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Abstract: Xylan hemicelluloses are considered the second most abundant class of polysaccharides
after cellulose which has good natural barrier properties necessary for foods packaging papers and
films. Xylan exists today as a natural polymer, but its utilisation in packaging applications is limited
and not sufficiently analysed. In this study, the performances of hardwood xylan hemicellulose
in forming uniform films and as biopolymer for paper coatings were analysed. The xylan-coated
paper and film samples were tested regarding their water, air, and water vapour permeability, water
solubility, mechanical strength, and antimicrobial activity against pathogenic bacteria. Structural
analyses of xylan hemicelluloses emphasised a high number of hydroxyl groups with high water
affinity. This affects the functional properties of xylan-coated papers but can facilitate the chemical
modification of xylan in order to improve their hydrophobic properties and extend their areas of
application. The obtained results unveil a promising starting point for using this material in food
packaging applications as a competitive and sustainable alternative to petroleum-based polymers.
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1. Introduction

Nowadays, the packaging industry is under great pressure from both authorities
and consumers to improve its environmental and sustainability credentials in the coming
years. Therefore, there is a need for the development of a new generation of packaging
that has at least the same technical performances as today’s mono- or multi-materials but
with demonstrated recyclability and biodegradability. The new EU Plastics Strategy (2018)
and German Packaging Law (2019) are intended to counteract the massive increase in the
production of plastics worldwide [1–3]. In this context, there are real business opportunities
for packaging materials that must be with easy integration into an existing waste value
chain, having a high recycling rate, and being biodegradable in compost medium and in
marine environments.

Bioresources represent an important vision of a circular economy that explores the
importance of research and advancements with regard to the conversion of biological raw
materials in the development of innovative value chains. Bioeconomy concept depends on
biomass availability, which has an important role in biobased production.

According to this, the utilisation of bioresources from lignocellulose biomass (cellu-
lose, hemicellulose, and lignin) to design and produce bio-based sustainable materials
has a high potential for development in the coming years, to replace the oil-based mate-
rials [4]. The worldwide production of lignocellulosic biomass is estimated to be about
60 billion tons/year [5].
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Hemicelluloses are the second-most abundant class of biopolymers found in plant
biomass, after cellulose, and they represent an important renewable resource of biopoly-
mers which, until a few years ago, was usually removed from lignocellulosic biomass with
lignin during pretreatment and used by conversion into chemicals, fuel, and as a source
of heat energy. For example, in the pulp and paper industry, most hemicelluloses remain
in the fibres, to improve the strength properties of paper products or are discarded as
waste material during bleaching and other operations. Due to their structural varieties and
diversity, hemicelluloses can be utilised for value-added applications in native or modified
forms in various areas, including packaging applications [4]. There are many renewable
resources of biomass which were insufficiently exploited to obtain hemicelluloses and
value-added products. The primary and secondary cell walls of wood and annual plants
(cereal straws) contain about 20–35% hemicelluloses; the amounts vary as a function of
biomass source, such as hardwood (40%), softwood (35%), cornstalk (31%), maize steins
(28%), barley straw (38%), wheat straw (32%), rice straw (24%), rye straw (36%), various
agricultural residues (30%), and green algae (50%) [6–9]. When compared with cellulose
which occurs in the cell walls as microfibrils, hemicelluloses exist in the matrix phase of
cell walls.

In the last two decades, studies have shown a greater application potential of hemicel-
luloses, emphasised many times by leading polysaccharide scientists, but has not yet been
exploited on an industrial and commercial scale [10,11].

Based on their excellent biodegradability, biocompatibility, and bioactivity, HCs and
their derivatives have currently received considerable attention in terms of material appli-
cations such as edible coatings and films or coatings for paper and board for the packaging
industry, hydrogels and binders for medicine or drug delivery and release in the pharma-
ceutical field, functional composites for heavy metals, and dye adsorption in wastewaters
treatment and textile industry, as well as for obtaining biofuels [12–17].

Hemicelluloses consist of various different sugar monomer units arranged in differ-
ent proportions which include five-carbon sugars and six-carbon sugars called pentoses
(C5H8O4)n and hexoses (C6H10O5)n, respectively. Xylose and arabinose are representative
sugars units for pentoses and mannose and galactose for hexosanes. In addition to these
regular sugars, acidified forms also exist in hemicelluloses, for instance, glucuronic acid
and galacturonic acid [4,17].

