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Abstract: In order to improve train operation planning from the two perspectives of enterprise
operating costs and passengers’ travel time, this paper proposes an integrated optimization model of
three sub-problems, namely line planning, timetabling and rolling stock allocation for urban railway
transit lines based on passengers’ travelling demands and the constraints of the urban rail line. The
model features dwelling time at stations, turnaround operations at terminal stations, entering/exiting
depot operations and an assignment for passengers’ travelling flow. We propose a solution method
based on a metaheuristic method that simulates annealing to generate an optimal solution for the
overall problem using MATLAB. Finally, we use the example of Xi’an metro line one to demonstrate
the performance of the model.

Keywords: line planning; timetabling; rolling stock allocation; integrated optimization; urban railway
line; simulated annealing

1. Introduction

Urban railway systems are safe and energy efficient types of transport, and they have
an important role in the public transportation of big cities due to their advantages of having
high transportation capacity and high efficiency. The International Association of Public
Transport points out that urban rail infrastructures had an average of 168 million passengers
per day worldwide from 2000 to 2017. Moreover, this number will keep increasing as 70%
of the current infrastructure was put into service since 2017. To provide passengers with
more convenience and improve the operational efficiency of urban rail, more attention
must be paid to the train operational organization at present and in the future. One of the
most important things regarding train operational organization is to optimize an operation
plan based on the time–space distribution of passenger demands and the capacities of rail
infrastructures in the plan stage. An operation plan specifies the number of trips and the
operation details of each trip, such as the path, arrival and departure times at stations, as
well as the servicing rolling stock. Its quality has a great effect on passengers’ service level
and rail enterprises’ operating costs, and it is the basis for operating rolling stock in order
on the rail network in the operation stage.

Generally, the train operation plan of an urban rail system is optimized through three
phases in order for it to solve problems. The first of these is the line-planning phase, which
aims to fix trips’ travel paths, stop patterns, and the frequency of each type of trip service to
satisfy passenger demand and infrastructure capacity constraints. Then, taking the output
of the line planning problem as the input, the second phase, known as the timetabling
problem, focuses on optimizing trip departure and arrival times at visited stations on the
railway line. Once a timetable is generated, both the rolling stock scheduling and crew
scheduling problems of the third phase are put on the agenda, which can then be solved
respectively. Rolling stock and at least one driver are assigned separately for each operating
rolling stock.
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Although this can improve the solving efficiency by dividing the train operation
planning problem into the above three sub-problems and optimizing them separately.
These three sub-problems are related to each other, and it is therefore potentially easy to
arrive at non-optimal solutions as the generation of a solution for one sub-problem restricts
the potential solutions for the next one in the process of their staged optimization. Moreover,
the exact calculations of both passengers’ travel cost and rail enterprises’ operating costs
usually rely on the solutions of more than one sub-problem, rather than only one of them.
Specifically, passengers’ travel costs consist of waiting time at origin stations, rolling stock
time and so on. The former generally depends on the operation frequency of trips obtained
in the line-planning sub-problem, while the latter rests with the timetable obtained by
solving the timetabling sub-problem. Similarly, rail enterprises’ operating costs are related
to not only the number of trips determined by the line-planning sub-problem, but also
the serviced relations of rolling stock, which is decided by the rolling stock allocation
sub-problem. In short, from the point of view of improving passenger service levels and
reducing rail enterprises’ operating costs, it is necessary to make the three sub-problems
of line planning, timetabling and rolling stock allocation an inter-connected whole, and
achieve their integrated optimization.

Fortunately, with the great improvement of computing power and the introduction
of some integrated optimization models, simultaneous line planning, timetabling and
rolling stock scheduling has become possible. Michaelis, Schöbel [1] an integrated model is
proposed that includes all trip routes, lines and timetables for a bus network in a particular
public transportation system. Wang, Tang, Ning, Meng [2] optimized both timetabling and
rolling stock circulation plans for an urban rail corridor. Wang, D’Ariano, Yin, Meng, Tang,
Ning [3] studied the integration of timetabling and rolling stock circulation planning under
time-varying passenger demand by proposing three solutions to a mixed-integer nonlinear
model. Shi, Zhao, Zhou, Wang, Bell [4] optimized a train operational plan for an urban rail
corridor considering two sub-problems, namely trip departure profile optimization and
rolling stock circulation optimization. This approach is based on maximizing the headway
time without considering travel passenger demand.

Our research focuses on solving the simultaneous optimizing problem of line planning,
timetabling and rolling stock scheduling for an urban rail line that has only one depot for
rolling stock. To be more specific, it aims to obtain an overall solution specifying not only
the number of trips operating in different operation time-periods, but also their arrival
and departure times at visited stations, as well as their serviced rolling stock based on a
given rail line and its time–space distribution of passenger demands. One of the greatest
challenges for us is to design a succinct model integrating the three sub-problems of line
planning, timetabling and rolling stock allocation from the view of improving passenger
service levels and reducing rail enterprises’ operating costs. A succinct model and an
efficient solving algorithm will inevitably contribute to the achievement of their integrated
optimization.

This research attempts to provide the following contributions to research work related
to the problem of train operation planning for urban rail systems;

(1) The formulation of a succinct integrated model to achieve the simultaneous optimiza-
tion of line planning, timetabling and rolling stock allocation based on a prior set of
candidate trips. It has the simplified decisions of selecting some candidate trips for
operation, and further assigning their arrival/departure times and service rolling
stock.

(2) The proposal of a solution approach based on a metaheuristic-type solver namely
a simulated annealing algorithm to solve the integrated model then a test of the
performance of the formulated model using the data of Xian metro line 1.

The remainder of this paper is organized as follows. Section 2 focuses on literature
reviews of line planning, timetabling, rolling stock allocation and their integrated opti-
mization. The methods and materials are then presented in detail in Section 3. The three
sub-problems of line planning, timetabling and rolling stock scheduling are then analyzed
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followed by an assignment of each trip’s service passengers with a method of determining
the numbers of boarding and alighting passengers, the mathematical model is then devel-
oped, and finally the solution approach is covered. In Section 4, a case study is presented
for testing the performances of our proposed method from different perspectives. This is
followed by a discussion of the methods carried out and the results obtained in Section 5.
Finally, the conclusion is drawn with the proposition of future works in Section 6.

2. Literature Review

The objective of line planning is to pull optimal frequencies of service to meet passen-
ger demand while taking into account the capacity of rolling stock and the length of the
operation period. In this subject, Schöbel [5] introduced the basics of line planning models,
their characteristics, mathematical approaches, and algorithms. Bussieck, Kreuzer, Zimmer-
mann [6] focused on finding an optimal choice of rail lines with periodic schedules. The
research presented a mixed integer linear programming model and proposed an optimal
solution to the line optimization problem by maximizing the number of direct travelers. On
the other hand, a different approach to optimize the line planning assignment can be con-
sidered by minimizing the operating cost, as Claessens, van Dijk, Zwaneveld [7] focused on
allocating an optimal railway line taking into account the operating costs while meeting the
requirements fixed by constraints and system capacity. This model optimizes the lines, line
types, routes, frequencies and rolling stock formations. However, a more generally realistic
approach for line planning is a multi-objective model minimizing both passenger travel
time and operating cost. This was demonstrated in ref. Borndörfer, Grötschel, Pfetsch [8], in
which is proposed a multi-objective and multi-commodity flow model for the line planning
problem featuring the flexible routing of passenger paths and dynamic line generation.
Shi, Deng and Huo [9] presented a bi-level programming model combining a passenger
train operation plan with a passenger transfer plan while considering the flow assignment
on the railway passenger transfer network as lower level. This model is multi-objective,
balancing between the interests of the railway corporation and the demands of passengers.
Deng, Zeng, Gao, Zhou [10] proposed a multi-objective model that featured the rolling
stock formation in the optimization of the train plan for urban rail transit. The proposed
model optimizes all of the rolling stock’ formation length, the operational period, and
trip counts together by designing a three-phase solution method. Urban transit lines can
include different route modes depending on passenger demand. Each route connection
type differs in its flow distribution, thus, Deng, Zeng, Gao, Bin [11] presented a model
for train operation plan optimization based on passengers’ general travel expenses and
operators’ benefits featuring passenger choice behavior under a multi-trip-routing mode.

The model we propose in this research aims to optimize the train operation plan for
urban transit. Generally, the scheduling type for urban railway lines is regular schedul-
ing, also known as periodic scheduling. Regular timetables feature fixed headway times
between trip services during a single time period. For instance, a timetable has 3 min
of time difference between two adjacent trip services during rush hours and 5 min of
headway time during all operation periods outside rush hours. There are many papers
that consider regular timetables, such as Nachtigall, Voget [12], which researched the com-
pilation of timetables for a periodic serving railway network and modelled the calculation
of timetables with minimal waiting time for passengers changing rolling stock. Kwan,
Chang [13] applied multi-objective evolutionary algorithms to optimize a medium size
mass rapid transit system with the objectives of minimizing operating costs and passen-
ger dissatisfaction. Liebchen [14] presented a periodic-type scheduling model based on
a periodic event scheduling problem. Albrecht [15] proposes a multilevel optimization
algorithm to solve a demand-oriented automatic timetable for suburban railways. Su, Li,
Tang, Gao [16] proposed an integrated timetable including speed profiles in the scheduling
assignment. The approach is to determine the optimal speed with fixed trip time for each
section then distribute the total trip time among different sections. Sun, Jin, Lee, Axhausen,
Erath [17] put forward three demand-driven timetable design models for urban railway
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lines by demonstrating train operation using equivalent time. Wang, Tang, Ning, Boom, De
Schutter [18] introduced an event-driven model based on three types of events: departure,
arrival and transfer events. The model includes routing choice of passengers at transfer
station and passenger travel behavior.

The rolling stock allocation assignment determines the connections between the trip
services and the circulation of rolling stock between terminal station(s) and yard(s). In order
to reduce operation costs, the number of rolling stock allocated should be minimized. This
objective can be achieved by connecting trip services as much as possible. In this subject,
Abbink, Berg, Kroon, Salomon [19] puts forward a model with an objective to find the most
effective allocation of rolling stock types, sub types, and units of rolling stock to the train
series with the main objective of transporting seated passengers. Fioole, Kroon, Maroti,
Schrijver [20] addressed a rolling stock circulation problem by assigning rolling stock to the
timetable problem by considering multi-objective operating costs and service quality. This
model achieves this by combining and splitting rolling stock units’ tasks. Alfieri, Groot,
Kroon, Schrijver [21] focused on determining the appropriate number, type, and circulation
of rolling stock units on a railway line taking into account the shunting possibilities at the
stations and the order of rolling stock units in the trains. Withall, Hinde, Jackson, Phillips,
Brown, Watson [22] covered rolling stock allocation and platform allocation problems by
presenting an automated approach aiming to speed up the traditional process. The research
presented a detailed description about the basics of the two assignments.

