CrossRef]
- 22. Tamburini, F.; Kelly, T.; Weerapana, E.; Byers, J.A. Paper to Plastics: An Interdisciplinary Summer Outreach Project in Sustainability. *J. Chem. Educ.* **2014**, *91*, 1574–1579. [CrossRef]
- Hoffman, K.C.; Dicks, A.P. Shifting the Paradigm of Chemistry Education by Greening the High School Laboratory. Sustain. Chem. Pharm. 2020, 16, 100242. [CrossRef]
- 24. Kolopajlo, L. Green Chemistry Pedagogy. Phys. Sci. Rev. 2017, 2, 1–17. [CrossRef]
- 25. Kümmerer, K.; Clark, J.H.; Zuin, V.G. Rethinking Chemistry for a Circular Economy. Science 2020, 367, 369–370. [CrossRef]
- 26. Zuin, V.G.; Eilks, I.; Elschami, M.; Kümmerer, K. Education in Green Chemistry and in Sustainable Chemistry: Perspectives towards Sustainability. *Green Chem.* 2021, 23, 1594–1608. [CrossRef]
- 27. Aubrecht, K.B.; Bourgeois, M.; Brush, E.J.; Mackellar, J.; Wissinger, J.E. Integrating Green Chemistry in the Curriculum: Building Student Skills in Systems Thinking, Safety, and Sustainability. *J. Chem. Educ.* **2019**, *96*, 2872–2880. [CrossRef]

- Armstrong, L.B.; Rivas, M.C.; Zhou, Z.; Irie, L.M.; Kerstiens, G.A.; Robak, M.A.T.; Douskey, M.C.; Baranger, A.M. Developing a Green Chemistry Focused General Chemistry Laboratory Curriculum: What Do Students Understand and Value about Green Chemistry? J. Chem. Educ. 2019, 96, 2410–2419. [CrossRef]
- 29. Smith, J.G. Organic Chemistry, 3rd ed.; McGraw-Hill: New York, NY, USA, 2011.
- 30. McMurry, J. Organic Chemistry, 8th ed.; Brooks/Cole: Belmont, CA, USA, 2012.
- 31. Ahluwalia, V.K. Green Chemistry: A Textbook; Alpha Science International: Oxford, UK, 2012.
- 32. Gross, E.M. Green Chemistry and Sustainability: An Undergraduate Course for Science and Nonscience Majors. *J. Chem. Educ.* **2013**, *90*, 429–431. [CrossRef]
- 33. Dicks, A.P. Green Organic Chemistry in Lecture and Laboratory, 1st ed.; CRC Press: Boca Raton, FL, USA, 2012. [CrossRef]
- 34. Summerton, L.; Hurst, G.A.; Clark, J.H. Facilitating Active Learning within Green Chemistry. *Curr. Opin. Green Sustain. Chem.* **2018**, *13*, 56–60. [CrossRef]
- 35. Andraos, J.; Sayed, M. On the Use of "Green" Metrics in the Undergraduate Organic Chemistry Lecture and Lab to Assess the Mass Efficiency of Organic Reactions. *J. Chem. Educ.* 2007, *84*, 1004–1010. [CrossRef]
- 36. Calvo-Flores, F.G. Sustainable Chemistry Metrics. ChemSusChem 2009, 2, 905–919. [CrossRef] [PubMed]
- 37. Laird, T. Green Chemistry Is Good Process Chemistry. Org. Process. Res. Dev. 2012, 16, 1–2. [CrossRef]
- Ribeiro, M.G.T.C.; Costa, D.A.; Machado, A.A.S.C. "Green Star": A Holistic Green Chemistry Metric for Evaluation of Teaching Laboratory Experiments. *Green Chem. Lett. Rev.* 2010, *3*, 149–159. [CrossRef]
- Karpudewan, M.; Ismail, Z.H.; Mohamed, N. The Integration of Green Chemistry Experiments with Sustainable Development Concepts in Pre-Service Teachers' Curriculum: Experiences from Malaysia. *Int. J. Sustain. High. Educ.* 2009, 10, 118–135. [CrossRef]
- Yadav, U.; Mande, H.; Ghalsasi, P. Nitration of Phenols Using Cu(NO₃)₂: Green Chemistry Laboratory Experiment. *J. Chem. Educ.* 2012, *89*, 268–270. [CrossRef]
- 41. Sharma, R.K.; Gulati, S.; Mehta, S. Preparation of Gold Nanoparticles Using Tea: A Green Chemistry Experiment. *J. Chem. Educ.* **2012**, *89*, 1316–1318. [CrossRef]
- Abraham, L.; Stachow, L.; Du, H. Cinnamon Oil: An Alternate and Inexpensive Resource for Green Chemistry Experiments in Organic Chemistry Laboratory. J. Chem. Educ. 2020, 97, 3797–3805. [CrossRef]
- 43. Blosser, B.F. The Role of the Laboratory in Science Teaching. Sch. Sci. Math. 1983, 83, 165–169. [CrossRef]
- 44. Hofstein, A.; Lunetta, V.N. The Laboratory in Science Education: Foundations for the Twenty-First Century. *Sci. Educ.* 2004, *88*, 28–54. [CrossRef]
- 45. Hofstein, A. The Laboratory in Chemistry Education: Thirty Years of Experience With Developments, Implementation, and Research Laboratory Activities Have Long Had a Distinctive and Central Role in the Science to Quote from Ira Ramsen (1846–1927), Who Wrote His Me. *Chem. Educ. Res. Pract.* 2004, *5*, 247–264. [CrossRef]
- 46. Hofstein, A.; Navon, O.; Kipnis, M.; Mamlok-Naaman, R. Developing Students' Ability to Ask More and Better Questions Resulting from Inquiry-Type Chemistry Laboratories. *J. Res. Sci. Teach.* **2005**, *42*, 791–806. [CrossRef]
- 47. Abrahams, I.; Millar, R. Does Practical Work Really Work? A Study of the Effectiveness of Practical Work as a Teaching and Learning Method in School Science. *Int. J. Sci. Educ.* **2008**, *30*, 1945–1969. [CrossRef]
- 48. Logar, A.; Savec, V.F. Students' Hands-on Experimental Work vs Lecture Demonstration in Teaching Elementary School Chemistry. *Acta Chim. Slov.* **2011**, *58*, 866–875.
- 49. Wei, B.; Liu, H. An Experienced Chemistry Teacher's Practical Knowledge of Teaching with Practical Work: The PCK Perspective. *Chem. Educ. Res. Pract.* 2018, 19, 452–462. [CrossRef]
- Millar, R.; Le Marechal, J.-F.; Tiberghien, A. "Mapping" the Domain-Varieties of Practical Work. In *Practical Work in Science Education—Recent Research Studies*; Leach, J., Paulsen, A., Eds.; Roskilde University Press/Kluwer: Dordrecht, The Netherlands, 1999; pp. 33–59.
- Millar, R.; Leach, J.; Osborne, J. Improving Science Education: The Contribution of Research; McGraw-Hill Education: London, UK, 2003; Volume 30, pp. 130–135.
- 52. Płotka-Wasylka, J.; Kurowska-Susdorf, A.; Sajid, M.; de la Guardia, M.; Namieśnik, J.; Tobiszewski, M. Green Chemistry in Higher Education: State of the Art, Challenges, and Future Trends. *ChemSusChem* **2018**, *11*, 2845–2858. [CrossRef]
- 53. Wardencki, W.; Curyło, J.; Namieśnik, J. Green Chemistry-Current and Future Issues. Polish J. Environ. Stud. 2005, 14, 389–395.
- Silverman, J.R.; Hudson, R. Evaluating Feedstocks, Processes, and Products in the Teaching Laboratory: A Framework for Students to Use Metrics to Design Greener Chemistry Experiments. J. Chem. Educ. 2020, 97, 390–401. [CrossRef]
- 55. Dicks, A.P. Teaching Reaction Efficiency through the Lens of Green Chemistry: Should Students Focus on the Yield, or the Process? *Curr. Opin. Green Sustain. Chem.* **2018**, *13*, 27–31. [CrossRef]
- 56. Dicks, A.P. Solvent-Free Reactivity in the Undergraduate Organic Laboratory. Green Chem. Lett. Rev. 2009, 2, 87–100. [CrossRef]
- Dicks, A.P. A Review of Aqueous Organic Reactions for the Undergraduate Teaching Laboratory. *Green Chem. Lett. Rev.* 2009, 2, 9–21. [CrossRef]
- 58. Narayan, S. Sustainability and Some Green Initiatives in Undergraduate Education. Phys. Sci. Rev. 2020, 5, 1–16. [CrossRef]
- 59. Lee, D.B. Re-Casting Traditional Organic Experiments into Green Guided-Inquiry Based Experiments: Student Perceptions. *Green Chem. Lett. Rev.* 2019, 12, 107–116. [CrossRef]

- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. *PLoS Med.* 2021, 18, 1–15. [CrossRef] [PubMed]
- 61. Hinojo-Lucena, F.J.; Aznar-Díaz, I.; Cáceres-Reche, M.P.; Trujillo-Torres, J.M.; Romero-Rodríguez, J.M. Problematic internet use as a predictor of eating disorders in students: A systematic review and meta-analysis study. *Nutrients* **2019**, *11*, 2151. [CrossRef] [PubMed]
- 62. Salisbury, L. Web of Science and Scopus: A Comparative Review of Content and Searching Capabilities. *Charlest. Advis.* **2009**, *11*, 5–18.