Hemicelluloses (xylan and glucomannan) are generally extracted from the primary
and secondary plant cell walls or as co-products from several industrial processes that use
wood as raw material, such as dissolving pulp manufacturing, nanocrystalline cellulose
and nanofibrillated cellulose production, or sugar for biofuels [18]. The most popular
processes used to extract hemicelluloses are alkaline and hot water extractions, steam
extraction, organic solvent, ionic liquid, as well as their combination [19–24].

Depending on the source of plant biomass, different hemicellulose compositions,
chemical structures, and amounts could be obtained. For example, the dominant hemi-
cellulose in hardwood is xylan (glucuronoxylan), while in softwood, it is mainly mannan
(glucomannans and galactoglucomanns). After cellulose, xylan hemicelluloses exist in
large quantities in lignocellulosic biomass, which is the main focus of this paper.

Xylan: A Major Type of Hemicelluloses

Xylan polysaccharides are the most abundant hemicelluloses component of hardwood,
available in large quantities in secondary cell walls of agro-residues (wheat straw, corn
stalks, and cobs) or as secondary products in the wood or pulp and paper industry [4,16,25].
A new source of xylan biopolymers includes some types of seaweed (green and red al-
gae) [25]. In biomass, xylans can be found with various structures based on their botanical
source or tissue type. In annual plants and algae, xylans are heteropolymers based on a
1,4-β-D-xylopyranose backbone, which is branched by short carbohydrate chains. How-
ever, certain green and red algae contain 1,3-β-D-xylans or 1,3;1,4-β-D-xylans, which are
homoxylans [4,26].
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The most amount of xylan is generated in the manufacturing process of dissolving
pulp, with high α-cellulose content. The existing trends in the increasing demand for
dissolving pulps will contribute to a noticeable increase in xylan production and availability
in the next few years.

Depending on biomass source and used extraction method, the yield of xylan extrac-
tion from hardwood pulps is about 31–67% of the original xylan content [27].

Until now, the commercial applications of xylan hemicelluloses have been limited to
xylitol and biofuels obtained from the biological conversion of sugar, starch, and vegetable
oils. Xylitol is the most widely produced compound from xylan, and it is obtained by
chemical and biotechnical methods with large applications such as food sweeteners for
diabetic patients or preventive additives against dental caries in toothpastes composition.
Due to their potential prebiotic properties, the xylooligosaccharides produced from xylan
are used as dietary fibres or functional foods [28].

Existing in high diversity and complexity, xylans are considered nowadays valuable
by-products which can be used as sources of raw materials for different applications, even
if there are not available in their entirety for industrial production. Based on the existing
studies, the xylan hemicelluloses represent a promising renewable biopolymeric resource
for different industrial applications [29].

Generally, xylan hemicelluloses are hydrophilic polymers with extensive hydrogen
bonds that limit the area of their industrial applications (Figure 1). The abundance of
free hydroxyl groups distributed along the backbone and side chains make it an ideal
candidate for chemical functionalisation using a variety of chemical reactions. As result,
a new material with appropriate properties, such as hydrophobicity, thermal formability,
and the ability for forming films can be obtained. The last feature is necessary for xylan
hemicellulose to improve self-supporting barrier films when used in food packaging.
This will broaden the applications areas of hemicelluloses [23]. Modified xylans have the
potential for wide applications in medicine, as hydrogels and drug delivery, as emulsifying
additives in the food industry, or as wet-end additives, coatings, and films in packaging [30].
Literature reviews indicate that the main application of the xylan hemicelluloses is as a
barrier material for stand-alone packaging films. Xylan-based films have demonstrated
good gas barrier properties against oxygen, grease, and aroma and therefore have the
potential for application on food paper packaging, especially in oxygen-sensitive dairy
products, greasy snacks, or pet foods, as well as aromatic products such as spices and
coffee. Furthermore, coated on the inside of paper packaging, it can prevent the migration
of mineral oils from recycled fibres or printing inks into the packaged products [31,32].
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Figure 1. Chemical structure of hardwood xylan edited according with [33].