Integrated optimization models for train operation plans have been developed in some
papers. In fact, a mathematical model can feature multi-phase decision variables from line
planning and timetabling assignments. Blanco, Conde, Hinojosa, Puerto [23] considers a
generic model for line planning and timetabling on urban rail networks, with the goal of
optimizing both passenger travel costs and operating expenses while taking short-turning
trips into account. A metaheuristic technique is used to solve the mixed integer linear
programming model. Michaelis, Schöbel [1] proposed an integrated model including all
trip routes, lines and timetables in public transportation (bus network). Their approach is
based on the idea that operating costs and passenger satisfaction can be computed if trip
routes and schedules are known. Zhou, Shi, Chen, Deng [24] optimized the train operation
plan for a network of dedicated passenger lines; the model is multi-objective, aiming to
improve the quality of passenger transfer and ensure the operational benefit of the railway
enterprise. This model uses a simulated annealing-based algorithm to achieve its objectives.
Zhou, Tian, Deng, Qin [25] proposed an integrated optimization model of trip planning and
scheduling to minimize both passenger travel costs and enterprise operating costs using a
model that employed a simulated annealing algorithm. Burggraeve, Bull, Vansteenwegen,
Lusby [26] describes a heuristic technique for creating a line plan from the ground up,
resulting in a realistic and reliable schedule. Their approach iterates interactively, switching
between line planning and timetabling to improve the robustness of the pre-generated
line plan. The optimization concept optimizes the weighted summation of passenger costs
and operator costs for the line planning sub-problem, while improving minimum buffer
durations between line pairs for the timetabling sub-problem.

Other integrated models featured rolling stock allocation and circulation assignment.
Wang, Tang, Ning, Meng [2], [Shen, Xie, Li [27] optimize both train timetabling and rolling
stock circulation plans simultaneously using the same model. Wang, Tang, Ning, Meng [2]
takes into account the operations of trip services, turnaround operations, entering/exiting
depot operations and the number of available rolling stock. Wang, D’Ariano, Yin, Meng,
Tang, Ning [3] proposes an optimization model by considering rolling stock capacity,
number of available rolling stock, and entering and exiting depot operations. The model
solves an integrated model of timetabling and rolling stock circulation under time- varying
passenger flow demand. Optimizing the train operation plan for an urban rail corridor;
Shi, Zhao, Zhou, Wang, Bell [4] uses a different approach by splitting the train operation
plan problem to two sub problems. The first model optimizes the train departure pro-
file featuring a maximum headway time function that ensures the required service for
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the train operation plan. Then, based on the generated timetable, the second proposed
model minimizes the number of rolling stock and their circulation to and from the yard.
Petersen, Larsen, Madsen, Petersen, Ropke [28] solved the integrated model of timetabling
and rolling stock allocation using a large neighborhood search metaheuristic taking into
consideration the waiting time of transferring passengers and the operating costs.

In Table 1, we compared published studies that aimed at optimizing train operating-
planning for urban rail based on four criteria; the sub-problems included in the proposed
models, the factors considered, the objectives targeted and the methodology used. In
general, most studies solved the operating plan problem by integrating line planning
and timetabling sub-problems to target an optimal solution. In addition, the studies
considered rolling stock capacity constraints to increase the accuracy of the formulated
model along with its complexity. Those problems often lead to mixed integer non-linear
programming models that are solved either by transforming the model to mixed integer
linear programming alternative models or by using direct approaches such as linear
computing and iterative nonlinear programming.

Table 1. Comparison of studies aiming at optimizing train operation planning for urban railway lines.

Study Sub-
Problems

Factors
Considered Objectives Solution Method

[15] T 2 H 4, RSC 5 Minimizing enterprise operating costs Branch-and-bound and
genetic algorithm

[4] LP 1, T 2, RSA 3 PC 6
Maximum headway function,

Minimization of depot circulations
and number of rolling stock used

Linear computation

[4] LP 1 TC 5 Minimizing enterprise operating cost
& passengers travel cost

Three phase solving
algorithm

[11] LP 1 RSC 5, PBC 8 Minimizing enterprise operating cost
& passengers travel cost

Three phase solving
algorithm

[2] T 2, RSA 3 NRS 7, CD 9, TO 10
Minimize headway variation,

minimize number of rolling stock,
minimize passengers waiting time

Transforming the model to
MILP 13 problem and solving

with CPLEX

[3] T 2, RSA 3 RSC 5, NRS 7, CD 9 Passenger oriented multi-objective
function

Iterative nonlinear
programming.

Accurate/approximated
MILP 13

[17] T 2 RSC 5 Minimizing waiting time CPLEX solver

(This study) LP 1, T 2, RSA 3 PFA 12, DW 11, H 4 Minimizing enterprise operation costs
and passenger travelling costs

Simulated annealing-based
algorithm

LP 1: line planning, T 2: timetabling, RSA 3: rolling stock allocation, H 4: headway time, RSC 5: rolling stock capacity, PC 6: parking capacity,
NRS 7: number of rolling stock, PBC 8: passenger behavior choice, CD 9: number of depot circulations, TO 10: turnaround operations, DW
11: dwelling time, PFA 12: passenger flow assignment, MILP 13: mixed integer linear program.

Nevertheless, we propose in our study to integrate line planning, timetabling and
rolling stock allocation sub-problems to solve the train operating planning problem. We
include a passenger flow assignment where the boarding capacity of rolling stock is not
a fixed value but a variable calculated at each station, which allows us to calculate more
accurately passenger waiting times at stations and rolling stock dwelling time. In addition,
the assignment brings into consideration the penalty associated with those passengers who
are unable to board the rolling stock as an improvement to total travel costs. Due to the
complexity of the model, we introduce a metaheuristic method to the solving algorithm,
which allows us to keep the computation time within an acceptable range.

3. Methods and Materials
3.1. Problem Description

An urban rail line with a set of stations, denoted by k = {1, 2, . . . , K} is considered
in this research. It has only one depot, connected to station 1, for rolling stock staying,
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checking and repairing, as shown in Figure 1. Both endpoint stations have one turn-round
track for rolling stock turnaround and two main tracks for up-direction and down-direction
trips respectively. However, all intermediate stations have only two main tracks, and only
one rolling stock of the same direction can enter a station at a time.

Figure 1. Layout of the considered urban rail line.

Note that with only one turn-round track at each terminal station, only one rolling
stock can turnaround at a time. In a way, this limitation in turnaround operations leads to
using more rolling stock in general, thus increasing the total enterprise’s costs to operate
the rail line. However, in this study we do not take into account the total number of rolling
stock operated but we consider their total operating time.

The service time range of one day is delimited by the earliest time Ts and the latest
time Te, and is expressed by [Ts, Te]. It is divided into a set of time periods, expressed
by T = {t1, t2, · · · , tL}. Each time period, for example time-period tl , has start time ts

l
and end time te

l . Moreover, the start time of the first time period t1 satisfies ts
1 = Ts, the

end time of the last time period tL satisfies te
L = Te, and the end time of one time period

must be equal to the start time of the next period, namely te
l = ts

l+1. The length of a single
time period |tl | can be adjusted according to passenger demand variations i.e., a more
fluctuating demand requires shorter time periods.

We consider only two types of paths for operation trips. One path is from endpoint
station 1 to endpoint station K, which we call the up-direction path. The other path is
from endpoint station K to endpoint station 1, which is called the down-direction path.
Moreover, trips of each path stop at each visited station. Many candidate trips of both
paths are initially generated according to a given minimum operation headway from the
earliest time Ts to the latest time Te. As shown in Figure 2, the set of upstream-direction
candidate trips traveling from station 1 to station K is denoted by Fup = {i|i ∈ Z+}, while
those of downstream-direction candidate trips travelling from station K to station 1 is
denoted by Fdn = {j|j ∈ Z+}. Each candidate trip has specified its travel path, stops and
initial timetable, of which the last one may be rescheduled in our proposed method. Note
that candidate trips in these two sets are ordered by their departure times at origin station.
Thus, candidate trip i or j operates earlier than trip i + 1 or j + 1.

For every time period tl , the initial frequency of service fini is provided by a set of
candidate trips. Providing a maximum travelling capacity, the initial set of candidate trips
are generated with a minimum headway time hmin between two consecutive trips. Each
upstream trip i or downstream trip j must stop at every station k in its path for a specific
dwelling time τi,k, allowing the boarding and alighting of passengers.

Obviously, the pre-initialized candidate trips are the maximum number of possible
provided trips under the rail capacity limitation. If the passenger demand in each time-
period is enough to operate all candidate trips with minimum headway, then all candidate
trips must be chosen to operate. However, in most cases, there are some time periods
that do not have enough passenger demand, and thus some candidate trips should not be
chosen to operate.
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Figure 2. Set of candidate trips during time period.

To summarize, our integrated problem aims to choose some candidate trips from two
sets to operate according to the demands of time periods, and further reschedule them
and optimize their rolling stock service. For a better understanding, in the next section we
will first describe line planning, timetabling and rolling stock scheduling sub-problems
based on given set of two candidate trips, and then declare our studied integrated problem
considering them together.

Traditionally, the line planning sub-problem is to determine the origin, destination,
itinerary and frequency of services. However, in this study we consider a layout that allows
one single itinerary for each trip direction. Moreover, we only consider full-length services,
therefore the origin and destination of each same-direction trip is the same as they begin
from one terminal station and end at the other terminal station at the end of the service
trip. Thus, we aim to solve this sub-problem by selecting some candidate trips from a
generated set of candidate trips to provide sufficient frequency for each time period based
on its passenger demand. For this matter, we introduce two binary variables:

θi =

{
1 i f the up− direction candidate trip i is selected f or operation
0 otherwise

θj =

{
1 i f the dn− direction candidate trip j is selected f or operation
0 otherwise

As we know, the number of provided trip services cannot exceed the maximum, which
depends on the minimum headway in each time period. As we initialize candidate trips
based on the minimum headway, even when all candidate trips of one time period are
chosen to operate, this requirement is still satisfied.