- 63. Kalogiannakis, M.; Papadakis, S.; Zourmpakis, A.I. Gamification in Science Education. A Systematic Review of the Literature. *Educ. Sci.* **2021**, *11*, 22. [CrossRef]
- 64. Vojíř, K.; Rusek, M. Science Education Textbook Research Trends: A Systematic Literature Review. *Int. J. Sci. Educ.* 2019, 41, 1496–1516. [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. *BMJ* 2021, 372, 2021. [CrossRef]
- 66. Abelha, M.; Fernandes, S.; Mesquita, D.; Seabra, F.; Ferreira-Oliveira, A.T. Graduate Employability and Competence Development in Higher Education—A Systematic Literature Review Using PRISMA. *Sustainability* **2020**, *12*, 5900. [CrossRef]
- 67. Reed, S.M.; Hutchison, J.E. Green Chemistry in the Organic Teaching Laboratory: An Environmentally Benign Synthesis of Adipic Acid. J. Chem. Educ. 2000, 77, 1627–1629. [CrossRef]
- Marques, C.A.; Marcelino, L.V.; Dias, É.D.S.; Rüntzel, P.L.; Souza, L.C.A.B.; Machado, A. Green Chemistry Teaching for Sustainability in Papers Published by the Journal of Chemical Education. *Quim. Nova* 2020, 43, 1510–1521. [CrossRef]
- 69. Academic Accelerator. Available online: https://academic-accelerator.com/ (accessed on 19 September 2021).
- 70. Buckley, H.L.; Beck, A.R.; Mulvihill, M.J.; Douskey, M.C. Fitting It All in: Adapting a Green Chemistry Extraction Experiment for Inclusion in an Undergraduate Analytical Laboratory. *J. Chem. Educ.* **2013**, *90*, 771–774. [CrossRef]
- 71. Cardinal, P.; Greer, B.; Luong, H.; Tyagunova, Y. A Multistep Synthesis Incorporating a Green Bromination of an Aromatic Ring. *J. Chem. Educ.* **2012**, *89*, 1061–1063. [CrossRef]
- Duangpummet, P.; Chaiyen, P.; Chenprakhon, P. Lipase-Catalyzed Esterification: An Inquiry-Based Laboratory Activity To Promote High School Students' Understanding and Positive Perceptions of Green Chemistry. J. Chem. Educ. 2019, 96, 1205–1211. [CrossRef]
- Garner, N.; Siol, A.; Eilks, I. The Synthesis of Vanillin-Learning about Aspects of Sustainable Chemistry by Comparing Different Syntheses. J. Sci. Educ. 2016, 17, 25–28.
- Ginzburg, A.L.; Baca, N.A.; Hampton, P.D. The Isomerization of (–)-Menthone to (+)-Isomenthone Catalyzed by an Ion-Exchange Resin. J. Chem. Educ. 2014, 91, 1748–1750. [CrossRef]
- Graham, K.J.; Jones, T.N.; Schaller, C.P.; McIntee, E.J. Implementing a Student-Designed Green Chemistry Laboratory Project in Organic Chemistry. J. Chem. Educ. 2014, 91, 1895–1900. [CrossRef]
- 76. Josephson, P.; Nykvist, V.; Qasim, W.; Blomkvist, B.; DInér, P. Student-Driven Development of Greener Chemistry in Undergraduate Teaching: Synthesis of Lidocaine Revisited. *J. Chem. Educ.* 2019. [CrossRef]
- Orwat, K.; Bernard, P.; Wróblewski, S.; Mendez, J.D. Traditional vs. Uv-Cured Coatings—An Inquiry-Based Experiment for Introducing Green Chemistry. *Maced. J. Chem. Chem. Eng.* 2018, 37, 215–224. [CrossRef]
- 78. Krenz, J.; Simcox, N.; Stoddard Tepe, J.; Simpson, C.D. Transitioning to Safer Chemicals in Academic Research Laboratories: Lessons Learned at the University of Washington. *ACS Sustain. Chem. Eng.* **2016**, *4*, 4021–4028. [CrossRef]
- 79. Lee, N.E.; Gurney, R.; Soltzberg, L. Using Green Chemistry Principles as a Framework to Incorporate Research into the Organic Laboratory Curriculum. *J. Chem. Educ.* 2014, *91*, 1001–1008. [CrossRef]
- 80. Goode, S.R.; Wissinger, J.E.; Wood-Black, F. Introducing the Journal of Chemical Education's Special Issue on Chemical Safety Education: Methods, Culture, and Green Chemistry. *J. Chem. Educ.* **2021**, *98*, 1–6. [CrossRef]
- Gómez-Biagi, R.F.; Dicks, A.P. Assessing Process Mass Intensity and Waste via an Aza-Baylis-Hillman Reaction. J. Chem. Educ. 2015, 92, 1938–1942. [CrossRef]
- 82. Fennie, M.W.; Roth, J.M. Comparing Amide-Forming Reactions Using Green Chemistry Metrics in an Undergraduate Organic Laboratory. J. Chem. Educ. 2016, 93, 1788–1793. [CrossRef]
- Ribeiro, M.G.T.C.; Machado, A.S.C. Metal À Acetylacetonate Synthesis Experiments: Which Is Greener? J. Chem. Educ. 2011, 88, 947–953. [CrossRef]
- Lam, C.H.; Escande, V.; Mellor, K.E.; Zimmerman, J.B.; Anastas, P.T. Teaching Atom Economy and E-Factor Concepts through a Green Laboratory Experiment: Aerobic Oxidative Cleavage of Meso-Hydrobenzoin to Benzaldehyde Using a Heterogeneous Catalyst. J. Chem. Educ. 2019, 96, 761–765. [CrossRef]
- Tallmadge, W.; Homan, M.; Ruth, C.; Bilek, G. A Local Pollution Prevention Group Collaborates with a High School Intermediate Unit Bringing the Benefits of Microscale Chemistry to High School Chemistry Labs in the Lake Erie Watershed. *Chem. Heal. Saf.* 2004, 11, 30–33. [CrossRef]

- Zuin, V.G.; Segatto, M.L.; Zandonai, D.P.; Grosseli, G.M.; Stahl, A.; Zanotti, K.; Andrade, R.S. Integrating Green and Sustainable Chemistry into Undergraduate Teaching Laboratories: Closing and Assessing the Loop on the Basis of a Citrus Biorefinery Approach for the Biocircular Economy in Brazil. J. Chem. Educ. 2019, 96, 2975–2983. [CrossRef]
- 87. Hurst, G.A. Systems Thinking Approaches for International Green Chemistry Education. *Curr. Opin. Green Sustain. Chem.* 2020, 21, 93–97. [CrossRef]
- Guron, M.; Paul, J.J.; Roeder, M.H. Incorporating Sustainability and Life Cycle Assessment into First-Year Inorganic Chemistry Major Laboratories. J. Chem. Educ. 2016, 93, 639–644. [CrossRef]
- 89. Gawlik-Kobylińska, M.; Walkowiak, W.; MacIejewski, P. Improvement of a Sustainable World through the Application of Innovative Didactic Tools in Green Chemistry Teaching: A Review. J. Chem. Educ. 2020, 97, 916–924. [CrossRef]
- 90. Grieger, K.; Leontyev, A. Promoting Student Awareness of Green Chemistry Principles via Student-Generated Presentation Videos. J. Chem. Educ. 2020, 97, 2657–2663. [CrossRef]
- 91. Laurillard, D. A Conversational Framework for the Effective Use of Learning Technologies, 1st ed.; Routledge: London, UK, 2002. [CrossRef]
- 92. Blatti, J.L.; Garcia, J.; Cave, D.; Monge, F.; Cuccinello, A.; Portillo, J.; Juarez, B.; Chan, E.; Schwebel, F. Systems Thinking in Science Education and Outreach toward a Sustainable Future. *J. Chem. Educ.* **2019**, *96*, 2852–2862. [CrossRef]
- Dias, A.M.; Ferreira, M.L.S. "supermarket Column Chromatography of Leaf Pigments" Revisited: Simple and Ecofriendly Separation of Plant Carotenoids, Chlorophylls, and Flavonoids from Green and Red Leaves. J. Chem. Educ. 2015, 92, 189–192. [CrossRef]
- Blatti, J.L. Colorful and Creative Chemistry: Making Simple Sustainable Paints with Natural Pigments and Binders. J. Chem. Educ. 2017, 94, 211–215. [CrossRef]
- 95. Karpudewan, M.; Ismail, Z.; Roth, W.M. Fostering Pre-Service Teachers' Self-Determined Environmental Motivation Through Green Chemistry Experiments. J. Sci. Teacher Educ. 2012, 23, 673–696. [CrossRef]
- 96. Karpudewan, M.; Ismail, Z.; Roth, W.M. Ensuring Sustainability of Tomorrow through Green Chemistry Integrated with Sustainable Development Concepts (SDCs). *Chem. Educ. Res. Pract.* **2012**, *13*, 120–127. [CrossRef]
- 97. Karpudewan, M.; Ismail, Z.; Roth, W.M. Promoting Pro-Environmental Attitudes and Reported Behaviors of Malaysian Pre-Service Teachers Using Green Chemistry Experiments. *Environ. Educ. Res.* **2012**, *18*, 375–389. [CrossRef]
- 98. Teixeira, J.M.; Byers, J.N.; Perez, M.G.; Holman, R.W. The Question-Driven Laboratory Exercise: A New Pedagogy Applied to a Green Modification of Grignard Reagent Formation and Reaction. *J. Chem. Educ.* **2010**, *87*, 714–716. [CrossRef]
- 99. Karpudewan, M.; Kulandaisamy, Y. Malaysian Teachers' Insights into Implementing Green Chemistry Experiments in Secondary Schools. *Curr. Opin. Green Sustain. Chem.* 2018, 13, 113–117. [CrossRef]