This research study aimed to evaluate the performances of hardwood xylan hemicel-
lulose to form uniform films and as a biopolymer for paper coatings. The samples of films
and coated papers were evaluated in terms of mechanical strength, barrier ability to water
and water vapour, air permeability, and antimicrobial properties.
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2. Materials and Methods
2.1. Materials

• Commercial base paper from unbleached cellulose pulp with a grammage of 50 g/m2

and water absorption, Cobb index of 28 g/m2;
• Xylan hemicellulose from beechwood—brown powder purchased from Carl Roth

Company, Germany; it was used as an aqueous dispersion of 20 g/L;
• Chitosan, as fine particulate material, was purchased from the Vanson Company, with

high molecular mass and degree of acetylation about 20.8%; it was used as dispersed
in acetic acid (1%);

• Glycerol (plasticiser), as a pharmaceutical commercial product with 99% purity.

2.2. Methods

• Xylan Hemicellulose’s Characterisation

The FTIR spectra were recorded with a solvent-free Bruker Invenio spectrometer,
with a horizontal attenuated reflective device (ATR) equipped with diamond crystal, on a
spectral window between 400 and 4000 cm−1, scan no. = 32 (sample/background), and a
resolution of 4 cm−1. No prior preparation of samples was required for spectrum recording.
A computer, Model OPUS 8.2.8, was used for spectrum recording.

• Film Preparation

Four series of films (Table 1) were prepared by the casting method. Xylan, plasticiser,
and chitosan were dispersed in deionised water (1%) and ethanol under magnetic stirring
at 1500 rpm and room temperature for 3 h; subsequently, the mixture was cast in a Petri
dish (11 cm in diameter) and dried at the laboratory temperature for 4 days (Figure 2).

Table 1. Codification of xylan film samples.

Composition Sample Code

Xylan XHc
Xylan and glycerol (25%) XG

Xylan with ethanol solvent XP1/25
Xylan:chitosan ratio 50:50 50XCh
Xylan:chitosan ratio 70:30 70XCh
Xylan:chitosan ratio 80:20 80XCh
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• Surface Treatments (Coating) of Paper

The coatings were applied as thin layers of 0.75–1 g/m2 on each side of the paper
using the Mayer rod laboratory coating system. In this system, the dispersion of xylan was
applied in front of the rod, and by manual rotation of the rod over the paper substrate, a
well-defined amount of coating dispersion was applied. The thickness of the coating layer
was controlled by the diameter of the wire. The obtained samples were dried for 10 min at
room temperature and 10 min in an oven at 60 ◦C.

2.2.1. Testing Methods for Coated Paper Samples

• Air Permeability

This was evaluated as a measure of time (s) for the passing of air volume through
paper samples, with settled area according to ISO 5636-5:2013 by the Gurley method.

• Water Absorption Capacity

This was determined as described in the standard method SR ISO 535:2014, where a
given amount of water was in contact with the paper for 60 s and weight differences were
compared (Cobb60 index).

• Oil Absorption Capacity

This was measured according to the T-441 om-98 standard, where a given amount of
rapeseed oil was in contact with the paper for 600 s, and weight differences were compared
(Unger-Cobb600 index).

• Water Vapour Permeability (WVTR), g/m2.day

The measure of water vapour transmission rate was evaluated according to SR EN
ISO 15106-1:2005 Part 1: Method with humidity detector; it was determined by measuring
the time necessary for the increase in humidity in the top chamber, from a predefined
minimum value to a predefined maximum value. The measured time was compared with
the time registered in the calibration process of the standard film with known permeability,
and the result was expressed as water vapour transmission rate in g/m2/24 h.

• Static Contact Angle (CA)

CA tests were performed by the sessile drop method, according to the TAPPI T
458 cm-04 standard (2004), using a Kyowa goniometer, Model DM-CE1, equipped with
a digital camera and software for recording and processing results. Paper samples were
fixed with clamps on the goniometer test table, and then water drops were deposited
on its surface with a microsyringe. The value of the contact angle was recorded after a
water–substrate contact time of 5 s on samples. A total of 10 measurements were taken for
each sample (Figure 3).
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• Dry and Wet Tensile Strength

This was measured using Instron extensometer, as maximum tensile strength on width
length, which was supported by paper sample until breaking point, according to SR EN
ISO 1924-2:2009 and ISO 3781:201.
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• Tearing Strength

This is the tearing force that continues an initial cutting within one paper sample,
according to SR EN ISO 1974:2012; the Elmendorf tearing strength tester was used for
this determination.