∑
i∈Fup

l

θi ≥ |tl |/hmax ∀l (1)

∑
j∈Fdn

l

θj ≥ |tl |/hmax ∀l (2)
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where |tl | is the length of time period tl , and hmax is the maximum headway between two
consecutive trips to maintain quality of service.

After we get the provided trip services, we also have to determine their arrival
times and departure times at each visited station, which is regarded as the timetabling
sub-problem. Thus, we introduce four decision variables for upstream and downstream
direction trip services, respectively.

di,k : departure time of upstream trip service i from station k

dj,k : departure time of downstream trip service j from station k

ai,k : arrival time of upstream trip service i to station k

aj,k : arrival time of downstream trip service j to station k

Timetabling must make trip arrival and departure times satisfy many operation
requirements, such as the minimum headway, travel time in each rail section and required
dwell times at stations.

All trips must depart from stations after the earliest operation time Ts, and also must
arrive at stations before the latest operation time Te in one day. Thus, the departure and
arrival times of trip services must fall between an operation time range [Ts, Te], namely,{

Ts·θi ≤ di,k ≤ Te·θi
Ts·θi ≤ ai,k ≤ Te·θi

∀i ∈ Fup, ∀k (3)

{
Ts·θj ≤ dj,k ≤ Te·θj
Ts·θj ≤ aj,k ≤ Te·θj

∀j ∈ Fdn, ∀k (4)

Equation (3) ensures that if an up-direction trip service is selected, i.e., θi = 1, then its
departure times and arrival times must fall between the start and end time of the operational
day, namely Ts ≤ di,k ≤ Te and Ts ≤ ai,k ≤ Te. Otherwise, its departure times and arrival
times must be equal to 0. Similarly, Equation (4) makes sure each down-direction trip
service satisfies this requirement.

The minimum travel time of a trip between two adjacent stations depend on the
section’s mileage, rolling stock speed and whether it stops at stations. As we assume that
all trips stop at each visited station, the trip’s minimum travel time in a section can be
viewed as a fixed value. Thus, the time difference from entering into the section to its
leaving from there cannot be lower than this minimum fixed travel time.

ai,k+1 − di,k ≥ θi·ri,k ∀i ∈ Fup, ∀k (5)

aj,k − dj,k+1 ≥ θj·rj,k ∀j ∈ Fdn, ∀k (6)

Note that as Equations (3) and (4) ensure that if a trip service has not been selected,
then its arrival and departure times are 0, so for a non-chosen trip, Equations (5) and (6)
automatically set its section travel time to 0.

For passengers having enough time boarding and alighting a rolling stock, a required
minimum dwell time of a rolling stock at a given station is needed and it can be described
as a function of the number of boarding and alighting passengers at a station,

τi,k = tA,B·(Ai,k + Bi,k) + tr ∀i ∈ Fup, ∀k (7)

τj,k = tA,B·
(

Aj,k + Bj,k

)
+ tr ∀j ∈ Fdn, ∀k (8)

where tA,B is the average time required for the boarding and alighting of a passenger, tr is
the average reaction time of passengers to boarding and alighting operation, Ai,k and Aj,k
are the number of passengers alighting from trip services i and j respectively to station k,
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and Bi,k and Bj,k are the number of passengers boarding to trip services i and j respectively
from station k.

Thus, the trip’s actual dwell time, namely, the time difference between the departure
time and arrival time of all trip services at a given station should be no less than the
minimum required dwell time,

di,k − ai,k ≥ θi·τi,k ∀i ∈ Fup, ∀k (9)

dj,k − aj,k ≥ θj·τj,k ∀j ∈ Fdn, ∀k (10)

Equations (9) and (10) make sure the operation trips’ dwell times are no less than the
minimum required values and the non-chosen trips’ dwell times are 0 under the action of
Equations (7) and (8).

As only one same-direction trip can stay at the middle station on the rail line at most,
when a trip departs from a station, only then may another same-direction trip be allowed
to arrive at the station. Therefore, the following two Equations must be satisfied,

di′ ,k − ai,k + (2− θi′ − θi)·M ≥ hmin − (2− θi′ − θi)·M
∀i < i′ ∈ Fup, k = 2, 3, · · · , K− 1

(11)

dj′ ,k − aj,k +
(

2− θj′ − θj

)
·M ≥ hmin −

(
2− θj′ − θj

)
·M

∀j < j′ ∈ Fdn, k = 2, 3, · · · , K− 1
(12)

The time difference between two consecutive trips is set to guarantee the safety of the
operation. The departure and arrival times of two consecutive service trips must satisfy
the safety conditions:

ai′ ,k − ai,k + (2− θi′ − θi)·M ≥ hmin − (2− θi′ − θi)·M ∀i < i′ ∈ Fup, ∀k, ∀l (13)

aj′,k − aj,k +
(

2− θj′ − θj

)
·M ≥ hmin −

(
2− θj′ − θj

)
·M ∀j < j′ ∈ Fdn, ∀k, ∀l (14)

di′,k − di,k + (2− θi′ − θi)·M ≥ hmin − (2− θi′ − θi)·M ∀i < i′ ∈ Fup, ∀k, ∀l (15)

dj′,k − dj,k +
(

2− θj′ − θj

)
·M ≥ hmin −

(
2− θj′ − θj

)
·M ∀j < j′ ∈ Fdn, ∀k, ∀l. (16)

where M is a sufficiently large number.
Equations (13) and (14) consider upstream trip services; if two consecutive trip ser-

vices are selected i.e., θi = θi′ = 1, then the headway time condition must be satisfied:
ai′,k − ai,k ≥ hl . Otherwise, if one trip service is not selected then the Equation is automati-

cally verified. For instance, if θi = 0, then ai′,k ≥ 0. However, if none of the trip services are
selected, then the Equation is obviously verified when the departure and arrival times are
non-existing.

Similarly, Equations (15) and (16) make sure each down-direction trip service satisfies
this requirement.

To ensure that all selected trips can be provided, we still have to assign a rolling stock
to each trip. Of course, we have to consider the use-cost of rolling stock in this process.
For example, assigning the same rolling stock to multiple trips. This problem is called the
rolling stock allocation problem.

When an upstream direction trip i reaches terminal station K, the rolling stock must
turnaround to provide the next trip j as there is no depot at this station. However, we
must choose one from many upcoming trips. Thus, we introduce a binary variable for trip
connections at station K:

δi,j =

{
1 a rolling stock continues to service tripj a f ter servicing i at station K
0 otherwise
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As for station 1, when a downstream trip service j arrives, the rolling stock can either
enter into the depot or turnaround to provide an upcoming trip service i. In this case, we
have to firstly decide whether it enters into depot or turnaround for servicing another trip.
If the latter is chosen, we still must decide which trip should be serviced after servicing
trip j. Thus, we introduce two decision variables for the circulation of rolling stock to
the depot.

δj,p =

{
1 the rolling stock servicing trip j enters the depot
0 else

δj,i =

{
1 train services i and j provided by the same rolling stock
0 train services i and j provided bydi f f erent rolling stocks

Obviously, if δj,p = 1, then δj,i must be 0 for any trip i; and if δj,p = 0, then there
must be one trip i satisfying δj,i = 1.

For a rolling stock, before servicing an up-direction trip i, it can either stay at the depot
or service one down-direction trip j. However, before servicing a down-direction trip j, it
has only serviced one up-direction trip i as the start station K of a down-direction trip j
doesn’t connect to the depot. Thus, we have to introduce the following binary variable to
describe whether a rolling stock comes from the depot before servicing an up-direction
trip i.

δp,i =

{
1 the rolling stock servicing trip i exits the depot
0 else

Note that the decision of which down-direction (upstream direction) trip is serviced
by a rolling stock before it services an upstream direction (downstream direction) can be
described by variables δj,i and δi,j.

Similarly, if δp,i = 1, then δj,i must be 0 for any trip i; and if δp,i = 0, then there must
be one trip i satisfying δj,i = 1.

Figure 3 illustrates all possible operations at terminal stations. At first, the connection
of trip services i and j at station terminal K with turnaround operation namely δi,j = 1.
Then, when trip j arrives to station 1, as there is no connection to up-direction trip δj,i+1 = 0;
the rolling stock goes back to the depot δj,p = 1. This also implies that the next upstream
trip i + 1 must come out from the depot δp,i = 1.

Contrary to the previous connection at end station K, when trip i + 1 arrives to the
station, it does not connect with the next downstream trip j′ namely δi+1,j′ = 1. In this
situation, the rolling stock servicing trip i + 1 stays at the station from an upcoming
connection. Finally, when the downstream trip j′ arrives to station 1, it does connect with
trip i’ namely δj′,i′ = 0.

For an upstream candidate trip service i, it must be serviced by a rolling stock only
when it is selected for operation, thus it satisfies the following requirements,

δp,i + ∑
j

δj,i = θi ∀i ∈ Fup (17)

∑
j

δij = θi ∀i ∈ Fup (18)

Equation (17) ensures that if an upstream candidate trip i is not selected, namely θi = 0,
then there is no rolling stock coming from depot to service it δp,i = 0, and no rolling stock
after servicing a downstream direction trip to service it, that is ∑

j
δj,i = 0. Otherwise, there

must be a rolling stock, which either comes from depot or finishes servicing a downstream
direction trip, to service trip i.
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Figure 3. Layout of turnaround operations and rolling stock circulations to/from the depot.

Equation (18) further makes sure that if upstream candidate trip i is not selected,
namely θi = 0, then there is no rolling stock after servicing trip i to service trip j, that
is ∑

j
δij = 0; otherwise, there must be rolling stock which services trip i to service trip j

assuring ∑
j

δij = 1.

Similarly, for a downstream candidate trip j, only when it is selected for operation,
then it must be serviced by rolling stock, which must service an upstream trip i before
servicing trip j, and can either enter the depot or turnaround at the station to provide the
next trip service i when finishing servicing trip j and arriving at terminal station 1.