- Ribeiro, M.G.T.C.; MacHado, A.A.S.C. Holistic Metrics for Assessment of the Greenness of Chemical Reactions in the Context of Chemical Education. J. Chem. Educ. 2013, 90, 432–439. [CrossRef]
- Garrecht, C.; Bruckermann, T.; Harms, U. Students' Decision-Making in Education for Sustainability-Related Extracurricular Activities—A Systematic Review of Empirical Studies. *Sustainability* 2018, 10, 3876. [CrossRef]
- 102. Abraham, L. A Green Nucleophilic Aromatic Substitution Reaction. J. Chem. Educ. 2020, 97, 3810–3815. [CrossRef]
- 103. Alberich, A.; Serrano, N.; Díaz-Cruz, J.M.; Ariño, C.; Esteban, M. Substitution of Mercury Electrodes by Bismuth-Coated Screen-Printed Electrodes in the Determination of Quinine in Tonic Water. *J. Chem. Educ.* **2013**, *90*, 1681–1684. [CrossRef]
- Ali, Z.M.; Harris, V.H.; Lalonde, R.L. Beyond Green Chemistry: Teaching Social Justice in Organic Chemistry. J. Chem. Educ. 2020, 97, 3984–3991. [CrossRef]
- 105. Alwaseem, H.; Donahue, C.J.; Marincean, S. Catalytic Transfer Hydrogenation of Castor Oil. J. Chem. Educ. 2014, 91, 575–578. [CrossRef]
- 106. Amaris, Z.N.; Freitas, D.N.; Mac, K.; Gerner, K.T.; Nameth, C.; Wheeler, K.E. Nanoparticle Synthesis, Characterization, and Ecotoxicity: A Research-Based Set of Laboratory Experiments for a General Chemistry Course. J. Chem. Educ. 2017, 94, 1939–1945. [CrossRef]
- 107. Amin, S.; Barnes, A.; Buckner, C.; Jones, J.; Monroe, M.; Nurmomade, L.; Pinto, T.; Starkey, S.; Agee, B.M.; Crouse, D.J.; et al. Diels-Alder Reaction Using a Solar Irradiation Heat Source Designed for Undergraduate Organic Chemistry Laboratories. J. Chem. Educ. 2015, 92, 767–770. [CrossRef]
- Armstrong, C.; Burnham, J.A.J.; Warminski, E.E. Combining Sustainable Synthesis of a Versatile Ruthenium Dihydride Complex with Structure Determination Using Group Theory and Spectroscopy. J. Chem. Educ. 2017, 94, 928–931. [CrossRef]
- Arrebola, J.C.; Rodríguez-Fernández, N.; Caballero, Á. Decontamination of Wastewater Using Activated Biochar from Agricultural Waste: A Practical Experiment for Environmental Sciences Students. J. Chem. Educ. 2020, 97, 4137–4144. [CrossRef]
- Aubrecht, K.B.; Padwa, L.; Shen, X.; Bazargan, G. Development and Implementation of a Series of Laboratory Field Trips for Advanced High School Students to Connect Chemistry to Sustainability. J. Chem. Educ. 2015, 92, 631–637. [CrossRef]
- 111. Bachofer, S.J.; Lingwood, M.D. A Green Determination of an Equilibrium Constant: Teaching New Skills. *Phys. Sci. Rev.* 2019, *3*, 1–6. [CrossRef]
- 112. Bailey, A.; Andrews, L.; Khot, A.; Rubin, L.; Young, J.; Allston, T.D.; Takacs, G.A. Hydrogen Storage Experiments for an Undergraduate Laboratory Course-Clean Energy: Hydrogen/Fuel Cells. J. Chem. Educ. 2015, 92, 688–692. [CrossRef]
- 113. Ballard, C.E. Green Oxidative Homocoupling of 1-Methylimidazole. J. Chem. Educ. 2013, 90, 1368–1372. [CrossRef]
- 114. Ballard, C.E. Green Reductive Homocoupling of Bromobenzene. J. Chem. Educ. 2011, 88, 1148–1151. [CrossRef]

- 115. Bannin, T.J.; Datta, P.P.; Kiesewetter, E.T.; Kiesewetter, M.K. Synthesizing Stilbene by Olefin Metathesis Reaction Using Guided Inquiry to Compare and Contrast Wittig and Metathesis Methodologies. *J. Chem. Educ.* **2019**, *96*, 143–147. [CrossRef]
- 116. Barcena, H.; Maziarz, K. Chemical Upcycling of Expired Drugs: Synthesis of Guaifenesin Acetonide. J. Chem. Educ. 2017, 94, 1538–1542. [CrossRef]
- 117. Barcena, H.; Tuachi, A.; Zhang, Y. Teaching Green Chemistry with Epoxidized Soybean Oil. J. Chem. Educ. 2017, 94, 1314–1318. [CrossRef]
- 118. Behnia, M.S.; Emerson, D.W.; Steinberg, S.M.; Alwis, R.M.; Duenas, J.A.; Serafino, J.O. A Simple, Safe Method for Preparation of Biodiesel. *J. Chem. Educ.* 2011, *88*, 1290–1292. [CrossRef]
- 119. Bendall, S.; Birdsall-Wilson, M.; Jenkins, R.; Chew, Y.M.J.; Chuck, C.J. Showcasing Chemical Engineering Principles through the Production of Biodiesel from Spent Coffee Grounds. J. Chem. Educ. 2015, 92, 683–687. [CrossRef]
- 120. Bennett, G.D. A Green Polymerization of Aspartic Acid for the Undergraduate Organic Laboratory. J. Chem. Educ. 2005, 82, 1380–1381. [CrossRef]
- 121. Berger, M.; Karod, M.; Goldfarb, J.L. Invasive Species or Sustainable Water Filters? A Student-Led Laboratory Investigation into Locally Sourced Biomass-Based Adsorbents for Sustainable Water Treatment. *Phys. Sci. Rev.* **2019**, *4*, 1–15. [CrossRef]
- 122. Biswas, R.; Mukherjee, A. Introducing the Concept of Green Synthesis in the Undergraduate Laboratory: Two-Step Synthesis of 4-Bromoacetanilide from Aniline. *J. Chem. Educ.* 2017, *94*, 1391–1394. [CrossRef]
- 123. Blatti, J.L.; Burkart, M.D. Releasing Stored Solar Energy within Pond Scum: Biodiesel from Algal Lipids. J. Chem. Educ. 2012, 89, 239–242. [CrossRef]
- 124. Bodsgard, B.R.; Lien, N.R.; Waulters, Q.T. Liquid CO₂ Extraction and NMR Characterization of Anethole from Fennel Seed: A General Chemistry Laboratory. *J. Chem. Educ.* **2016**, *93*, 397–400. [CrossRef]
- 125. Cacciatore, K.L.; Amado, J.; Evans, J.J.; Sevian, H. Connecting Solubility, Equilibrium, and Periodicity in a Green, Inquiry Experiment for the General Chemistry Laboratory. *J. Chem. Educ.* **2008**, *85*, 251–253. [CrossRef]
- Cacciatore, K.L.; Sevian, H. Teaching Lab Report Writing through Inquiry: A Green Chemistry Stoichiometry Experiment for General Chemistry. J. Chem. Educ. 2006, 83, 1039–1041. [CrossRef]
- 127. Cavalcante Dos Santos, R.; Cabral Cavalcanti, J.N.; Werneck Do Carmo, E.C.; De Souza, F.C.; Soares, W.G.; Gimenes De Souza, C.; França De Andrade, D.; D'Avila, L.A. Approaching Diesel Fuel Quality in Chemistry Lab Classes: Undergraduate Student's Achievements on Determination of Biodiesel Content in Diesel Oil Applying Solvatochromic Effect. *J. Chem. Educ.* 2020, 97, 4462–4468. [CrossRef]
- 128. Chan, J.M.W.; Zhang, X.; Brennan, M.K.; Sardon, H.; Engler, A.C.; Fox, C.H.; Frank, C.W.; Waymouth, R.M.; Hedrick, J.L. Organocatalytic Ring-Opening Polymerization of Trimethylene Carbonate to Yield a Biodegradable Polycarbonate. *J. Chem. Educ.* 2015, 92, 708–713. [CrossRef]
- 129. Chapman, S.; Herniman, J.M.; Langley, G.J.; Raja, R.; Logothetis, T.A. Redox Aluminophosphates: Applying Fundamental Undergraduate Theory to Solve Global Challenges in the Chemical Industry. J. Chem. Educ. 2019, 96, 2937–2946. [CrossRef]
- Chemat, F.; Perino-Issartier, S.; Petitcolas, E.; Fernandez, X. "In Situ" Extraction of Essential Oils by Use of Dean-Stark Glassware and a Vigreux Column inside a Microwave Oven: A Procedure for Teaching Green Analytical Chemistry. *Anal. Bioanal. Chem.* 2012, 404, 679–682. [CrossRef] [PubMed]
- Cheney, M.L.; Zaworotko, M.J.; Beaton, S.; Singer, R.D. Cocrystal Controlled Solid-State Synthesis. A Green Chemistry Experiment for Undergraduate Organic Chemistry. J. Chem. Educ. 2008, 85, 1649–1651. [CrossRef]
- 132. Cheung, L.L.W.; Styler, S.A.; Dicks, A.P. Rapid and Convenient Synthesis of the 1,4-Dihydropyridine Privileged Structure. *J. Chem. Educ.* **2010**, *87*, 628–630. [CrossRef]
- 133. Christensen, J.E.; Huddle, M.G.; Rogers, J.L.; Yung, H.; Mohan, R.S. The Discovery-Oriented Approach to Organic Chemistry. 7. Rearrangement of Trans-Stilbene Oxide with Bismuth Trifluoromethanesulfonate and Other Metal Triflates: A Microscale Green Organic Chemistry Laboratory Experiment. J. Chem. Educ. 2008, 85, 1274–1275. [CrossRef]
- 134. Clark, R.A.; Stock, A.E.; Zovinka, E.P. Metalloporphyrins as Oxidation Catalysts: Moving toward "Greener" Chemistry in the Inorganic Chemistry Laboratory. J. Chem. Educ. 2012, 89, 271–275. [CrossRef]