• Bursting Strength

This is an important property for packaging papers and is determined by the maxi-
mum hydrostatic pressure required to rupture the sample of paper. It was measured using
Lorentzen and Wetre bursting strength tester, according to SR EN ISO 2758:2015.

• Antimicrobial Activity

A qualitative screening was performed using an adapted agar diffusion technique:
Petri dishes containing Muller–Hinton solid medium were inoculated with a 1 mL bacterial
suspension, obtained from pathogenic cultures of 24 h on Muller–Hinton broth medium;
then, pieces about 1 cm2 area from samples of coated and reference paper were placed on
solidified media inoculated with Escherichia coli and Staphylococcus aureus bacteria. The
resulting plates were incubated for 24 h at 37 ◦C. The appearance of a growth inhibitory
zone was interpreted as an antibacterial effect. The inhibition zones were measured and
expressed in mm.

• Antifungal Activity

The microbiological activity of xylan-coated papers was evaluated against standard
fungi. The procedure consisted of the application of sterilised paper pieces (about 1 cm2

area) on malt mould agar (MMA) culture medium placed in Petri dishes. The level of fungi
growth was evaluated after 5–7 days of incubation at 20–25 ◦C. The fungi growth was
identified by sample observation under a stereomicroscope. The captured images were
analysed, and results were expressed as the percentage of paper surface covered by fungi.

2.2.2. Testing Methods for Xylan Film Samples

Water swelling capacity was determined after 1 h immersion of film sample in distilled
water at room temperature. It is considered that this period of time is sufficient to reach
the equilibrium state. After the time was reached, the excess of water was removed with
filter paper. Before (Wdry initial) and after water swelling (Wwet final), the weight of film
samples was measured. The initial dry weight of the samples (Wdry initial) was calculated
considering its dryness after treatment in an air oven at 103 ◦C [34].

The swelling capacity of film samples was calculated by Equation (1).

Swelling capacity, % =
Wwet final − Wdry initial

Wdry initial
× 100 (1)

Water solubility was determined as the percentage of dry matter of film which is
solubilised after 1 h immersion in distilled water at 25 ◦C. The samples of films were dried
in an oven for 2 h at 103 ◦C and weighted to obtain the initial dry weight (Wdry initial). Then,
the samples were immersed in 50 mL of distilled water at room temperature and for 1 h.
The remaining samples (waste) were filtered by filter paper and dried at 103 ◦C for 4 h and
weighed to obtain the final weight (Wdry final). The solubility capacity of film samples was
calculated by Equation (2) [35].

Water solubility, % =
Wdry initial − Wdry final

Wdry initial
× 100 (2)

3. Results and Discussions
3.1. FT IR Analysis of Xylan Biopolymer

The analysis of xylan spectrum is shown in Figure 4, while the observed functional
groups are presented in Table 2.



Sustainability 2021, 13, 13504 7 of 16

Sustainability 2021, 13, x FOR PEER REVIEW  7  of  17 
 

 

The swelling capacity of film samples was calculated by Equation (1). 

Swelling capacity, % = 
୛୵ୣ୲	୤୧୬ୟ୪ି୛ୢ୰୷	୧୬୧୲୧ୟ୪	

୛ୢ୰୷	୧୬୧୲୧ୟ୪
	ൈ 	100  (1)

Water solubility was determined as  the percentage of dry matter of  film which  is 

solubilised after 1 h  immersion  in distilled water at 25  °C. The  samples of  films were 

dried in an oven for 2 h at 103 °C and weighted to obtain the initial dry weight (Wdry initial). 

Then, the samples were immersed in 50 mL of distilled water at room temperature and 

for 1 h. The remaining samples (waste) were filtered by filter paper and dried at 103 °C 

for 4 h and weighed to obtain the final weight (Wdry final). The solubility capacity of film 

samples was calculated by Equation (2) [35]. 

Water solubility, % = 
୛ୢ୰୷	୧୬୧୲୧ୟ୪ି୛ୢ୰୷	୤୧୬ୟ୪

୛ୢ୰୷	୧୬୧୲୧ୟ୪
	ൈ 	100  (2)

3. Results and Discussions 

3.1. FT IR Analysis of Xylan Biopolymer 

The analysis of xylan spectrum is shown in Figure 4, while the observed functional 

groups are presented in Table 2. 