∑
i

δij = θj ∀j ∈ Fdn (19)

∑
i

δj,i + δj,p = θj ∀j ∈ Fdn (20)

As detailed in the timetabling sub-problem, at each intermediate station, it is allowed
that only one rolling stock at most stays in there at a time for each direction, as generally
there is only one track for rolling stock dwelling for each direction. However, at the terminal
station, the rolling stock has to turnaround and we must consider the rolling stock of both
directions, and make the number of upstream direction or downstream direction rolling
stock no more than the two-dwell tracks for the two directions of rolling stock. For example,
when a trip i arrives at station K, and then turns around to continue trip j, obviously in the
time range from ai,K to dj,K, this rolling stock will stay at station K and occupy one track,
and then only one more rolling stock can be allowed to arrive there in the time range, as
shown in Figure 4.

Denote Fup(t1, t2) =
{

i′
∣∣t2 > ai′ ,K > t1

}
as the set of upstream direction trips arriving

at station K in time range [t1, t2], and |Fup(t1, t2)| is the number of trips in set Fup(t1, t2).

M·(θi − 1) ≤
∣∣∣∣∣Fup

(
ai,K, ∑

j
δi,j·dj,K

)∣∣∣∣∣ ≤ 1 + M·(1− θi) ∀i ∈ Fup, ∀j ∈ Fdn (21)
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Figure 4. Trip i′ entering station K before turnaround operation between trips i and j.

Specifically, for the rolling stock servicing an upstream direction trip i which means
θi = 1, the departure time of its next servicing downstream direction trip can be determined
by ∑

j
δi,j·dj,K, then the number of upstream direction trips arriving at station K from ai,K to

∑
j

δi,j·dj,K is equal to 0 or 1; otherwise, if trip i has not been selected for operation, then this

Equation does not work.
Similarly, at station 1, there are only two rolling stock at most dwelling there at the

same time. However, compared with the station K where the rolling stock must turnaround,
rolling stock at station 1 can either turnaround or enter the depot after servicing one
downstream direction trip. Denote Fdn(t1, t2) =

{
i′
∣∣t2 > ai′ ,K > t1

}
as the set of upstream

direction trips arriving at station 1 in time range [t1, t2], and
∣∣∣Fdn(t1, t2)

∣∣∣ is the number

of trips in set Fdn(t1, t2). Specifically, for each downstream direction trip j selected for
operation, when the rolling stock servicing it arrives at station 1, if it continues to service
an upstream direction trip, namely ∑

i
δj,i = 1, then its departure time can be determined

as ∑
i

δj,i·di,1, and the number of trips arriving at time range
(

aj,1, ∑
i

δj,i·di,1

)
should be 0 or

1. Thus, the following constrain should be satisfied.

M·
(

θj + ∑
i

δj,i − 2

)
≤
∣∣∣∣∣Fdn

(
aj,1, ∑

i
δj,i·di,1

)∣∣∣∣∣ ≤ 1 + M·
(

2− θj + ∑
i

δj,i

)
∀j ∈ Fdn (22)

When two upstream and downstream trip services i and j are connected by the same
rolling stock, a minimum turnaround time is required to allow preparation of the rolling
stock. The minimum value of turnaround time is based on parameters such as cleaning time,
the signaling system, the characteristics of the rolling stock etc. The following Equation
fixes the minimum turnaround requirement at terminal station K:

dj,K − ai,K ≥ tturn
min −M·

(
1− δi,j

)
∀i ∈ Fup, ∀j ∈ Fdn∀j ∈ Fdn (23)

where tturn
min is minimum turnaround operation time at terminal stations.

Similarly, the minimum turnaround requirement at terminal station 1 is covered by
the following Equation:

di,1 − aj,1 ≥ tturn
min −M·

(
1− δj,i

)
∀i ∈ Fup, ∀j ∈ Fdn (24)

Although the above three sub-problems have different decision variables, they are
all related. This research is devoted to optimizing them together to achieve a better train
operation plan consisting of line planning, timetabling and rolling stock planning. As the
details have been discussed above, here we simply list the decision variables of our studied
integrated optimizing problem, presented in Table 2.
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Table 2. Definitions of decision variables for the integrated optimizing problem.

Variables Definitions

θi
0–1 binary decision variable, it shows whether or not candidate trip i is
chosen for up-direction operation, if yes, then θi = 1, otherwise, θi = 0.

θj
0–1 binary decision variable, it indicates whether or not candidate trip j of
down-direction is chosen to operate, if yes, then θj = 1, otherwise, θj = 0.

di,k Departure time of up-direction trip i from station k
ai,k Arrival time of up-direction trip i to station k
dj,k Departure time of down-direction trip j from station k
aj,k Arrival time of down-direction trip j to station k

δp,i

0–1 binary decision variable, it shows whether or not the rolling stock
allocated for service i comes from the depot, if yes, then δp,i = 1, otherwise,

δp,i = 0.

δj,p
0–1 binary decision variable, it shows whether or not the rolling stock enters

the depot after servicing trip j, if yes, then δj,p = 1, otherwise, δj,p = 0.

δj,i

0–1 binary decision variable, it shows whether or not a rolling stock
continues to service trip j after servicing trip i at station 1, if yes, then δj,i = 1,

otherwise, δj,i = 0.

δi,j

0–1 binary decision variable, it shows whether or not a rolling stock
continues to service trip j after servicing i at station K, if yes, then δi,j = 1,

otherwise, δi,j = 0.

Meanwhile, we summarize and list all parameters considered in the integrated prob-
lem in Table 3.

Table 3. Definitions of input and parameters for the integrated optimizing problem.

Notations Definitions

[Ts, Te] The start and end of the day operation
ts
l , te

l The start and end of operation period tl
i, j Indexes for trip services
Fup Sets of upstream trip services
Fup

l Set of upstream trip services during operation period tl
Fdn Sets of downstream trip services
Fdn

l Set of downstream trip services during operation period tl
k, K Indexes used for stations
tl , tL Index for time periods

fini Initial service frequency based on minimum headway
t Arriving time of the passenger to the station
C Total capacity of the rolling stock
p Fare rate
α Weight factor
β Average time value of passengers
c Cost per time unit of service

Pn Penalty related to late arriving passengers
ri,k Minimum running time of trip service i from station k to the next station
rj,k Minimum running time of trip service j from station k to the next station

tturn
min Minimum time required for a turnaround operation at terminal stations

tenter Time required for rolling stock to enter the depot
texit Time required for rolling stock to exit the depot

hl
Headway time representing the time difference between two consecutive

servicing trips
hmin Minimum headway time value
hmax Maximum headway time value
τi,k Minimum dwell time of servicing trip i at station k
τj,k Minimum dwell time of servicing trip j at station k

tA,B Average time required for the boarding and alighting of a passenger
tr Reaction time of a passenger to boarding and alighting operation
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All assumptions in our studied integrated problem are summarized as follows.

1. Only one rolling stock can enter a station at a time,

We based the first assumptions on the fact that many urban rail systems operate with the
principle of first-in first-out across all stations as the platform receives one direction trip at a time.

2. Only full-length services are taken into account i.e., each servicing trip travels from
one terminal station all the way to the other terminal station,

In some specific urban transit systems where the passenger flow is unbalanced between
sections of the railway line, the railway line is designed accordingly with the possibility of
short turning operations at intermediate stations in addition to full-length services allowing
the increase of trips at busiest sections of the railway line. However, this is not the case in
the majority of urban transit railway lines, as full-length servicing trips travelling from two
endpoints of the railway line are sufficient to transport all passengers accordingly.

3. Overtaking operations are not considered i.e., each service trip stops at each station
on its path,

In some busy urban railway lines, scheduling express service trips in the timetable
allows the transportation of passengers more efficiently. This type of operation allows an
express trip to overtake a normal trip stopping at a given station. However, this way of
operating the railway line is implemented in the most crowded urban rail systems, but is
not necessary for the majority of normal urban transit systems.

4. There are no limits for parking rolling stock in the depot,

Real-time management of the railway line includes the operation of rolling stock within
the depot. Usually, it is planned once the timetable and rolling stock allocation are fixed.
However, management of rolling stock inside the yard falls outside the focus of this study
therefore we do not take into account the limit of rolling stock to park within the depot.

5. The formation and capacity of rolling stock are considered fixed forming a carrying
capacity C,

In urban rail transit lines, the composition includes rolling stock connected to loco-
motives. This composition can be changed depending on passenger flow requirements
allowing the reduction of operating costs. However, for most systems the composition used
during the whole day is fixed for the sake of simplicity, which results in a fixed carrying
capacity for all rolling stock.

3.2. The Assignment of a Trip’s Service Passengers Based on Queuing Theory

The aim for this assignment is to calculate the numbers of boarding and alighting
commuters from those provided trips to each station. We introduce a parameter λk,k′(t) to
describe passenger demand, i.e., rate of passengers at time t arriving to station k willing to
travel to station k′. All parameters and variables included in this assignment are listed in
Tables 4 and 5 respectively.

Table 4. Definitions of variables for the assignment of a trip’s service passengers.

Notations Definitions

t∗ Time limit for passengers to board the rolling stock before it reaches its max capacity
ω

up
i,k /ωdn

j,k Dividing time deciding whether passengers arrive in time to board the rolling stock
Ci,k Boarding capacity of the rolling stock servicing trip i when arriving to station k
Cj,k Boarding capacity of the rolling stock servicing trip j when arriving to station k
Bk.k′

i Number of passengers boarding the rolling stock servicing trip i travelling to station k′
Bk.k′

j Number of passengers boarding the rolling stock servicing trip j travelling to station k′
Bi,k Number of passengers boarding the rolling stock servicing up-direction trip i at station k
Bj,k Number of passengers boarding the rolling stock servicing down-direction trip j at station k
Ai,k Number of passengers alighting from the rolling stock servicing up-direction trip i at station k
Aj,k Number of passengers alighting from the rolling stock servicing down-direction trip j at station k
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Table 5. Definitions of input and parameters for the assignment of a trip’s service passengers.

Notations Definitions

λk,k′(t)
Passengers’ arrival rate at station k travelling

to station k′ at time t

In regards to minimizing the travel cost of passengers, the most contributing factor
is the minimization of their waiting time. With the congestion of passengers in stations
during peak hours, passengers will not be able to get in a rolling stock as soon they arrive
to the station and thus, their waiting time may differ depending on how fast they can
board the rolling stock. In addition to that, the consistency of servicing trips passing by the
station is another influence on their waiting time.