- Colacino, E.; Dayaker, G.; Morère, A.; Friščić, T. Introducing Students to Mechanochemistry via Environmentally Friendly Organic Synthesis Using a Solvent-Free Mechanochemical Preparation of the Antidiabetic Drug Tolbutamide. J. Chem. Educ. 2019, 96, 766–771. [CrossRef]
- 136. Contreras-Cruz, D.A.; Cantú-Reyes, M.; García-Sánchez, J.M.; Peña-Ortíz, D.; Sánchez-Carmona, M.A.; Miranda, L.D. Shedding Blue Light on the Undergraduate Laboratory: An Easy-to-Assemble LED Photoreactor for Aromatization of a 1,4-Dihydropyridine. J. Chem. Educ. 2019. [CrossRef]
- Cooper, P.D.; Walser, J. Total Chemical Footprint of an Experiment: A Systems Thinking Approach to Teaching Rovibrational Spectroscopy. J. Chem. Educ. 2019, 96, 2947–2951. [CrossRef]
- Cosio, M.N.; Cardenal, A.D.; Maity, A.; Hyun, S.M.; Akwaowo, V.E.; Hoffman, C.W.; Powers, T.M.; Powers, D.C. Exploring Green Chemistry with Aerobic Hypervalent Iodine Catalysis. J. Chem. Educ. 2020, 97, 3816–3821. [CrossRef]
- 139. Costa, N.E.; Pelotte, A.L.; Simard, J.M.; Syvinski, C.A.; Deveau, A.M. Discovering Green, Aqueous Suzuki Coupling Reactions: Synthesis of Ethyl (4-Phenylphenyl)Acetate, a Biaryl with Anti-Arthritic Potential. *J. Chem. Educ.* **2012**, *89*, 1064–1067. [CrossRef]
- 140. Desmond, S.; Ray, C.; Andino Martínez, J.G. Educational Benefits of Green Chemistry. Phys. Sci. Rev. 2019, 2, 1–8. [CrossRef]

- 141. Dhingra, S.; Angrish, C. Qualitative Organic Analysis: An Efficient, Safer, and Economical Approach to Preliminary Tests and Functional Group Analysis. *J. Chem. Educ.* **2011**, *88*, 649–651. [CrossRef]
- 142. Dicks, A.P.; D'Eon, J.C.; Morra, B.; Kutas Chisu, C.; Quinlan, K.B.; Cannon, A.S. A Systems Thinking Department: Fostering a Culture of Green Chemistry Practice among Students. *J. Chem. Educ.* **2019**, *96*, 2836–2844. [CrossRef]
- 143. Dintzner, M.R.; Kinzie, C.R.; Pulkrabek, K.; Arena, A.F. The Cyclohexanol Cycle and Synthesis of Nylon 6,6: Green Chemistry in the Undergraduate Organic Laboratory. J. Chem. Educ. 2012, 89, 262–264. [CrossRef]
- 144. Dintzner, M.R.; Maresh, J.J.; Kinzie, C.R.; Arena, A.F.; Speltz, T. A Research-Based Undergraduate Organic Laboratory Project: Investigation of a One-Pot, Multicomponent, Environmentally Friendly Prins-Friedel-Crafts-Type Reaction. J. Chem. Educ. 2012, 89, 265–267. [CrossRef]
- 145. Divya, D.; Raj, K.G. From Scrap to Functional Materials: Exploring Green and Sustainable Chemistry Approach in the Undergraduate Laboratory. J. Chem. Educ. 2019, 96, 535–539. [CrossRef]
- 146. Dorney, K.M.; Baker, J.D.; Edwards, M.L.; Kanel, S.R.; O'Malley, M.; Sizemore, I.E.P. Tangential Flow Filtration of Colloidal Silver Nanoparticles: A "Green" Laboratory Experiment for Chemistry and Engineering Students. J. Chem. Educ. 2014, 91, 1044–1049. [CrossRef]
- 147. Dos Santos, R.V.; Viana, G.M.; Moreira, A.F.S.; Nóbrega, V.S.; da Silva, V.A.S.; Malta, L.F.B.; Aguiar, L.C.S.; Senra, J.D. Revisiting the Nucleophilicity Concept in a Comprehensive Biomass Valorization Experiment: From Papaya Seeds to Thiourea Motifs. *Quim. Nova* **2019**, *42*, 940–946. [CrossRef]
- 148. Edgar, L.J.G.; Koroluk, K.J.; Golmakani, M.; Dicks, A.P. Green Chemistry Decision-Making in an Upper-Level Undergraduate Organic Laboratory. *J. Chem. Educ.* 2014, *91*, 1040–1043. [CrossRef]
- 149. Eissen, M. Sustainable Production of Chemicals-an Educational Perspective. Chem. Educ. Res. Pract. 2012, 13, 103–111. [CrossRef]
- Félix, S.; Araújo, J.; Pires, A.M.; Sousa, A.C. Soap Production: A Green Prospective. Waste Manag. 2017, 66, 190–195. [CrossRef]
 [PubMed]
- 151. Förster, C.; Heinze, K. Preparation and Thermochromic Switching between Phosphorescence and Thermally Activated Delayed Fluorescence of Mononuclear Copper(I) Complexes. *J. Chem. Educ.* **2020**, *97*, 1644–1649. [CrossRef]
- 152. Geiger, H.C.; Donohoe, J.S. Green Oxidation of Menthol Enantiomers and Analysis by Circular Dichroism Spectroscopy: An Advanced Organic Chemistry Laboratory. J. Chem. Educ. 2012, 89, 1572–1574. [CrossRef]
- 153. Go, E.B.; Srisuknimit, V.; Cheng, S.L.; Vosburg, D.A. Self-Assembly, Guest Capture, and NMR Spectroscopy of a Metal-Organic Cage in Water. *J. Chem. Educ.* 2016, 93, 368–371. [CrossRef]
- 154. Goodwin, T.E. An Asymptotic Approach to the Development of a Green Organic Chemistry Laboratory. J. Chem. Educ. 2004, 81, 1187–1190. [CrossRef]
- 155. Günter, T.; Akkuzu, N.; Alpat, Ş. Understanding 'Green Chemistry' and 'Sustainability': An Example of Problem-Based Learning (PBL). *Res. Sci. Technol. Educ.* **2017**, *35*, 500–520. [CrossRef]
- 156. Hamilton, A.E.; Buxton, A.M.; Peeples, C.J.; Chalker, J.M. An Operationally Simple Aqueous Suzuki-Miyaura Cross-Coupling Reaction for an Undergraduate Organic Chemistry Laboratory. *J. Chem. Educ.* **2013**, *90*, 1509–1513. [CrossRef]
- 157. Hie, L.; Chang, J.J.; Garg, N.K. Nickel-Catalyzed Suzuki-Miyaura Cross-Coupling in a Green Alcohol Solvent for an Undergraduate Organic Chemistry Laboratory. J. Chem. Educ. 2015, 92, 571–574. [CrossRef]
- Hill, N.J.; Bowman, M.D.; Esselman, B.J.; Byron, S.D.; Kreitinger, J.; Leadbeater, N.E. Ligand-Free Suzuki-Miyaura Coupling Reactions Using an Inexpensive Aqueous Palladium Source: A Synthetic and Computational Exercise for the Undergraduate Organic Chemistry Laboratory. J. Chem. Educ. 2014, 91, 1054–1057. [CrossRef]
- 159. Hill, N.J.; Hoover, J.M.; Stahl, S.S. Aerobic Alcohol Oxidation Using a Copper(I)/TEMPO Catalyst System: A Green, Catalytic Oxidation Reaction for the Undergraduate Organic Chemistry Laboratory. J. Chem. Educ. 2013, 90, 102–105. [CrossRef]
- 160. Hoang, G.T.; Kubo, T.; Young, V.G.; Kautzky, J.A.; Wissinger, J.E. Illustrating the Utility of X-ray Crystallography for Structure Elucidation through a Tandem Aldol Condensation/Diels-Alder Reaction Sequence. J. Chem. Educ. 2015, 92, 1381–1384. [CrossRef]
- 161. Hopson, R.; Lee, P.Y.B.; Hess, K.M. 1-Dimensional Selective Nuclear Overhauser Effect NMR Spectroscopy to Characterize Products from a Two-Step Green Chemistry Synthesis. *J. Chem. Educ.* **2018**, *95*, 641–647. [CrossRef]
- Horta, J.E. Simple Microwave-Assisted Claisen and Dieckmann Condensation Experiments for the Undergraduate Organic Chemistry Laboratory. J. Chem. Educ. 2011, 88, 1014–1015. [CrossRef]
- 163. Hurst, G.A. Green and Smart: Hydrogels to Facilitate Independent Practical Learning. J. Chem. Educ. 2017, 94, 1766–1771. [CrossRef]
- 164. Hwang, H.L.; Jadhav, S.R.; Silverman, J.R.; John, G. Sweet and Sustainable: Teaching the Biorefinery Concept through Biobased Gelator Synthesis. J. Chem. Educ. 2014, 91, 1563–1568. [CrossRef]
- 165. Ison, E.A.; Ison, A. Synthesis of Well-Defined Copper N-Heterocyclic Carbene Complexes and Their Use as Catalysts for a "Click Reaction": A Multistep Experiment That Emphasizes the Role of Catalysis in Green Chemistry. J. Chem. Educ. 2012, 4, 1575–1577. [CrossRef]
- 166. Johnston, A.; Scaggs, J.; Mallory, C.; Haskett, A.; Warner, D.; Brown, E.; Hammond, K.; McCormick, M.M.; McDougal, O.M. A Green Approach to Separate Spinach Pigments by Column Chromatography. *J. Chem. Educ.* **2013**, *90*, 796–798. [CrossRef]
- Jones-Wilson, T.M.; Burtch, E.A. A Green Starting Material for Electrophilic Aromatic Substitution for the Undergraduate Organic Laboratory. J. Chem. Educ. 2005, 82, 616–617. [CrossRef]

- 168. Karpudewan, M.; Mathanasegaran, K. Exploring the Use of Context-Based Green Chemistry Experiments in Understanding the Effects of Concentration and Catalyst on the Rate of Reaction. *Asia-Pac. Forum Sci. Learn. Teach.* **2018**, *19*, 3.