 

Figure 4. FTIR Spectrum of xylan hemicellulose. 

As it is observed in Table 2, a high number of hydroxyl groups in the structure of 

xylan hemicellulose are present, thus increasing its hydrophilic character. However, the 

high number of hydroxyl groups facilitates the chemical modification of xylan hemicel‐

luloses when new functional groups can be introduced to improve its hydrophobicity. 

   

500100015002000250030003500

Wavenumber cm-1

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0

A
bs

or
ba

nc
e 

U
ni

ts

Figure 4. FTIR Spectrum of xylan hemicellulose.

Table 2. Structural evaluation of xylan hemicelluloses.

Region/Area, cm−1 Stretching Vibration Class of Potential Functional Groups

1000–1200 νC-H-O/νC-OH esters/ethers
3000–3700 alcohols

~3410 νCO-H aldehydes
2800–3050 νC-H -CH3, -CH2, -CH

1460 ν-COCH3 acetyl l
2839 ν-CH2 metoxi
2856 ν-CH3 C-CH3

1725–1737 νc=o aldehyde/ketone groups
1414 νcoo

- carboxylic acids

894 1–4 glycosidic bond between
xylopyranose units xylanic chains

As it is observed in Table 2, a high number of hydroxyl groups in the structure of xylan
hemicellulose are present, thus increasing its hydrophilic character. However, the high
number of hydroxyl groups facilitates the chemical modification of xylan hemicelluloses
when new functional groups can be introduced to improve its hydrophobicity.

3.2. Barrier Properties of Xylan-Coated Papers

Liquid absorption and gas/vapour permeability are the most important properties
required for packaging papers that come into contact, temporarily or permanently, with
aqueous liquids and wet foods. Current solutions to obtain adequate barriers for food
packaging paper are coatings with synthetic polymers/waxes and lamination with plastic
or aluminium foils [36]. Literature reviews show the main applications of hemicelluloses
as a barrier material for stand-alone packaging films, and only a few of them are related to
packaging paper coatings [37].

As it can be observed from the results presented in Table 3, in comparison with the
base paper, xylan-coated samples exhibit a reduction in air volume and water vapours that
pass through the paper structure.
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Table 3. The water and air barrier properties of xylan-coated papers.

Property Base Paper Xylan Coated Paper

Air permeability, Gurley, s 89.95 167.1
Water vapours transmission rate, g/m2/day 233.3 211.63

This can be explained as follows: due to their hydrophilic properties, xylan hemicellu-
lose blocks the air through the cellulose fibre network very effectively; in addition, based
on its ability to form uniform films, xylan is able to fill and close the pores on the paper
surface [38,39]. This is confirmed by the improvement in water and oil absorption of coated
paper samples (Figure 5).
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Figure 5. The liquids absorption capacity of xylan-coated paper samples.

The obtained results for air permeability, water absorption, and WVTR of xylan-coated
paper samples can be compared with those obtained by Manea et al. (2011) for food pack-
aging paper treated with fluorochemicals (Lodine 2000). Under similar conditions, they
obtained greaseproof paper (55 g/m2) with an air permeability of 158 s, water absorption
capacity of 22 g/m2, and water vapour transmission rate (WVTR) of 198.11 g/m2/day,
respectively [40]. In addition, in their research, Anthony et al. (2015) have tested hemicellu-
loses as binders in paper coatings in comparison with polyvinyl alcohol (PVA) coatings.
The results indicated that water absorption and water vapour transmission rate (WVTR)
for both PVA- and hemicelluloses-based coatings were similar [41]. In other studies [42],
the xylan hemicellulose was used as a binder in pigmentary coatings based on kaolin
and calcium carbonate. The coated papers were compared with those coated with acrylic
latex (Styronal 302) as the binder. The air permeability of coated paper with xylan binder
coatings was slightly higher than values obtained for coatings with acrylic latex, at 10 pph.
By using corn cob xylan for surface treatment of linerboard, Witherspoon (2018) obtained
an improvement in gas permeability and a slight decrease in mechanical strength of coated
papers, at 15 g/m2 weight of coating layer [43].