When a rolling stock departs from station k, some passengers may queue at station k,
and they have different destinations. As passengers of various destinations have the same
priority to board the arriving rolling stock based on the first-in, first-out rule.

We define ω
up
i,k , ωdn

j,k as the dividing time; while trip i or j departs from station k,

passengers entering into station k before time ω
up
i,k /ωdn

j,k can board the rolling stock servicing
trip i or j or its previous rolling stock to travel, but those passengers arriving later than time
ω

up
i,k cannot board them. For instance, passengers arriving at the station at a time when the

rolling stock has not departed yet but already reached its maximum capacity i.e., they have
arrived after ω

up
i,k /ωdn

j,k , those passengers cannot get in the rolling stock and have to wait
for the next one.

For any dwelling rolling stock at station k, its dividing time can be determined by,

ω
up
i,k = min

{
di,k, t∗

}
∀i ∈ Fup, ∀k (25)

ωdn
j,k = min

{
dj,k, t∗

}
∀j ∈ Fdn, ∀k (26)

where t∗ is the end time for making passengers entering into station k reach rolling stock
available capacity Ck. We determine t∗ differently depending on the train number.

For the 1st trip, it can be decided by,

∑
k′=k+1,k+2,···

∫ t

Ts
λk,k′(t)dt = Ci,k ∀i′ < i ∈ Fup, ∀

(
k, k′

)
(27)

∑
k′=k−1,k−2,···

∫ t

Ts
λk,k′(t)dt = Cj,k ∀j′ < j ∈ Fdn, ∀

(
k, k′

)
(28)

For the ith trip, time t∗ can be decided by,

∑
k′=k+1,k+2,···

∫ t

ω
up
i′,k

λk,k′(t)dt = Ci,k ∀i′ < i ∈ Fup, ∀k (29)

∑
k′=k−1,k−2,···

∫ t

ωdn
j′,k

λk,k′(t)dt = Cj,k ∀j′ < j ∈ Fdn, ∀k (30)

Ci,k and Cj,k are the available capacities of rolling stock servicing trips i and j respec-
tively when arriving at a given station k. When the rolling stock arrives to terminal stations
1 or K, the available capacities are determined as follow,

Ci,k = θi,k·C ∀i ∈ Fup, ∀k (31)

Cj,k = θj,k·C ∀j ∈ Fdn, ∀k (32)
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Otherwise, when the rolling stock arrives to an intermediate station, its available
boarding capacity is calculated based on max rolling stock capacity C and the accumulated
numbers of boarding and alighting passengers at previous stations as follows,

Ci,k = C−
k−1

∑
k′=1

Bi,k +
k

∑
k′=1

Ai,k ∀i ∈ Fup, ∀
(
k, k′

)
(33)

Cj,k = C−
k+1

∑
k′=K

Bj,k +
k

∑
k′=K

Aj,k ∀j ∈ Fdn, ∀
(
k, k′

)
(34)

For rolling stock departing from station k, the number of passengers travelling from
station k to station k′ is calculated as follows,

Bk,k′
i =

∫ ω
up
i,k

t′
λk,k′(t)dt ∀i ∈ Fup, ∀

(
k, k′

)
(35)

Bk,k′
j =

∫ ωdn
j,k

t′
λk,k′(t)dt ∀j ∈ Fdn, ∀

(
k, k′

)
(36)

where t′ =
{

Ts f or f irst scheduled trains
ω

up
i−1,k/ω

up
j−1,k f or i− th and j− th trains .

Based on Bk,k′
i and Bk,k′

j , we calculate the numbers of passengers to enter and exit the
rolling stock. As the number of passengers alighting from the rolling stock at station k can
be determined based on passengers boarding before station k,

Ai,k =
k−1

∑
k′=1

Bk′ ,k
i ∀i ∈ Fup, ∀

(
k, k′

)
(37)

Aj,k =
k+1

∑
k′=K

Bk′ ,k
j ∀j ∈ Fdn, ∀

(
k, k′

)
(38)

Similarly, the total number of passengers boarding the rolling stock at station k is,

Bi,k = ∑
k′=k+1,k+2,···

Bk,k′
i ∀i ∈ Fup, ∀

(
k, k′

)
(39)

Bj,k = ∑
k′=k−1,k−2,···

Bk,k′
j ∀j ∈ Fdn, ∀

(
k, k′

)
(40)

Based on boarding and alighting passengers at station k, we determine the number of
passengers inside the rolling stock travelling within section [k, k + 1] by,

Gi,k = Gi,k−1 + Bi,k − Ai,k ∀i ∈ Fup, ∀k (41)

Gj,k = Gj,k−1 + Bj,k − Aj,k ∀j ∈ Fdn, ∀k (42)

During the service day, some passengers are unable to travel using the rolling stock
due to their late arrival at the station either after the last rolling stock reaches its max
capacity or after its departure, the numbers of those passengers can be determined by

Gup
k,late =

Te∫
ω

up
i∗ ,k

λk,k′(t)dt ∀i∗ ∈ Fup, ∀
(
k, k′

)
(43)
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Gdn
k,late =

Te∫
ωdn

j∗ ,k

λk,k′(t)dt ∀j∗ ∈ Fdn, ∀
(
k, k′

)
(44)

where i∗ and j∗ are last scheduled trips during the day.

3.3. Model Formulation

All decision variables of the integrated model are listed in Table 1 while the variables
related to the assignment for a trip’s service passengers are listed in Table 3. In this section,
we introduce the objective function with a list of Constraints related to decision variables.
A better train operation plan can not only provide passengers with less travel cost, but also
should have less operating cost from the point of view of the rail enterprise.

An improvement in passengers’ service satisfaction requires reducing the overall
travel time. In this study, we consider all travelling passengers and those unable to travel
due to their late arrival at the end of service. For the first part, we take into account some
events that commuters go through including riding time during the trip, waiting time at
the station and fare cost. With these, we introduce an average time value of passengers β
to estimate the total travel cost.

First, we consider the time that passengers spend during their ride in the rolling stock.
This is described as the accumulated time required for rolling stock to cross those included
sections in passengers’ trip plus the dwell time of the rolling stock at stations. Hence, we
formulate passengers’ ride time as follows,

R =
K−1

∑
k=1

∑
i∈Fup

Gi,k·θi·(ai,k+1 − di,k + τi,k) +
2

∑
k=K

∑
j∈Fdn

Gj,k·θj·
(

aj,k−1 − dj,k + τj,k

)
(45)

Second, before commuters can board the rolling stock they wait at the platform for
a given time. We determine that based on the instant at which the passenger enters the
station and the departure time of the boarded rolling stock,

W = ∑
i

K−1

∑
k=1

ω
up
i,k∫

t=t′

(di,k − t)·Bi,k + ∑
j

2

∑
k=K

ωdn
j,k∫

t=t′

(
dj,k − t

)
·Bj,k (46)

where t′ =
{

Ts f or f irst trains
ω

up
i−1,k/ω

up
j−1,k f or i− th and j− th trains For most urban rail transit sys-

tems, the travel fare costs are not accumulated based on the sections travelled i.e., when a
passenger travels from station k to station k + 3, the fare cost is not necessarily equal to the
summation of all fare costs of the travelled sections namely: (k, k + 1), (k + 1, k + 2) and
(k + 2, k + 3), and they might even be equal in cost although the difference between the
distances travelled are very important. In fact, the travel fare cost is logically proportional
to the trip length. In this regard, introducing a passenger fare rate and based on the mileage
of the trip, we formulate the accumulated fare cost of passengers as follows,

P = p·∑
l

∑
k

∑
k′

∑
i∈Fup

l

θi·Bk,k′
i ·w(k, k′) + ∑

k
∑
k′

∑
j∈Fdn

l

θj·Bk,k′
j ·w(k, k′)

 (47)

where p is the fare rate per person.km and w(k, k′) is the mileage of section originating from
station k to station k′.

To summarize, we include a parameter to estimate the average time value of passen-
gers for the minimization function related to passengers’ travel cost. The first function is
formulated as follow,

Z1 = β·(W + R) + p·P (48)
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where β is average time value of passengers, W is waiting time of passengers, R is passen-
gers riding time inside the rolling stock and P is travel fare cost.

To consider late-arriving passengers unable to travel during the service day, we
introduce a penalty cost Pn,

Z2 = Pn·∑
k

(
Gup

k,late + Gdn
k,late

)
(49)

Generally, we can choose to reduce the number of used rolling stock or minimize
their total service time as an optimization objective. For example, Wang, Tang, Ning,
Meng [2] proposes three objectives including minimizing the number of rolling stock and
headway time variations. In a different way, Su, Tao, Hu [29] reduces train operational
costs by considering engine time of rolling stock. This research chooses the latter as another
objective, namely the cost related to travel time of service trips.

Basically, the accumulated travel time of a service trip includes the running time
between stations i.e., counting the time difference between the departure time from the
previous station and the arrival time to the next station, the time required to achieve
turnaround operations at terminal stations in case two consecutive trips are serviced by
the same rolling stock and finally the time spent by rolling stock entering and exiting the
depot when circulations to and from the depot are required. Hence, to formulate the total
costs of servicing time, we introduce a cost per time unit of service and two parameters to
represent the time required for rolling stock to enter and exit the depot tenter, texit:

Z3 = c·(∑
l

∑
i∈Fup

∑
k

θi·(ai,k+1 − di,k) + ∑
l

∑
j∈Fdn

∑
k

θj·
(

aj,k−1 − dj,k

)
+tturn

min ·∑ δi,j + tturn
min ·∑ δj,i + tenter· ∑

j∈Fdn
δj,p + texit· ∑

i∈Fup
δp,i)

(50)

where c is the cost per time unit of service, ri,k and rj,k are the minimum running time of
rolling stock servicing i and j from station k to the next station, tturn

min is the minimum value
of turnaround time at terminal stations, tenter and texit are the times required for rolling
stock to enter the depot and exit the depot.

Finally, the objective function includes all three objectives featuring a weight factor α to
allow emphasizing on either minimizing passengers’ travel costs or enterprise’s operating
costs according to the needs, namely:

minZ = α·Z3 + (1− α)·(Z1 + Z2) (51)

where α is a weight factor.
The Constraints of the multi-objective integrated model include conditions related

to: selection of servicing trips (1) and (2), headway time (11), (16), rolling stock running
time (5), (6), dwell time at stations (7)–(10), rolling stock circulation plan (17)–(20) and
turnaround at terminal stations (21)–(24).