- Karpudewan, M.; Roth, W.M.; Ismail, Z. The Effects of "Green Chemistry" on Secondary School Students' Understanding and Motivation. Asia-Pac. Educ. Res. 2015, 24, 35–43. [CrossRef]
- 170. Keen, C.; Couture, S.; Abd El Meseh, N.; Sevian, H. Connecting Theory to Life: Learning Greener Electrochemistry by Taking Apart a Common Battery. J. Chem. Educ. 2020, 97, 934–942. [CrossRef]
- 171. Kelly, M.J.B.; Fallot, L.B.; Gustafson, J.L.; Bergdahl, B.M. Water Mediated Wittig Reactions of Aldehydes in the Teaching Laboratory: Using Sodium Bicarbonate for the in Situ Formation of Stabilized Ylides. J. Chem. Educ. 2016, 93, 1631–1636. [CrossRef]
- 172. Khuong, K.S. Greener Oxidation of Benzhydrol: Evaluating Three Oxidation Procedures in the Organic Laboratory. *J. Chem. Educ.* 2017, 94, 534–537. [CrossRef]
- 173. Klingshirn, M.A.; Wyatt, A.F.; Hanson, R.M.; Spessard, G.O. Determination of the Formula of a Hydrate: A Greener Alternative. *J. Chem. Educ.* **2008**, *85*, 819–821. [CrossRef]
- 174. Klotz, E.; Doyle, R.; Gross, E.; Mattson, B. The Equilibrium Constant for Bromothymol Blue: A General Chemistry Laboratory Experiment Using Spectroscopy. J. Chem. Educ. 2011, 88, 637–639. [CrossRef]
- 175. Knutson, C.M.; Hilker, A.P.; Tolstyka, Z.P.; Anderson, C.B.; Wilbon, P.A.; Mathers, R.T.; Wentzel, M.T.; Perkins, A.L.; Wissinger, J.E. Dyeing to Degrade: A Bioplastics Experiment for College and High School Classrooms. J. Chem. Educ. 2019, 96, 2565–2573. [CrossRef]
- 176. Knutson, C.M.; Schneiderman, D.K.; Yu, M.; Javner, C.H.; Distefano, M.D.; Wissinger, J.E. Polymeric Medical Sutures: An Exploration of Polymers and Green Chemistry. J. Chem. Educ. 2017, 94, 1761–1765. [CrossRef]
- 177. Koch, A.S.; Chimento, C.A.; Berg, A.N.; Mughal, F.D.; Spencer, J.P.; Hovland, D.E.; Mbadugha, B.; Hovland, A.K.; Eller, L.R. Extraction of Maltol from Fraser Fir: A Comparison of Microwave-Assisted Extraction and Conventional Heating Protocols for the Organic Chemistry Laboratory. J. Chem. Educ. 2015, 92, 170–174. [CrossRef]
- 178. Koroluk, K.J.; Jackson, D.A.; Dicks, A.P. The Petasis Reaction: Microscale Synthesis of a Tertiary Amine Antifungal Analog. *J. Chem. Educ.* 2012, *89*, 796–798. [CrossRef]
- 179. Kradtap Hartwell, S. Exploring the Potential for Using Inexpensive Natural Reagents Extracted from Plants to Teach Chemical Analysis. *Chem. Educ. Res. Pract.* 2012, 13, 135–146. [CrossRef]
- 180. Kurowska-Susdorf, A.; Zwierżdżyński, M.; Bevanda, A.M.; Talić, S.; Ivanković, A.; Płotka-Wasylka, J. Green Analytical Chemistry: Social Dimension and Teaching. *TrAC—Trends Anal. Chem.* **2019**, *111*, 185–196. [CrossRef]
- Lam, C.H.; Jackson, J.E. Teaching Electrochemistry with Common Objects: Electrocatalytic Hydrogenation of Acetol with U.S. Coins. J. Chem. Educ. 2020, 97, 172–177. [CrossRef]
- Landstrom, E.B.; Nichol, M.; Lipshutz, B.H.; Gainer, M.J. Discovery-Based SNAr Experiment in Water Using Micellar Catalysis. J. Chem. Educ. 2019, 96, 2668–2671. [CrossRef]
- 183. Lang, P.T.; Harned, A.M.; Wissinger, J.E. Oxidation of Borneol to Camphor Using Oxone and Catalytic Sodium Chloride: A Green Experiment for the Undergraduate Organic Chemistry Laboratory. *J. Chem. Educ.* **2011**, *88*, 652–656. [CrossRef]
- 184. Lapanantnoppakhun, S.; Tengjaroensakul, U.; Mungkornasawakul, P.; Puangpila, C.; Kittiwachana, S.; Saengtempiam, J.; Hartwell, S.K. Green Analytical Chemistry Experiment: Quantitative Analysis of Iron in Supplement Tablets with Vis Spectrophotometry Using Tea Extract as a Chromogenic Agent. J. Chem. Educ. 2020, 97, 207–214. [CrossRef]
- Lasker, G.A.; Simcox, N.J.; Mellor, K.E.; Mullins, M.L.; Nesmith, S.M.; Van Bergen, S.; Anastas, P.T. Introducing Toxicology into the Undergraduate Chemistry Laboratory Using Safety Data Sheets and Sunscreen Activities. J. Chem. Educ. 2019, 96, 720–724. [CrossRef]
- 186. Leslie, J.M.; Tzeel, B.A. Gold(III)-Catalyzed Hydration of Phenylacetylene. J. Chem. Educ. 2016, 93, 1100–1102. [CrossRef]
- Leslie, R.; Leeb, E.; Smith, R.B. Synthesis of Ethyl Nalidixate: A Medicinal Chemistry Experiment. J. Chem. Educ. 2012, 89, 144–146. [CrossRef]
- 188. Leung, S.H.; Angel, S.A. Solvent-Free Wittig Reaction: A Green Organic Chemistry Laboratory Experiment. *J. Chem. Educ.* 2004, *81*, 1492–1493. [CrossRef]
- 189. Lin, Y.; Zhao, H.; Yu, F.; Yang, J. Design of an Extended Experiment with Electrical Double Layer Capacitors: Electrochemical Energy Storage Devices in Green Chemistry. *Sustainability* **2018**, *10*, 3630. [CrossRef]
- Lipshutz, B.H.; Bošković, Z.; Crowe, C.S.; Davis, V.K.; Whittemore, H.C.; Vosburg, D.A.; Wenzel, A.G. "Click" and Olefin Metathesis Chemistry in Water at Room Temperature Enabled by Biodegradable Micelles. J. Chem. Educ. 2013, 90, 1514–1517. [CrossRef] [PubMed]
- Liu, Y.; Myers, E.J.; Rydahl, S.A.; Wang, X. Ultrasonic-Assisted Synthesis, Characterization, and Application of a Metal-Organic Framework: A Green General Chemistry Laboratory Project. J. Chem. Educ. 2019, 96, 2286–2291. [CrossRef]
- 192. Lu, G.P.; Chen, F.; Cai, C. Thiourea in the Construction of C-S Bonds as Part of an Undergraduate Organic Chemistry Laboratory Course. J. Chem. Educ. 2017, 94, 244–247. [CrossRef]
- 193. Mackenzie, L.S.; Tyrrell, H.; Thomas, R.; Matharu, A.S.; Clark, J.H.; Hurst, G.A. Valorization of Waste Orange Peel to Produce Shear-Thinning Gels. *J. Chem. Educ.* 2019, *96*, 3025–3029. [CrossRef]
- 194. Manchanayakage, R. Designing and Incorporating Green Chemistry Courses at a Liberal Arts College to Increase Students' Awareness and Interdisciplinary Collaborative Work. J. Chem. Educ. 2013, 90, 1167–1171. [CrossRef]

- 195. Marcos, C.F.; Neo, A.G.; Díaz, J.; Martínez-Caballero, S. A Safe and Green Benzylic Radical Bromination Experiment. *J. Chem. Educ.* 2020, *97*, 582–585. [CrossRef]
- 196. Martin, E.; Kellen-Yuen, C. Microwave-Assisted Organic Synthesis in the Organic Lab: A Simple, Greener Wittig Reaction. *J. Chem. Educ.* 2007, *84*, 2004–2006. [CrossRef]
- 197. McAllister, G.D.; Parsons, A.F. Going Green in Process Chemistry: Optimizing an Asymmetric Oxidation Reaction to Synthesize the Antiulcer Drug Esomeprazole. *J. Chem. Educ.* 2019, *96*, 2617–2621. [CrossRef]
- 198. McKee, J.R.; Zanger, M.; Chiariello, C.; McKee, J.A.; Dorfner, W.; Fasella, E.; Koo, Y. Semimicro/Microscale Adaptation of the Cobalt Chloride/Sodium Borohydride Reduction of Methyl Oleate. *J. Chem. Educ.* **2019**, *96*, 772–775. [CrossRef]
- 199. McKenzie, L.C.; Huffman, L.M.; Parent, K.E.; Hutchison, J.E.; Thompson, J.E. Patterning Self-Assembled Monolayers on Gold: Green Materials Chemistry in the Teaching Laboratory. *J. Chem. Educ.* **2004**, *81*, 545–548. [CrossRef]
- Mio, M.J. How the Principles of Green Chemistry Changed the Way Organic Chemistry Labs Are Taught at the University of Detroit Mercy. *Phys. Sci. Rev.* 2017, 2, 1–5. [CrossRef]
- Mohan, R.S.; Mejia, M.P. Environmentally Friendly Organic Chemistry Laboratory Experiments for the Undergraduate Curriculum: A Literature Survey and Assessment. J. Chem. Educ. 2020, 97, 943–959. [CrossRef]
- 202. Mooney, D. Effectively Minimizing Hazardous Waste in Academia: The Green Chemistry Approach. *Chem. Heal. Saf.* 2004, 11, 24–28. [CrossRef]
- 203. Mooney, M.; Vreugdenhil, A.J.; Shetranjiwalla, S. A Toolkit of Green Chemistry and Life-Cycle Analysis for Comparative Assessment in Undergraduate Organic Chemistry Experiments: Synthesis of (E)-Stilbene. J. Chem. Educ. 2020, 97, 1336–1344. [CrossRef]
- Morris, R.K.; Hilker, A.P.; Mattice, T.M.; Donovan, S.M.; Wentzel, M.T.; Willoughby, P.H. Simple and Versatile Protocol for Preparing Self-Healing Poly(Vinyl Alcohol) Hydrogels. J. Chem. Educ. 2019, 96, 2247–2252. [CrossRef]
- Morsch, L.A.; Deak, L.; Tiburzi, D.; Schuster, H.; Meyer, B. Green Aqueous Wittig Reaction: Teaching Green Chemistry in Organic Teaching Laboratories. J. Chem. Educ. 2014, 91, 611–614. [CrossRef]