Contact angle (CA) is a measure of the capacity of fluids to adhere and wet the surface
of different substrates. It is a widely used technique for studying the loss and recovery
of hydrophobicity of polymer films. For coated papers, wetting is a complex procedure
involving the spread and absorption of water into the coating layer structure. Absorption
starts after the drops have wetted the surface to a certain extent.

Analysing the results presented in Figures 6–8, it can be seen that the contact angle
values for xylan-coated paper samples do not vary significantly, compared with the paper
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substrate. The value of water absorption for the base paper indicates that this substrate is
medium sized. This limits the penetration of xylan dispersion within a fibrous network.
As a result, a higher amount of xylan polymer remains at the paper surface which is
hydrophilic and hydrosoluble [39]. In this case, the contact angle of the coated samples is
influenced by the nature of the coating layer only.

Generally, hemicellulose-based coatings are hygroscopic and absorb moisture. This
is because the hemicelluloses have abundant free hydroxyl groups with a high affinity
to water distributed along the main and side chains [44]. Furthermore, the formation of
the composite film reduced the direct contact area between the paper fibres and water
and weakened the combined effects. This leads to an increase in the fibre’s attraction to
water [45].

The obtained CA values are similar to those reported by Anthony and collab (2015),
who obtained coated papers with CA of about 112◦ using native hemicelluloses with 26%
content of xylan (about 4 g/m2), extracted by distiller’s grains. These values were higher
than CA of coated papers with polyvinyl alcohol dispersions at the same coating weight.
Moreover, the comparative values of CA have been reported by Laine et al. (2013) by the
replacement of acrylic latex with modified xylan in coatings for paper packaging [41,42].
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Figure 6. Images of water drop on the coated paper samples surface. P0, base paper; X1, xylan-coated
paper sample; F/B, front side/backside of sample.
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Figure 7. The values of contact angle for base paper and xylan-coated paper samples (F, front size).
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3.3. Mechanical Strength Properties of Coated Paper Samples

In addition to functional properties, mechanical strength is very important for paper
packaging to assure the appropriate protection of the packaged material during transport
and handling. Moreover, for papers that will be used under wet conditions, high wet
strength is preferred. The wet strength of the samples is expressed in terms of the wet/dry
strength ratio, which is the wet tensile strength expressed as a percentage of dry tensile
strength. Analysing the obtained results (Figure 9), it is observed an insignificant increase
in the wet tensile strength of xylan-coated papers, in comparison with the base paper.
This suggests that hydrogen bondings are still the predominant basis of the structure [38].
The decrease in dry tensile strength of xylan-coated papers may be suspected by the fact
that xylan has lower mechanical strength than the paper substrate, which would lead to
a decrease in tensile strength in the combined material. It is also possible that the xylan
coating interferes with the hydrogen bond network, which reduces the tensile strength of
the base paper as well.
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The decrease in tearing strength (Table 4) is due to the fact that, as a result of coating
treatments, the paper structure is more compacted (confirmed by a decrease in porosity),
and the tearing force acts on a lower surface.

Table 4. The mechanical strength of xylan-coated paper samples.

Property Base Paper Xylan Coated Paper

Tearing strength, mN 480 440
Bursting strength, kPa 200 279

As it is observed in Table 4, xylan treatment leads to the improvement in the bursting
strength of coated paper. This can be explained by the fact that at low coating weights, the
additional moisture in the paper substrate as an effect of xylan hygroscopicity is less and
have no negative influence on the bursting strength of coated paper. Similar results were
reported by Witherspoon (2018), who obtained an improvement in the bursting strength of
filter paper coated with corn cob xylan at low coating weights [43].

3.4. Antimicrobial and Antifungal Activity of Coated Paper Samples

The antimicrobial activity of food packaging paper is of great importance in order
to preserve food quality and extend shelf life; in recent years, this topic was intensively
studied for lignocellulosic materials.

Inhibition zone is the most-used method for antimicrobial activity tests of materials.
By using this method, bacterial growth is inhibited by the formation of a transparent zone
resulting from the diffusion of antimicrobial agents in agar plates. As can be observed
in Figure 10, there is no inhibition zone around the paper piece, for both base paper and
coated samples with xylan hemicellulose.
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Figure 10. The antimicrobial activity of coated paper samples: (a) E. coli; (b) S. aureus.