3.4. Solution Approach

The multi-objective function presented in Equation (51) is a mixed integer nonlinear
type problem. It is difficult to study the complexity of the model; however, tackling the
problem from the primal side allows one to find a feasible and optimal solution quickly. To
take a primal-side approach is to resort to meta-heuristic algorithms such as Tabu search,
SA or genetic algorithms.

We propose to solve the model by applying a simulated annealing-inspired algorithm.
Introducing an influence T and a parameter related to the difference between function
values when moving from a current solution to the next one 394; Z. The algorithm approach
is based on two cycles, the outer cycle is based on the value changes of parameter T, when
the value of parameter T is high; the algorithm has the tendency to allow the exploration of
a higher number of solutions by considering non-optimal moves as the machine explores
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as many solutions as possible. However, when the value of T is low; the algorithm tends
to work as a hill climbing where the algorithm most likely moves to a solution that has a
better function value. To decide whether the machine moves from the current solution to
the next one, a probability function is introduced P = eT/∆Z.

For the initialization of the algorithm, we set an initial influence value Tini, the inner
cycle iteration index is x = 1 and the optimal solution Z∗ = 0. To generate the first feasible
solution, we mainly decide it based on a probability function for non-peak hours; the condi-
tions set by Equations (1) and (2) must be verified each time in order to satisfy the minimum
requirement for transportation service. In the following, we consider the total number of
commuters to travel during the time period to decide about the selection of the next trip.
In case both previous possibilities are covered and verified, we rely on random function
to generate a real number, where it is compared with 0.5; if the condition rand < 0.5 is
verified then the trip is provided as we set θi = θj = 1 otherwise θi = θj = 0. At the end
of each time period, we calculate the headway time hl = |tl |/ ∑

i∈Fup
l

θi. Considering the

important passenger demand during peak hours, we select all possible trips during a single
time period as we set θi = θj = 1 for all trips and we set the headway time to be equal to
its minimum requirement hl = hmin. Algorithm 1 is designed as follows,

Algorithm 1. Randomized solution search.

Initialization
Set y = 1; T = Tini;
x = 1;
l = 1;
Randomized search
i = (l−1)·tl

hmin
+ 1;

j = (l−1)·tl
hmin

+ 1;
Check if l corresponds to peak hours:
Then set hl = hmin; θi = θj = 1;
Otherwise check if Equations (1)/(2) are verified

Then check if ∑
i∈Fup

l

θi ≥
∫ te

l
ts
l

∑
k

∑
k′

λk,k′(t)/ ∑
j∈Fdn

l

θi ≥
∫ te

l
ts
l

∑
k

∑
k′

λk,k′(t)

Then verify whether rand < α and set θi = 1; θj = θi;
Otherwise set θi = 0; θj = θi;
Otherwise check whether ∑

i∈Fup
l

θi > tl/hmin and set θi = 1; θj = θi;

Otherwise set θi = 0; θj = θi;
Otherwise set θi = θj = 1;
Calculate hl

The search for the next solution search is based on the current one i.e., the initial state
of provided trips for the new solution is copied from the current solution. At this point, a
single change in the main variables θi and θj is considered a move to a neighbor solution. In
this context, for a given solution two possible moves are allowed: adding a trip or reducing
one. For this matter, we introduce a new move variable as binary one to decide which
move to take m = {0, 1}. This decision variable is influenced by a parameter ε relying on
the condition rand > ε; if the condition is verified, we set m = 0 and we add a trip for
service to a specific time period, otherwise we set m = 1 and we reduce a trip from service
as shown in Figure 5. A close value of ε = 1 will have higher probability to reduce trips as
the algorithm emphasis is on reducing enterprise operating costs. On the contrary, a close
value to ε = 0 will most likely schedule a higher number of trips in order to emphasize
improving passengers’ comfort.
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Figure 5. Neighbor solution move.

Once the moves nature is decided, the next assignment is to find the most suitable
time period. Here we base this decision on the number of available empty seats in rolling
stock during a single time period Cmax. For instance, when m = 1 the priority is to reduce
a trip from the least crowded rolling stock i.e., rolling stock with highest available empty
seats. On the contrary, when m = 0 the priority is to provide more transportation capacity
to most crowded time periods as shown in Figure 6 which translates to the least available
empty seats Cmin. We finalize this process by calculating the headway time hl . The
Algorithm 2 for this neighbor solution search is designed as follows,

Algorithm 2. Neighbor solution search.

Set θ
(current)
i = θ

(previous)
i ; θ

(current)
j = θ

(previous)
j ;

Check if rand > ε

Then set m = 1;
Find Cmax and set l as the prioritized time period
Find the last provided trip in the time period and set θi = θj = 0;
Otherwise set m = 0;
Find Cmin and set l as the prioritized time period
Find the first none provided trip in the time period and set θi = θj = 1;
Calculate hl

Figure 6. Example of time period priority choice.

At this point, all trips of a single time period are generated and the next steps will
allow scheduling their departure and arrival times at each station. Firstly, we calculate the
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departure time of the trip di,k/dj,k from a specific station based on headway time hl which
must verify Equations (3) and (4) if not the trip is not provided in the first place which
sets di,k = 0/dj,k = 0. Then, rolling stock carrying capacity Ci,k/Cj,k are calculated based
on Equations (31)/(32) if k = 1/k = K, otherwise the calculation is based on Equations
(33)/(34). The time limit for passengers to board the rolling stock is a function of the
carrying capacity, which is calculated based on Equations (29) and (30) at terminal stations
k = 1/k = K and based on Equations (27) and (28) at intermediate stations. The process
progresses in a linear form with the calculation of passengers travelling in section [k, k′]
inside the rolling stock servicing trip i and j Bkk′

i /Bkk′
j based on Equations (35) and (36).

Similarly, the number of boarding passengers to rolling stock servicing trips i and j at
station k Bi,k·/Bj,k are calculated based on Equations (39) and (40), and the number of
alighting passengers from trips i and j at station k Ai,k/Aj,k based on Equations (37) and
(38). The numbers of commuters to travel with trips i and j from station k to k + 1/k− 1 are
calculated based on Equations (41) and (42) and the dwelling time of rolling stock at
stations τi,k/τj,k based on Equations (7) and (8). With the new values of dwelling time at
stations, we readjust the values of trips departure times from stations based on Equations
(9) and (10) which is followed by arrival time of trips to stations ai,k+1/aj,k−1 based on
Equations (5) and (6). Finally, Equations (3) and (4) are verified again to make sure all
variables satisfy the total operating time starting from Ts until Te. The Algorithm 3 for
passenger flow assignment is designed as follows,

Algorithm 3. Passenger flow assignment and timetabling.

Calculate di,k/dj,k based on hl
Check if Equations (3) and (4) is verified:
Keep di,k/dj,k value
Otherwise set: di,k = 0;/di,k = 0;
Calculate Ci,k/Cj,k:
Based on Equations (31) and (32) if k = 1/k = K
Based on Equations (33) and (34) otherwise
Calculate t∗:
Based on Equations (29) and (30) if k = 1/k = K
Based on Equations (27) and (28) otherwise
Calculate Bk,k′

i /Bk,k′
j based on Equations (35) and (36)

Calculate Bi,k/Bj,k based on Equations (39) and (40)
Calculate Ai,k/Aj,k based on Equations (37) and (38)
Calculate Gi,k/Gj,k based on Equations (41) and (42)
Calculate τi,k/τj,k based on Equations (7) and (8)
Recalculate di,k/dj,k based on Equations (9) and (10) using τi,k/τj,k
Calculate ai,k+1/aj,k−1 based on Equations (5) and (6)
Check if Equations (3) and (4) is verified:
Keep di,k/dj,k value
Otherwise set: di,k = 0;/dj,k = 0;

Our priority at this stage is to connect as many trips as possible at terminal stations by
providing the same rolling stock to service two consecutive trips of different directions. At
station 1, we initialize the variables δj,i = 1, δj,p = 0 amd δp,i = 0. As we consider that the
downstream trip does not enter the depot after arriving at the station and the departing
upstream trip does not come out for the depot i.e., the same rolling stock is used for both
the trips. Then, we proceed to verify if Equation (24) to decide whether to maintain or
recalculate the departure time of upstream trip from the current station di,k. We proceed
to verify if Equation (22) is satisfied; if it is not verified then the departing upstream trip
cannot be connected to a downstream trip and a rolling stock coming out of the depot must
provide it. Therefore, we set δj,i = 0 and δp,i = 1. Next Equations (17) and (20) are checked;
if both are satisfied, we maintain the connection of the two trips otherwise neither of the
two trips can be connected thus we set δj,i = 0, δj,p = 1 and δp,i = 1.
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At station K, we firstly verify if Equation (21) is satisfied; if it is not, the connection is
not possible and we set δi,j = 0. If the Equation is satisfied, we set a possible connection
between the arriving upstream trip and departing downstream trip δi,j = 1. Next, we check
if Equation (23) is verified; if it is, we maintain the departure time of downstream trip
from the station dj,k , otherwise we recalculate its value to satisfy the requirement set by
the Equation. Finally, Equations (18) and (19) must be verified to maintain the connection
otherwise the two trips cannot be connected and thus we set δi,j = 0.

At intermediate stations, we check if Equations (11)–(14) are verified by the variables
related to arrival time of the rolling stock to the specific station ai,k+1/aj,k−1. If so, we
maintain the values calculated previously; otherwise, the variables are recalculated based
on the requirements of the Equations. Finally, the diving time ω

up
i,k /ωdn

j,k is calculated based
on Equations (25) and (26). The Algorithm 4 for rolling stock allocation is written as follows,

Algorithm 4. Rolling stock allocation.