- Mullins, J.J.; Prusinowski, A.F. Microwave-Promoted Synthesis of a Carbocyclic Curcuminoid: An Organic Chemistry Laboratory Experiment. J. Chem. Educ. 2019, 96, 606–609. [CrossRef]
- 207. Murphy, K.C.; Dilip, M.; Quattrucci, J.G.; Mitroka, S.M.; Andreatta, J.R. Sustainable Consumer Choices: An Outreach Program Exploring the Environmental Impact of Our Consumer Choices Using a Systems Thinking Model and Laboratory Activities. *J. Chem. Educ.* 2019, *96*, 2993–2999. [CrossRef]
- 208. Nigam, M.; Rush, B.; Patel, J.; Castillo, R.; Dhar, P. Aza-Michael Reaction for an Undergraduate Organic Chemistry Laboratory. J. Chem. Educ. 2016, 93, 753–756. [CrossRef]
- Obhi, N.K.; Mallov, I.; Borduas-Dedekind, N.; Rousseaux, S.A.L.; Dicks, A.P. Comparing Industrial Amination Reactions in a Combined Class and Laboratory Green Chemistry Assignment. J. Chem. Educ. 2019, 96, 93–99. [CrossRef]
- Paluri, S.L.A.; Edwards, M.L.; Lam, N.H.; Williams, E.M.; Meyerhoefer, A.; Sizemore, I.E.P. Introducing Green and Nongreen Aspects of Noble Metal Nanoparticle Synthesis: An Inquiry-Based Laboratory Experiment for Chemistry and Engineering Students. J. Chem. Educ. 2015, 92, 350–354. [CrossRef]
- Panda, D.; Patra, S.; Awasthi, M.K.; Singh, S.K. Lab Cooked MOF for CO₂ Capture: A Sustainable Solution to Waste Management. ACS Appl. Mater. Interfaces 2020, 97, 1101–1108. [CrossRef]
- Pandarus, V.; Ciriminna, R.; Béland, F.; Pagliaro, M. Making Fine Chemicals, Nanomaterials and Pharmaceutical Ingredients over SiliaCat Catalysts. *Appl. Mater. Today* 2020, 20, 100661. [CrossRef]
- 213. Panzarasa, G. Just Add Luminol to Turn the Spotlight on Radziszewski Amidation. ACS Omega 2018, 3, 13179–13182. [CrossRef]
- Panzarasa, G.; Sparnacci, K. Glowing Teacup Demonstration: Trautz-Schorigin Reaction of Natural Polyphenols. J. Chem. Educ. 2012, 89, 1297–1300. [CrossRef]
- 215. Patterson, A.L.; May, M.D.; Visser, B.J.; Kislukhin, A.A.; Vosburg, D.A. Solvent-Free Synthesis and Fluorescence of a Thiol-Reactive Sensor for Undergraduate Organic Laboratories. *J. Chem. Educ.* **2013**, *90*, 1685–1687. [CrossRef]
- 216. Peng, H.C.; Bryan, J.; Henson, W.; Zhdankin, V.V.; Gandhi, K.; David, S. New, Milder Hypervalent Iodine Oxidizing Agent: Using μ-Oxodi(Phenyliodanyl) Diacetate, a (Diacetoxyiodo)Benzene Derivative, in the Synthesis of Quinones. J. Chem. Educ. 2019, 96, 2622–2627. [CrossRef]
- 217. Pereira, T.M.; Franco, D.F.P.; Vitório, F.; Amaral, R.C.; Ponzoni, A.C.; Kümmerle, A. Microwave-Assisted Synthesis and Pka Determination of Umbelliferone: An Experiment for the Undergraduate Organic Chemistry Laboratory. *Quim. Nova* **2018**, *41*, 1205–1208. [CrossRef]
- 218. Pfab, E.; Filiciotto, L.; Luque, R. The Dark Side of Biomass Valorization: A Laboratory Experiment to Understand Humin Formation, Catalysis, and Green Chemistry. J. Chem. Educ. 2019, 96, 3030–3037. [CrossRef]
- Pohl, N.L.B.; Streff, J.M.; Brokman, S. Evaluating Sustainability: Soap vs. Biodiesel Production from Plant Oils. J. Chem. Educ. 2012, 89, 1053–1056. [CrossRef]
- 220. Priest, M.A.; Padgett, L.W.; Padgett, C.W. Demonstrating the Temperature Dependence of Density via Construction of a Galilean Thermometer. J. Chem. Educ. 2011, 88, 983–985. [CrossRef]
- 221. Purcell, S.C.; Pande, P.; Lin, Y.; Rivera, E.J.; Latisha, P.U.; Smallwood, L.M.; Kerstiens, G.A.; Armstrong, L.B.; Robak, M.T.; Baranger, A.M.; et al. Extraction and Antibacterial Properties of Thyme Leaf Extracts: Authentic Practice of Green Chemistry. *J. Chem. Educ.* 2016, 93, 1422–1427. [CrossRef]

- 222. Raghuwanshi, V.S.; Wendt, R.; O'Neill, M.; Ochmann, M.; Som, T.; Fenger, R.; Mohrmann, M.; Hoell, A.; Rademann, K. Bringing Catalysis with Gold Nanoparticles in Green Solvents to Graduate Level Students. *J. Chem. Educ.* **2017**, *94*, 510–514. [CrossRef]
- 223. Rajapaksha, S.M.; Samarasekara, D.; Brown, J.C.; Howard, L.; Gerken, K.; Archer, T.; Lathan, P.; Mlsna, T.; Mlsna, D. Determination of Xylitol in Sugar-Free Gum by GC-MS with Direct Aqueous Injection: A Laboratory Experiment for Chemistry Students. *J. Chem. Educ.* 2018, 95, 2017–2022. [CrossRef]
- 224. Rajchakit, U.; Limpanuparb, T. Greening the Traffic Light: Air Oxidation of Vitamin C Catalyzed by Indicators. *J. Chem. Educ.* **2016**, *93*, 1486–1489. [CrossRef]
- 225. Rattanakit, P.; Maungchang, R. Determining Iron(III) Concentration in a Green Chemistry Experiment Using *Phyllanthus emblica* (Indian Gooseberry) Extract and Spectrophotometry. *J. Chem. Educ.* **2019**, *96*, 756–760. [CrossRef]
- 226. Reilly, M.K.; King, R.P.; Wagner, A.J.; King, S.M. Microwave-Assisted Esterification: A Discovery-Based Microscale Laboratory Experiment. J. Chem. Educ. 2014, 91, 1706–1709. [CrossRef]
- 227. Ribeiro, M.G.T.C.; Machado, A.A.S.C. Greenness of Chemical Reactions—Limitations of Mass Metrics. *Green Chem. Lett. Rev.* 2013, *6*, 1–18. [CrossRef]
- 228. Rosatella, A.A.; Afonso, C.A.M.; Branco, L.C. Oxidation of Cyclohexene to Trans-1,2-Cyclohexanediol Promoted by p-Toluenesulfonic Acid without Organic Solvents. *J. Chem. Educ.* 2011, *88*, 1002–1003. [CrossRef]
- Rubner, I.; Berry, A.J.; Grofe, T.; Oetken, M. Educational Modules on the Power-to-Gas Concept Demonstrate a Path to Renewable Energy Futures. J. Chem. Educ. 2019, 96, 248–255. [CrossRef]
- 230. Salman Ashraf, S.; Rauf, M.A.; Abdullah, F.H. A Hands-on Approach to Teaching Environmental Awareness and Pollutant Remediation to Undergraduate Chemistry Students. *Res. Sci. Technol. Educ.* **2012**, *30*, 173–184. [CrossRef]
- 231. Samet, C.; Valiyaveettil, S. Fruit and Vegetable Peels as Efficient Renewable Adsorbents for Removal of Pollutants from Water: A Research Experience for General Chemistry Students. J. Chem. Educ. 2018, 95, 1354–1358. [CrossRef]
- Sampaio, C.I.; Sousa, L.F.; Dias, A.M. Separation of Anthocyaninic and Nonanthocyaninic Flavonoids by Liquid-Liquid Extraction Based on Their Acid-Base Properties: A Green Chemistry Approach. J. Chem. Educ. 2020, 97, 4533–4539. [CrossRef]
- Santandrea, J.; Kairouz, V.; Collins, S.K. Continuous Flow Science in an Undergraduate Teaching Laboratory: Photocatalytic Thiol-Ene Reaction Using Visible Light. J. Chem. Educ. 2018, 95, 1073–1077. [CrossRef]
- 234. Schaber, P.M.; Larkin, J.E.; Pines, H.A.; Berchou, K.; Wierchowski, E.; Marconi, A.; Suriani, A. Supercritical Fluid Extraction versus Traditional Solvent Extraction of Caffeine from Tea Leaves: A Laboratory-Based Case Study for an Organic Chemistry Course. *J. Chem. Educ.* 2012, *89*, 1327–1330. [CrossRef]
- 235. Schneiderman, D.K.; Gilmer, C.; Wentzel, M.T.; Martello, M.T.; Kubo, T.; Wissinger, J.E. Sustainable Polymers in the Organic Chemistry Laboratory: Synthesis and Characterization of a Renewable Polymer from δ-Decalactone and L-Lactide. *J. Chem. Educ.* 2014, 91, 131–135. [CrossRef]
- Serafin, M.; Priest, O.P. Identifying Passerini Products Using a Green, Guided-Inquiry, Collaborative Approach Combined with Spectroscopic Lab Techniques. J. Chem. Educ. 2015, 92, 579–581. [CrossRef]
- 237. Sharma, R.K.; Yadav, S.; Gupta, R.; Arora, G. Synthesis of Magnetic Nanoparticles Using Potato Extract for Dye Degradation: A Green Chemistry Experiment. J. Chem. Educ. 2019, 96, 3038–3044. [CrossRef]
- Sharma, R.K.; Sharma, C.; Sidhwani, I.T. Solventless and One-Pot Synthesis of Cu(II) Phthalocyanine Complex: A Green Chemistry Experiment. J. Chem. Educ. 2011, 88, 86–87. [CrossRef]
- Shell, T.A.; Shell, J.R.; Poole, K.A.; Guetzlo, T.F. Microwave-Assisted Synthesis of N-Phenylsuccinimide. J. Chem. Educ. 2011, 88, 1439–1441. [CrossRef] [PubMed]
- 240. Shimizu, E.A.; Cory, B.; Hoang, J.; Castro, G.G.; Jung, M.E.; Vosburg, D.A. Aqueous Dearomatization/Diels-Alder Cascade to a Grandifloracin Precursor. *J. Chem. Educ.* 2019, *96*, 998–1001. [CrossRef]