However, a slight antibacterial effect of coated paper samples can be observed on
its surface, where the number of bacterial colonies is lower than the reference sample,
especially for S. aureus pathogenic microorganisms (Figure 10b).
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Concerning the antifungal activity of xylan-coated papers, the inhibition effect of fun-
gal growth was expressed as a percentage of paper surface covered with fungi. Therefore,
while the surface of the uncoated paper was covered with fungi more than 35%, on the
surface of xylan-coated papers, a very low quantity of spores, about 1.5%, was developed
(Figure 11). In this case, the film-forming ability of xylan hemicelluloses contributes to the
development of some mechanisms which can prevent the growth of spores on the paper
surface [46,47].

Sustainability 2021, 13, x FOR PEER REVIEW 12 of 17 
 

 

 
Figure 10. The antimicrobial activity of coated paper samples: (a) E.coli; (b) S.Aureus. 

However, a slight antibacterial effect of coated paper samples can be observed on its 
surface, where the number of bacterial colonies is lower than the reference sample, espe-
cially for S.aureus pathogenic microorganisms (Figure 10b). 

Concerning the antifungal activity of xylan-coated papers, the inhibition effect of 
fungal growth was expressed as a percentage of paper surface covered with fungi. 
Therefore, while the surface of the uncoated paper was covered with fungi more than 
35%, on the surface of xylan-coated papers, a very low quantity of spores, about 1.5%, 
was developed (Figure 11). In this case, the film-forming ability of xylan hemicelluloses 
contributes to the development of some mechanisms which can prevent the growth of 
spores on the paper surface [46,47]. 

 
  

Figure 11. The antifungal activity of xylan-coated papers. 

The obtained results are in accordance with the literature data regarding the anti-
microbial activity of native hemicelluloses. Thus, in recent studies [34,48,49], the antimi-
crobial properties of paper coated with xylan hemicelluloses and films were reported. It 

(b) 

(a) 
Base paper 

Base paper 

Xylan coated paper 

Xylan coated paper 

Figure 11. The antifungal activity of xylan-coated papers.

The obtained results are in accordance with the literature data regarding the antimicro-
bial activity of native hemicelluloses. Thus, in recent studies [34,48,49], the antimicrobial
properties of paper coated with xylan hemicelluloses and films were reported. It was con-
cluded that, in its native form, xylan shows a slight antimicrobial activity against pathogen
bacteria (E. coli, S. aureus). In these studies, a substantial improvement in the antimicrobial
activity of xylan hemicelluloses is obtained by chemical modification using esterification or
crosslinking methods. In other research [50,51], it is reported that gels using xylan, gelatin
glycerol, and nicotinamide have good microbiological activity against yeasts and fungi.

3.5. Film-Forming Ability of Xylan Hemicellulose and Water Barrier Properties of Films

Generally, the native xylan exhibits poor film-forming ability and forms high brittle
films with very low mechanical stability. This is a direct consequence of the insufficient
chain length of the polymer and poor solubility [12]. Commonly, plasticisers (sorbitol,
xylitol, glycerol and propylene glycol, etc.) are added, or other biopolymers (wheat gluten,
carboxyl methylcellulose, nanofibrillated cellulose, chitosan, etc.) are compounded along
with xylan hemicellulose to enhance film forming and other properties of these films.

The capacity of water resistance is the most important property for food packaging ma-
terials. The swelling capacity showed by all films is due to the high hydrophilicity of xylan
and chitosan polymers [34]. In this study, the chitosan biopolymer and glycerol plasticiser
were used to improve the properties of xylan films (50 XCh, 70XCh, and 80XCh samples;
Figure 12). In Table 5, t is shown that the mean value of swelling capacity of films with
major xylan content is higher, probably due to the high hydrophilicity of hemicelluloses.



Sustainability 2021, 13, 13504 13 of 16

Sustainability 2021, 13, x FOR PEER REVIEW 13 of 17 
 

was concluded that, in its native form, xylan shows a slight antimicrobial activity against 
pathogen bacteria (E.coli, S. Aureus). In these studies, a substantial improvement in the 
antimicrobial activity of xylan hemicelluloses is obtained by chemical modification using 
esterification or crosslinking methods. In other research [50,51], it is reported that gels 
using xylan, gelatin glycerol, and nicotinamide have good microbiological activity 
against yeasts and fungi. 