If k = 1:
Check if (22) is verified:
Set: δj,i = 1; δj,p = 0; δp,i = 0;
Check if (24) is verified:
Keep di,k value
Otherwise: calculate di,k based on Equation (24)
Otherwise, if (22) is not verified: δj,i = 0; δp,i = 1;
Check if (20), (17) are verified:
Keep δj,i = 1;
Otherwise set:δj,i = 0; δj,p = 1; δp,i = 1;
If k = K:
Check if Equation (21) is verified
Set δi,j = 1;
Check if Equation (23) is verified:
Maintain dj,k value
Otherwise calculate dj,k based on Equation (23)
Otherwise set δi,j = 0;
Check if (18), (19) are verified:
Keep δi,j = 1;
Otherwise set:δi,j = 0;
If k 6= 1 & k 6= K:
Check if Equations (11)–(14) are verified
Keep values of ai,k+1/aj,k−1
Otherwise recalculate ai,k+1/aj,k−1 based on the Equations
Calculate ω

up
i,k /ωdn

j,k based on Equations (25) and (26)

At the end of each time period, we calculate all riding time in the rolling stock
R, waiting time at stations W and travel fare cost for travelling passengers P based on
Equations (45)–(47). Following, we calculate numbers of passengers unable to board the
rolling stock Gup

k,late/Gdn
k,late based on Equations (43) and (44). Finally, we calculate the

objective function using Equations (48)–(51).
Once all time periods are calculated, the new objective function value is compared

with the current one. In case the new solution offers a better function value, the move is
automatically made. However, in case the new solution is not optimal, we use the probabil-
ity function to decide whether we maintain the current solution state or move to the new
solution. Based on the difference between the two solution objective values ∆Z and the
current value of influence parameter T(y) the probability function value is compared to a
randomly generated number. If a function’s value satisfies the equation eT/∆Z > rand, the
new solution is set as new optimal otherwise the optimal solution remains unchanged. In
such a situation, the choice made for the previous move is kept in memory using a new
variable ‘bad move’ in order to avoid the same non-optimal move being chosen again. If
the previous move aimed to decrease a trip i.e., m = 1, we set badmove = lmax. However,
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if the previous move aimed to increase a trip i.e., m = 0, we set badmove = lmin and the
inner cycle moves one iteration x = x + 1. At the end of the inner cycle x = X, the current
degree of influence T(y) is compared with its minimum value; if T(y) > Tmin is verified
the outer cycle moves one iteration y = y + 1 otherwise Algorithm 5 is terminated. The
ending algorithm is written as follows,

Algorithm 5. Calculation of the objective function and termination of inner and outer cycles.

Calculating the objective function
Calculate R based on Equation (45)
Calculate W based on Equation (46)
Calculate P based on Equation (47)
Calculate Gup

k,late/Gdn
k,late based on Equations (43) and (44)

Calculate Z based on Equations (48)–(51)
Algorithm termination
Determining optimal solution
Check if Zoptimal > Znew:
Then set Zoptimal = Znew

Otherwise check if eT/∆Z > rand then set Zoptimal = Znew;
Otherwise check if move = 0:
Then set badmove = lmax
Otherwise set badmove = lmin
Termination of inner-cycle
Check if x = X:
Then go to termination of outer-cycle
Otherwise set x = x + 1 and go to Algorithm 2
Termination of outer-cycle
Check if T(y) > Tmin:
Then set y = y + 1; x = 1; go to Algorithm 2
Otherwise terminate algorithm and display Zoptimal

4. Research Results

In this section we put forward a numerical example to validate the integrated model.
In order to optimize the results, we experiment with different parameter configurations,
firstly we test a different range of values for the decision parameter ε to find the optimal
setting for this example. We do so by comparing the converging performance between
multiple executions with different parameter values, inspecting the moves taken by the
machine and analyzing their effect on the objective function. Then, we calibrate the weight
factor α parameter to fix the balance point at which the objective functions are mostly
optimized. Finally, we present the results of the optimal solution featuring the total waiting
time, the number of trips organized, the number of circulations to the depot, numbers of
connections at terminal stations and the values of the three objectives.

We run the performance tests for the integrated model based on the data of Xi’an
metro line 1. Opened to service on 15th of September 2013, the railway line is 24, 806 km
long and has 19 stations where upstream direction rolling stock travel from Houwei Zhai
station to Fangzhi Cheng station. For this case study, the chosen urban rail line’s features
meet the specificities of the problem considered in this study. First, the problem considers
only one depot connected to a terminal station. Thus, the rolling stock allocation sub-
problem must deal with the circulations and connections to only one depot. In addition,
the daily travelling demand for Xi’an metro line 1 fits the train operation planning with
only full-length trips travelling from one terminal station to the other and stopping at every
station. Similarly for this study, all trips must travel from one terminal station to the other
eliminating any possibility of short-turnings at an intermediate station. Moreover, all trips
must dwell at every station without any skipping or overtaking operations.

For this case, a minimum turnaround time of 2 min is required for the connection
of two consecutive trips. Meanwhile, the circulation of rolling stock to enter and exit the
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depot are set to a minimum of 3 min . In this numerical example, we consider a single
weekday day operation starting from 5:00 until midnight. Based on passenger demand
analysis, morning peak hour is from 8:00 to 9:00 and evening peak hour is from 18:00 to
19:00. Using MATLAB, the test is performed on Intel Core i5-4460 CPU @3.20 GHZ with
Windows 10 operating system running with 8 GB RAM.

The algorithm starting point sets the influence parameter at Tini = 7600. With 20 in-
fluencing levels, the parameter’s value decreases with 5% at each iteration of the outer
cycle until reaching its minimum value Tmin = 9400. These values are set with the goal of
providing relatively higher chances for non-optimal moves to occur at early cycles and
then decrease those chances significantly at ending cycles. All code execution parameters
are listed in Table 6.

Table 6. Values attributed to the parameters of the model.

Parameters Values Parameters Values

β 0.32 [$/min] Pn 160 [$/p]
c 64 [$/min] tenter 3 [min]
C 300 [p/v] texit 3 [min]

hmax 10 [min] tturn
min 2 [min]

hmin 3 [min] Tini 7600
K 19 Tmin 3000
L 19 tA,B 0.001 [s]
M 1, 000, 000 tr 0.15 [s]
p 0.45 X 10

[min]: minutes, [s]: seconds, [p]: passengers, [v]: vehicle β: average time value o f passengers,
c: cost per time unit o f service, C: total capacity o f the rolling stock, hmax : maximum headway time value,
hmin: minimum headway time value, K: number o f stations, L: number o f time periods, M:
su f f iciently large number, p: f are rate, Pn: penalty related to late arriving passengers, tenter :
time required f or rolling stock to enter the depot, texit: time required f or rolling stock to exit the depot,
tturn
min : minimum time required f or a turnaround operation at terminal stations, Tini :

initial value o f in f luence parameter, Tmin: minimum value o f in f luence parameter,
tA,B: average time required f or the boarding and alighting o f a passenger, tr :
reaction time o f a passenger to boarding and alighting operation, X: number o f iterations f or the inner cycle.

Aiming at finding the best setting to minimize the total function value, we look for an
optimal value of parameter ε by fixing the weight factor parameter at α = 0.5 and running
multiple tests with the move parameter values ranging from ε = 0.1 to ε = 0.9. Note that
an average value of α = 0.5 does not emphasize either passenger comfort or enterprise
operating costs. It is an average value set to provide equal importance to both objectives.
The number of inner cycles is set at X = 10 which sets a maximum of 200 moves per
execution.

In Figure 7, we analyze the convergence performance regarding the general objective
value between different settings of parameter ε. The fastest convergence was noticed
at executions with ε = 0.7, ε = 0.8 and ε = 0.9 at the 1st, 2nd and the 3rd iterations
providing close values to the general function at Z = 6.662·105 $, Z = 6.704·105 $ and
Z = 6.781·105 $ respectively. This was predictable considering the orientation of the two
executions towards reducing the operating costs and thus the algorithm managed to find
optimal solutions much faster. On the other hand the slowest convergence is found with a
parameter value of ε = 0.3 at the 78th iteration but the algorithm obtained a better solution
with a value of Z = 6.544·105 $. At a value of ε = 0.6, we obtain the best solution of all
executions at the 14th iteration with a value of Z = 6.480·105 $.
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Figure 7. Analyzing the converging performance of the model.

As opposed to parameter α, the move parameter ε directly influences the move nature
from one solution to another. In Figure 8, we analyze the moves obtained by the algorithm
throughout the 9 executions. Notice the linear relationship between parameter ε and the
number of added trips equivalent to m = 1 and its reverse linear relationship with the
number of reduced trips translated to m = 0. At ε = 0.1 we obtained the highest number
of reduced trips with 180 moves and the lowest number of added trips with 19 moves,
thus showing the emphasis on reducing total operating costs. On the other hand, when
the algorithm is oriented towards improving passenger comfort at ε = 0.9 we obtained
177 added trips and 22 reduced trips. Notice that with values of ε = 0.6, there was a
noticeable balance with 89 added and 110 reduced trips, thus providing the best solution
in all executions. However, it is important to note that these measured moves also include
less optimal neighbor solutions which leads the algorithm to choose whether to make the
move or to preserve the current optimal solution.

Figure 8. Moves generated by the algorithm.

In Table 7, we proceed to a direct comparison between the optimal solutions obtained
from the 9 executions. Notice that the optimality gap increases with extreme values
of parameter ε i.e., when the algorithm focuses on one of the two objectives separately.
Nonetheless, the ideal value of parameter ε depends on the priority of the enterprise and
thus a relatively higher total function value can be acceptable if its objectives are met.
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Table 7. Comparing the optimal solutions obtained.

Travel Costs
(
105$

)
Operating Costs

(
105$

)
Total Function Value

(
105$

)
Optimality Gap

(
Z−Zopt

)
/Z

ε = 0.1 3.357 3.376 6.731 3.7%
ε = 0.2 3.291 3.426 6.717 3.5%
ε = 0.3 3.259 3.285 6.544 1.0%
ε = 0.4 3.243 3.293 6.534 0.8%
ε = 0.5 3.362 3.152 6.512 0.5%
ε = 0.6 3.202 3.280 6.480 0.0%
ε = 0.7 3.290 3.371 6.934 6.5%
ε = 0.8 3.267 3.437 6.704 3.3%
ε = 0.9 3.323 3.458 6.781 4.4%

At this point, we consider ε = 0.6 to be an optimal setting to balance both objectives.
Based on which, we proceed to calibrate weight factor parameter α by running multiple
executions with different values of α and fixing the move parameter at ε = 0.6.

Firstly, we compare the execution time considering the complexity of the model
throughout the executions as shown in Figure 9. Considering that lower values of α lead to
an emphasis on reducing operating costs i.e., minimizing the number of scheduled trips,
therefore less calculations are required at each execution. At a value of α = 0.1, we get
the fastest computation time with 490 s. On the other hand, higher values of α require
additional calculations with each added trip and thus we obtain the higher computation
time of 649 s with α = 0.9. Although the difference is not too important especially for
weight factor values between α = 0.2 and α = 0.5, a high demand railway line may lead to
a bigger difference between executions.