- 241. Silveira, G.; Ikegaki, M.; Schneedorf, J.M. A Low-Cost Yeast-Based Biofuel Cell: An Educational Green Approach. *Green Chem. Lett. Rev.* 2017, *10*, 32–41. [CrossRef]
- 242. Silverman, J.R. Biobased Organic Chemistry Laboratories as Sustainable Experiment Alternatives. J. Chem. Educ. 2016, 93, 1679–1681. [CrossRef]
- 243. Simeonov, S.P.; Afonso, C.A.M. Batch and Flow Synthesis of 5-Hydroxymethylfurfural (HMF) from Fructose as a Bioplatform Intermediate: An Experiment for the Organic or Analytical Laboratory. *J. Chem. Educ.* **2013**, *90*, 1373–1375. [CrossRef]
- 244. Sims, P.A.; Branscum, K.M.; Kao, L.; Keaveny, V.R. An Inexpensive, Relatively Green, and Rapid Method to Purify Genomic DNA from *Escherichia coli*: An Experiment for the Undergraduate Biochemistry Laboratory. J. Chem. Educ. 2010, 87, 1113–1115. [CrossRef]
- Smith, M.K.; Angle, S.R.; Northrop, B.H. Preparation and Analysis of Cyclodextrin-Based Metal-Organic Frameworks: Laboratory Experiments Adaptable for High School through Advanced Undergraduate Students. J. Chem. Educ. 2015, 92, 368–372. [CrossRef]
- Soares, P.; Fernandes, C.; Chavarria, D.; Borges, F. Microwave-Assisted Synthesis of 5-Phenyl-2-Hydroxyacetophenone Derivatives by a Green Suzuki Coupling Reaction. J. Chem. Educ. 2015, 92, 575–578. [CrossRef]
- 247. Sobral, A.J.F.N. Synthesis of Meso-Diethyl-2,2'-Dipyrromethane in Water. J. Chem. Educ. 2006, 83, 1665–1666. [CrossRef]
- 248. Solomon, S.D.; Rutkowsky, S.A.; Mahon, M.L.; Halpern, E.M. Synthesis of Copper Pigments, Malachite and Verdigris: Making Tempera Paint. J. Chem. Educ. 2011, 88, 1694–1697. [CrossRef]
- 249. Stacey, J.M.; Dicks, A.P.; Goodwin, A.A.; Rush, B.M.; Nigam, M. Green Carbonyl Condensation Reactions Demonstrating Solvent and Organocatalyst Recyclability. J. Chem. Educ. 2013, 90, 1067–1070. [CrossRef]

- Steele, J.H.; Bozor, M.X.; Boyce, G.R. Transmutation of Scent: An Evaluation of the Synthesis of Methyl Cinnamate, a Commercial Fragrance, via a Fischer Esterification for the Second-Year Organic Laboratory. J. Chem. Educ. 2020, 97, 4127–4132. [CrossRef]
- 251. Strachan, J.; Barnett, C.; Maschmeyer, T.; Masters, A.F.; Motion, A.; Yuen, A.K.L. Nanoparticles for Undergraduates: Creation, Characterization, and Catalysis. *J. Chem. Educ.* **2020**, *97*, 4166–4172. [CrossRef]
- 252. Sues, P.E.; Cai, K.; McIntosh, D.F.; Morris, R.H. Template Effect and Ligand Substitution Methods for the Synthesis of Iron Catalysts: A Two-Part Experiment for Inorganic Chemistry. J. Chem. Educ. 2015, 92, 378–381. [CrossRef]
- 253. Sutheimer, S.; Caster, J.M.; Smith, S.H. Green Soap: An Extraction and Saponification of Avocado Oil. J. Chem. Educ. 2015, 92, 1763–1765. [CrossRef]
- Tian, J.; Yan, L.; Sang, A.; Yuan, H.; Zheng, B.; Xiao, D. Microwave-Assisted Synthesis of Red-Light Emitting Au Nanoclusters with the Use of Egg White. J. Chem. Educ. 2014, 91, 1715–1719. [CrossRef]
- 255. Timmer, B.J.J.; Schaufelberger, F.; Hammarberg, D.; Franzén, J.; Ramström, O.; Dinér, P. Simple and Effective Integration of Green Chemistry and Sustainability Education into an Existing Organic Chemistry Course. J. Chem. Educ. 2018, 95, 1301–1306. [CrossRef]
- Touaibia, M.; Selka, A.; Levesque, N.A.; St-Onge, P.A. Green Hydrogenation: Solvent-Free Hydrogenation of Pinenes for an Undergraduate Organic Chemistry Laboratory. J. Chem. Educ. 2020, 97, 2296–2301. [CrossRef]
- Vargas, B.P.; Rosa, C.H.; Rosa, D.D.S.; Rosa, G.R. "Green" Suzuki-Miyaura Cross-Coupling: An Exciting Mini-Project for Chemistry Undergraduate Students. *Educ. Quim.* 2016, 27, 139–142. [CrossRef]
- 258. Verdía, P.; Santamarta, F.; Tojo, E. Synthesis of (3-Methoxycarbonyl)Coumarin in an Ionic Liquid: An Advanced Undergraduate Project for Green Chemistry. J. Chem. Educ. 2017, 94, 505–509. [CrossRef]
- Villalba, M.M.; Leslie, R.; Davis, J.; Smith, R. Designer Experiments to Assist in the Teaching of NMR Spectroscopy. A Spectroscopic Experiment in Green Chemistry. J. Sci. Educ. 2011, 12, 38–40.
- 260. Virot, M.; Tomao, V.; Ginies, C.; Chemat, F. Total Lipid Extraction of Food Using D-Limonene as an Alternative to *n*-Hexane. *Chromatographia* **2008**, *68*, 311–313. [CrossRef]
- Vogelzang, J.; Admiraal, W.F.; Van Driel, J.H. Effects of Scrum Methodology on Students' Critical Scientific Literacy: The Case of Green Chemistry. Chem. Educ. Res. Pract. 2020, 21, 940–952. [CrossRef]
- Von Dollen, J.; Oliva, S.; Max, S.; Esbenshade, J. Recovery of Silver Nitrate from Silver Chloride Waste. J. Chem. Educ. 2018, 95, 682–685. [CrossRef]
- 263. Wagner, E.P.; Koehle, M.A.; Moyle, T.M.; Lambert, P.D. How Green Is Your Fuel? Creation and Comparison of Automotive Biofuels. *Synthesis* **2010**, *87*, 711–713. [CrossRef]
- Wang, X.; Chrzanowski, M.; Liu, Y. Ultrasonic-Assisted Transesterification: A Green Miniscale Organic Laboratory Experiment. J. Chem. Educ. 2020, 97, 1123–1127. [CrossRef]
- Wang, Y.; Zhang, M.; Hu, Y. Foam Fractionation of Lycopene: An Undergraduate Chemistry Experiment. J. Chem. Educ. 2010, 87, 510–511. [CrossRef]
- Weires, N.A.; Johnston, A.; Warner, D.L.; McCormick, M.M.; Hammond, K.; McDougal, O.M. Recycling of Waste Acetone by Fractional Distillation. J. Chem. Educ. 2011, 88, 1724–1726. [CrossRef]
- 267. Williamson, C.L.; Maly, K.E.; Macneil, S.L. Synthesis of Imidazolium Room-Temperature Ionic Liquids: A Follow-up to the Procedure of Dzyuba, Kollar, and Sabnis. J. Chem. Educ. 2013, 90, 799–801. [CrossRef]
- Winter, R.T.; Van Beek, H.L.; Fraaije, M.W. The Nose Knows: Biotechnological Production of Vanillin. J. Chem. Educ. 2012, 89, 258–261. [CrossRef]
- 269. Wixtrom, A.; Buhler, J.; Abdel-Fattah, T. Mechanochemical Synthesis of Two Polymorphs of the Tetrathiafulvalene- Chloranil Charge Transfer Salt: An Experiment for Organic Chemistry. J. Chem. Educ. 2014, 91, 1232–1235. [CrossRef]
- 270. Worley, B.; Villa, E.M.; Gunn, J.M.; Mattson, B. Visualizing Dissolution, Ion Mobility, and Precipitation through a Low-Cost, Rapid-Reaction Activity Introducing Microscale Precipitation Chemistry. J. Chem. Educ. 2019, 96, 951–954. [CrossRef]
- 271. Wu, K.; Yu, L.; Ding, J. Synthesis of PCL-PEG-PCL Triblock Copolymer via Organocatalytic Ring-Opening Polymerization and Its Application as an Injectable Hydrogel—An Interdisciplinary Learning Trial. *J. Chem. Educ.* **2020**, *97*, 4158–4165. [CrossRef]
- 272. Wu, N.; Kubo, T.; Sekoni, K.N.; Hall, A.O.; Phadke, S.; Zurcher, D.M.; Wallace, R.L.; Kothari, D.B.; McNeil, A.J. Student-Designed Green Chemistry Experiment for a Large-Enrollment, Introductory Organic Laboratory Course. J. Chem. Educ. 2019, 96, 2420–2425. [CrossRef]
- 273. Xie, Y.; Liu, X.; Tao, M. Synthesizing Substituted 2-Amino-2-Chromenes Catalyzed by Tertiaryamine-Functionalized Polyacrylonitrile Fiber for Students To Investigate Multicomponent Reactions and Heterogeneous Catalysis. J. Chem. Educ. 2016, 93, 2074–2079. [CrossRef]
- Zhou, H.; Zhan, W.; Wang, L.; Guo, L.; Liu, Y. Making Sustainable Biofuels and Sunscreen from Corncobs to Introduce Students to Integrated Biorefinery Concepts and Techniques. J. Chem. Educ. 2018, 95, 1376–1380. [CrossRef]
- Bumbaugh, R.E.; Ott, L.S. Preparing and Testing Novel Deep Eutectic Solvents from Biodiesel Co-Product Glycerol for Use as Green Solvents in Organic Chemistry Teaching Laboratories. ACS Symp. Ser. 2020, 1351, 113–130. [CrossRef]
- 276. Chateauneuf, J.E.; Nie, K. An Investigation of Friedel-Crafts Alkylation Reactions in Super- and Subcritical CO₂ and under Solventless Reaction Conditions. *ACS Symp. Ser.* **2002**, *819*, 136–150. [CrossRef]
- 277. Ferhat, M.A.; Meklati, B.Y.; Visinoni, F.; Vian, M.A.; Chemat, F. Solvent Free Microwave Extraction of Essential Oils Green Chemistry in the Teaching Laboratory. *Chim. Oggi* **2008**, *26*, 48–50.

- Kohn, C. The Development of a Bioenergy-Based Green Chemistry Curriculum for High Schools. *Phys. Sci. Rev.* 2019, 4, 1–9.
 [CrossRef]
- Slater, C.S. Partnerships with the Pharmaceutical Industry to Promote Sustainability Green Chemistry View Project Roadmap for Solvent Recovery in Industrial Manufacturing View Project. World Trans. Eng. Technol. Educ. 2011, 9, 6–11.
- Warner, M.G.; Succaw, G.L.; Hutchison, J.E. Solventless Syntheses of Mesotetraphenylporphyrin: New Experiments for a Greener Organic Chemistry Laboratory Curriculum. *Green Chem.* 2001, *3*, 267–270. [CrossRef]
- 281. Joshi, U.J.; Gokhale, K.M.; Kanitkar, A.P. Green Chemistry-Need of the Hour. Indian J. Pharm. Educ. Res. 2011, 45, 168–174.
- 282. Cunningham, A.D.; Ham, E.Y.; Vosburg, D.A. Chemoselective Reactions of Citral: Green Syntheses of Natural Perfumes for the Undergraduate Organic Laboratory. *J. Chem. Educ.* 2011, *88*, 322–324. [CrossRef]
- Dicks, A.P.; Hent, A.; Koroluk, K.J. The EcoScale as a Framework for Undergraduate Green Chemistry Teaching and Assessment. Green Chem. Lett. Rev. 2018, 11, 29–35. [CrossRef]
- Gregor, R.W.; Goj, L.A. Solvent-Free Synthesis of 2,2'-Dinitrobiphenyl: An Ullmann Coupling in the Introductory Organic Laboratory. J. Chem. Educ. 2011, 88, 331–333. [CrossRef]
- Lacušková, D.; Drozdíková, A. Biocatalytic Reduction of Ketones in a Secondary School Laboratory. *Chem.-Didact.-Ecol.-Metrol.* 2017, 22, 123–133. [CrossRef]
- Palesch, J.J.; Gilles, B.C.; Chycota, J.; Haj, M.K.; Fahnhorst, G.W.; Wissinger, J.E. Iodination of Vanillin and Subsequent Suzuki-Miyaura Coupling: Two-Step Synthetic Sequence Teaching Green Chemistry Principles. *Green Chem. Lett. Rev.* 2019, 12, 117–126. [CrossRef]
- Rojas-Fernández, A.G.; Aguilar-Santelises, L.; Cruz Millán, M.; Aguilar-Santelises, M.; García-del Valle, A. Teaching Chemistry with Sustainability. *Multidiscip. J. Educ. Soc. Technol. Sci.* 2017, 4, 102. [CrossRef]
- 288. Tavener, S.; Hardy, J.; Hart, N.; Goddard, A. Teaching Green Chemistry: From Lemons to Lemonade Bottles. *Green Chem.* 2003, *5*, G46–G48. [CrossRef]
- Young, D.M.; Welker, J.J.C.; Doxsee, K.M. Green Synthesis of a Fluorescent Natural Product. J. Chem. Educ. 2011, 88, 319–321.
 [CrossRef]
- 290. Houri, A.F.; Wehbe, H. Towards an Environmentally Friendly Chemistry Laboratory: Managing Expired Chemicals. *Green Chem. R. Soc. Chem.* **2003**, *5*, G49–G50. [CrossRef]
- 291. Van Arnum, S.D. Green Chemistry Fundamentals. J. Chem. Educ. 2005, 82, 1689–1692. [CrossRef]
- McKenzie, L.C.; Huffman, L.M.; Hutchison, J.E.; Rogers, C.E.; Goodwin, T.E.; Spessard, G.O. Greener Solutions for the Organic Chemistry Teaching Lab: Exploring the Advantages of Alternative Reaction Media. J. Chem. Educ. 2009, 86, 488–493. [CrossRef]
- Dintzer, M.R.; Wucka, P.R.; Lyons, T.W. Microwave-Assisted Synthesis of a Natural Insecticide on Basic Montmorillonite K10 Clay. Green Chemistry in the Undergraduate Organic Laboratory. J. Chem. Educ. 2006, 83, 270–272. [CrossRef]
- Stark, A.; Ott, D.; Kralisch, D.; Kreisel, G.; Ondruschka, B. Ionic Liquids and Green Chemistry: A Lab Experiment. J. Chem. Educ. 2010, 87, 196–201. [CrossRef]
- 295. Ravía, S.; Gamenara, D.; Schapiro, V.; Bellomo, A.; Adum, J.; Seoane, G.; Gonzalez, D. Enantioselective Reduction by Crude Plant Parts: Reduction of Benzofuran-2-Yl Methyl Ketone with Carrot (*Daucus carota*) Bits. J. Chem. Educ. 2006, 83, 1049–1051. [CrossRef]
- 296. Ribeiro, M.G.T.C.; Yunes, S.F.; Machado, A.A.S.C. Assessing the Greenness of Chemical Reactions in the Laboratory Using Updated Holistic Graphic Metrics Based on the Globally Harmonized System of Classification and Labeling of Chemicals. *J. Chem. Educ.* 2014, *91*, 1901–1908. [CrossRef]
- 297. Armenta, S.; De La Guardia, M. Determination of Mercury in Milk by Cold Vapor Atomic Fluorescence: A Green Analytical Chemistry Laboratory Experiment. *J. Chem. Educ.* **2011**, *88*, 488–491. [CrossRef]
- Sauvage, X.; Delaude, L. The Synthesis of N-Benzyl-2-Azanorbornene via Aqueous Hetero Diels-Alder Reaction. An Undergraduate Project in Organic Synthesis and Structural Analysis. J. Chem. Educ. 2008, 85, 1538–1540. [CrossRef]
- 299. Hooper, M.M.; De Boef, B. A Green Multicomponent Reaction for the Organic Chemistry Laboratory: The Aqueous Passerini Reaction. *J. Chem. Educ.* 2009, *86*, 1077–1079. [CrossRef]
- 300. Phonchaiya, S.; Panijpan, B.; Rajviroongit, S.; Wright, T.; Blanchfield, J.T. A Facile Solvent-Free Cannizzaro Reaction: An Instructional Model for Introductory Organic Chemistry Laboratory. J. Chem. Educ. 2009, 86, 85–86. [CrossRef]
- Ballard, E.C. pH-Controlled Oxidation of an Aromatic Ketone: Structural Elucidation of the Products of Two Green Chemical Reactions. J. Chem. Educ. 2010, 87, 190–193. [CrossRef]
- Tundo, P.; Anthony, E.R.; Aricò, F. Methylation of 2-Naphthol Using Dimethyl Carbonate under Continuous-Flow Gas-Phase Conditions. J. Chem. Educ. 2010, 87, 1233–1235. [CrossRef]
- 303. Akers, S.M.; Conkle, J.L.; Thomas, S.N.; Rider, K.B. Determination of the Heat of Combustion of Biodiesel Using Bomb Calorimetry. A Multidisciplinary Undergraduate Chemistry Experiment. J. Chem. Educ. 2006, 83, 260–262. [CrossRef]
- Lazarski, K.E.; Rich, A.A.; Mascarenhas, C.M. A One-Pot, Asymmetric Robinson Annulation in the Organic Chemistry Maiors Laboratory. J. Chem. Educ. 2008, 85, 1531–1534. [CrossRef]
- Sidhwani, I.T.; Chowdhury, S. Greener Alternative to Qualitative Analysis for Cations without H₂S and Other Sulfur-Containing Compounds. J. Chem. Educ. 2008, 85, 1099–1101. [CrossRef]
- 306. Eby, E.; Deal, S.T. A Green, Guided-Inquiry Based Electrophilic Aromatic Substitution for the Organic Chemistry Laboratory. *J. Chem. Educ.* **2008**, *85*, 1426–1428. [CrossRef]

- 307. Bopegedera, A.M.R.P.; Perera, K.N.R. "Greening" a Familiar General Chemistry Experiment: Coffee Cup Calorimetry to Determine the Enthalpy of Neutralization of an Acid-Base Reaction and the Specific Heat Capacity of Metals. *J. Chem. Educ.* 2017, *94*, 494–499. [CrossRef]
- 308. Santos, E.S.; Garcia, I.C.G.; Gomez, E.F.L. Caring for the Environment While Teaching Organic Chemistry. J. Chem. Educ. 2004, 81, 232–238. [CrossRef]