Figure 9. Comparing the computational time based on weight factor α.

The most influential variable on the travelling costs Z1 is the waiting time at platforms
W compared with riding time R and travel fare P costs. In Figure 10, we plot the accumu-
lated wait of passengers on platforms as a function of the weight factor. We obtain the
highest accumulated waiting time value of W = 7.19·105 min at α = 0.1 when the algorithm
focuses on minimizing operating costs. Then, as the emphasis shifts towards reducing
passenger travel costs by the increase of parameter α, there is a noticeable decrease of the
accumulated waiting time reaching a minimum of W = 4.24·105 min at α = 0.9.

Similarly, choosing to prioritize the improvement of passenger comfort should lead
to a reduction in the number of passengers willing to travel but who fail to do so due to
over-crowdedness and arriving at the station after the end of service. In Figure 11 we plot
objectives Z2 and Z3 as a function of the weight factor, obviously the parameter α impacts
the operations costs at each different level providing a minimum of Z3 = 5.168·105 $ at a
value of α = 0.1 and a maximum function value of Z3 = 8.400·105 $ at a value of α = 0.9.
Nevertheless, the influence of the weight factor on objective Z2 is not linear as shown in the
graph. Indeed, for values ranging from α = 0.1 to α = 0.4, we obtained the same objective
value of Z2 = 2.816·105 $ when the priority is to reduce the operating costs. Then, we
notice a significant improvement in the function value starting from α = 0.5 to α = 0.9
with a value of Z2 = 2.816·105 $ when the focus shifts towards minimizing the travel costs.
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Figure 10. The relationship between weight factor α and the accumulated waiting time W.

Figure 11. The influence of weight factor α on objectives Z2 and Z3.

In Table 8, we compare the solutions obtained from the 9 values of α regarding the
scheduled trips, rolling stock circulations to the depot, trip connections at terminal stations
and the total objective function. Notice the ratio of trip connections to scheduled trips, at
a value of α = 0.1, we obtained 341 trip connections from 382 trips. While at a value of
α = 0.9, we obtained 595 trip connections to 624 total trips.

Table 8. Comparing the obtained solutions.

Scheduled
Trips

Connections
at Station K

Connections at
Station 1

Circulation to/from
the Depot Total Function Value

(
105$

)
α = 0.1 382 191 150 82 6.762
α = 0.2 446 223 182 82 6.555
α = 0.3 460 230 195 70 6.480
α = 0.4 478 239 202 74 6.472
α = 0.5 498 249 214 70 6.610
α = 0.6 530 265 230 70 6.854
α = 0.7 562 281 243 76 7.256
α = 0.8 578 289 250 78 7.491
α = 0.9 624 312 283 58 8.202

Our purpose in this example analysis is to balance both objectives to obtain the
minimal total objective function. In this case, the minimum function value overall is
obtained Z = 6.472·105 $ at a weight factor value of α = 0.4 with a total of 478 scheduled
trips in both directions, 441 total trip connections and 74 rolling stock circulations to and
from the depot. In Figure 12, the timetable obtained from the optimal solution is plotted.
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Figure 12. Timetable generated with parameters α = 0.4 and ε = 0.6.
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Finally, in Figure 13 we present the headway time obtained from the optimal solution
related to a weight factor value α = 0.4. Notice that the headway is maintained at minimum
value during peak demand time periods namely from 8:00 to 9:00 and from 18:00 to 19:00.
While outside peak hours, the time difference is relatively higher especially during early
and late time periods where travel demand is much lower.

Figure 13. Headway time between consecutive trips.

It is clear that the complexity of a model that integrates three phases simultaneously
requires the use of heuristics-solving methods considering the large time required to
converge to an optimum. However, the proposed model manages to reach an optimum
based on the selection of services without hindering the assignment for timetabling which
is automatically optimized by the proposed formulas and maintained within a range of
feasible and acceptable solutions.

In fact, the algorithm converged to the optimal solution within 490 s which is rela-
tively fast considering the three sub-problems considered in the model in addition to the
passenger travelling assignment. Indeed, the computing time is very acceptable taking into
account the complexity of the model.

In addition, the connections of trips are set as priority in order to minimize the use
of rolling stock as much as possible. The integration of the problem of assigning trip
service passengers based on queuing theory brought an improvement in timetabling
with the calculation of dwelling time at stations. Moreover, it allowed the more realistic
calculation of passenger waiting time. Finally, it is important to state that the model opens
the possibility to emphasize either one of the two objectives, namely minimizing enterprise
operating costs or passenger satisfaction which requires calibrating both parameters α and
ε in order to optimize the results.

5. Discussion

This study puts forward an optimization model integrating line planning, timetabling
and rolling stock allocation. It proposes a bi-objective function minimizing both the
travel costs for passengers, and the operating costs for the enterprise. Comparably, other
integrated optimization models for urban rail transit systems such as Heidari, Hosseini-
Motlagh, Nikoo [30], Yue, Han, Wang, Liu [31], Ibarra-Rojas, Giesen, Rios-Solis [32], propos-
ing a bi-objective optimization models integrating timetabling and rolling stock allocation
sub-problems simultaneously. Ibarra-Rojas, Giesen, Rios-Solis [32] aims to maximize the
number of passengers who profit from well-timed transfers in the timetable problem, while
it looks to minimize operational expenses in the rolling stock allocation problem. However,
we approach the bi-objective optimization differently. First, we find that the two objectives
are controvert each other when it comes to the timetabling sub-problem. For low values
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of weight factor α, the proposed algorithm provided less regular service during the day
negatively impacting the travel costs of passengers, while minimizing the operating costs.
On the other hand, for high values of the weight factor providing more regularity to the
service, the algorithm significantly minimized the travel costs of passengers. This approach
allows the operator to decide how to calibrate the weight factor to meet the requirements.
Meanwhile, the goal we set when solving the rolling stock allocation is no different from
the other studies such as Shen, Xie, Li [27] considering the costs of available rolling stock
in service. The sub-problem is solved by setting the priority to trip connections in order to
schedule as many trips as possible to the same rolling stock. Despite this, we only consider
the total servicing time of rolling stock in the objective, the minimization of used rolling
stock is set as priority when formulating the model.

The minimization of passenger travel costs was set as one of the two objectives to aim
for when solving the problem in this research. Including the waiting time of passengers at
stations, the travelling fare costs and the riding time. Although our goal by introducing all
three factors is to estimate more realistically the travelling costs, it was noticed that the most
impactful factor on overall travelling costs is the waiting time at platforms. In this subject,
another study [Li, Yan, Li, Yang [33] aimed to estimate the walking and waiting time of
passengers in urban rail transit stations judging them as significant metrics for assessing
the degree of service of an urban rail station. The study concluded that the headway time
and passenger volume have a strong influence on the overall waiting time at origin stations.
More crucially, the findings indicated that when passenger volumes are low, the headway
can have a considerable impact on waiting times. When the passenger volume crosses a
particular threshold, however, it becomes a key influence in the rise in waiting time.

On the other hand, this paper does not exclusively focus on the waiting time of
passengers in stations. Nonetheless, the findings of the example analysis in Section 4
suggests that when the algorithm sets the minimization of operating costs as priority,
the optimal solution provided 382 trips in total compared with 624 trips with a weight
factor prioritizing the minimization of travelling costs for passengers. The difference in
consistency of service leading to a huge gap between the accumulated waiting time values
registered for the two cases affirm the conclusion of Li, Yan, Li, Yang [33] regarding the
significant impact of service consistency on the overall waiting time at boarding stations.
Moreover, the reverse relationship found between the accumulated waiting time and
weight factor α presented in Figure 10 hardened this finding.

In regards to the passenger flow assignment, some papers envisaged it in their opti-
mization models. Particularly Zhang, Dong, Zhu [34] which developed a timetable model
featuring a dwelling time function based on the volumes of boarding and alighting at each
station. The proposed simulation claims its efficiency for meeting the passenger demands.
Our proposed function for minimum dwelling time at stations is not similarly formulated
but has the same concept of considering the volume of passengers getting-in and getting-
out of the rolling stock. Moreover, this consideration helps develop the timetable more
efficiently with the minimization of dwelling-during-low-traffic periods.

The planning process for large urban rail transit networks often operates the rolling
stock of each line separately i.e., the train operation plan of each line is optimized indepen-
dently. Firstly, the number of transferring passengers from one line to another is considered
as transferring flow when assigning the traffic demand on all lines of the network. Then,
based on travel demand, the train operation plan is optimized independently for each
line. In this process, our integrated algorithm can quickly produce an optimal solution by
generating an efficient timetable for an urban rail line and making the most of rolling stock
usage, thus making it relevant for difficult real-world applications. When this strategy
is used in the real world, it can assist urban rail operators in making quick and accurate
decisions.
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6. Conclusions

In this paper we have formulated a model aiming at the optimization of train operation
planning for an urban transit railway line based on passenger travel demand by integrating
three sub-problems, namely line planning, timetabling and rolling stock allocation. We
introduced two binary variables to provide service trips during all time periods for a service
day. We considered rolling stock circulations to the depot, turnaround operations, dwelling
time of trips at stations, and time difference between service trips and we formulated a
passenger flow assignment that introduced the boarding capacity of rolling stock and other
variables to calculate the number of passengers that did, or did not, manage to travel in
rolling stock. Then, we tested the performance and the efficiency of the integrated model by
applying a simulated annealing-based algorithm to the data from Xi’an metro line 1. The
algorithm was computed on MATLAB and showed good results overall for minimizing
the travel costs of passengers and the operating costs of the enterprise.

The integrated model featured only full-length service trips and one depot available
for parking rolling stock with no limit. However, the current model could be expanded by
introducing multiple depots with limited parking capacity. Another possibility to improve
the travelling costs of passengers is the consideration of short-turning services for overly
demanding railway sections and overtaking operations for express service trips. Finally,
we have chosen to solve the overall problem by applying meta-heuristic method which
showed good convergence choices to minimize the function’s value. Nonetheless, with
the integrations of other factors into the problem, solving it would require more specific
heuristics to optimize the results.
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