3.5. Film-Forming Ability of Xylan Hemicellulose and Water Barrier Properties of Films 
Generally, the native xylan exhibits poor film-forming ability and forms high brittle 

films with very low mechanical stability. This is a direct consequence of the insufficient 
chain length of the polymer and poor solubility [12]. Commonly, plasticisers (sorbitol, xy-
litol, glycerol and propylene glycol, etc.) are added, or other biopolymers (wheat gluten, 
carboxyl methylcellulose, nanofibrillated cellulose, chitosan, etc.) are compounded along 
with xylan hemicellulose to enhance film forming and other properties of these films. 

The capacity of water resistance is the most important property for food packaging 
materials. The swelling capacity showed by all films is due to the high hydrophilicity of 
xylan and chitosan polymers [34]. In this study, the chitosan biopolymer and glycerol 
plasticiser were used to improve the properties of xylan films (50 XCh, 70XCh, and 
80XCh samples; Figure 12). In Table 5, t is shown that the mean value of swelling capac-
ity of films with major xylan content is higher, probably due to the high hydrophilicity of 
hemicelluloses. 

   
XP1/25 XG XHC 

   
50XCh 70XCh 80XCh 

Figure 12. The images of xylan hemicellulose films. 

Table 5. The water barrier properties of xylan hemicellulose films. 

Sample Swelling Capacity, % Solubility, % 
50XCh 73.2 78.3 
70XCh 85.4 82.4 
80XCh 90.0 95.5 

XHc 94.2 99.23 
XG 93.2 98.9 

XP1/25 (alcohol) 93.5 99.25 

It is important to mention that, in the swollen state, films with xylan and chitosan 
preserved their integrity, i.e., they were easily handled (Figure 13). This is beneficial for 
predicting their potential application for hydrogels and packaging purposes. 

Figure 12. The images of xylan hemicellulose films.

Table 5. The water barrier properties of xylan hemicellulose films.

Sample Swelling Capacity, % Solubility, %

50XCh 73.2 78.3
70XCh 85.4 82.4
80XCh 90.0 95.5

XHc 94.2 99.23
XG 93.2 98.9

XP1/25 (alcohol) 93.5 99.25

It is important to mention that, in the swollen state, films with xylan and chitosan
preserved their integrity, i.e., they were easily handled (Figure 13). This is beneficial for
predicting their potential application for hydrogels and packaging purposes.
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Figure 13. Xylan hemicellulose films after 1 h immersion in water.

The films’ solubility is a relevant characteristic of packaging to improve and protect
the packaged product integrity. It can be observed that there is an increase in solubility for
films with high content of xylan. The presence of chitosan may reduce water absorption due
to its low solubility in water. Due to the high hydrophilic character of xylan hemicellulose,
the solubility of xylan films is higher than other polymeric materials used in packaging
applications [35]. This can be decreased by the chemical modification of xylan biopolymers
or by the addition of other compounds that are more hydrophobic [12,35,36].
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4. Conclusions

This research study aimed to evaluate the performances of wood xylan polysaccha-
rides in coating applications for paper food packaging and polyelectrolyte complexes
formula for uniform films formation.

According to the obtained results, it can be concluded that by coating the paper with
xylan hemicellulose, an improvement of water/oil and gas barrier properties was obtained.
The xylan treatment had a positive effect on the bursting strength of the coated papers,
which is one of the most important strength properties of packaging paper.

Measurements of microbiological activity revealed that the xylan-coated papers ex-
hibited moderate antifungal activity against standard fungi and only a slight antibacterial
effect against S. aureus pathogenic bacteria.

The film-forming ability of xylan hemicelluloses, as well as the swelling and solu-
bility of films, can be improved by adding chitosan biopolymer. In swollen state, the
polyelectrolyte complexes in xylan–chitosan films kept their integrity. This can predict
their potential utilisation in packaging applications.

Although there is a limited number of research studies concerning the application of
hemicelluloses in paper coatings, the obtained results reveal a promising starting point in
anticipating the use of these biopolymers in food packaging applications, as competitive
and sustainable alternatives to petroleum-based materials (i.e., fluorochemicals additives),
to obtain environmentally friendly products according to a circular economy.

These preliminary results will help to design the future research directions, which
will be focused on finding the appropriate pathways for chemical modification of xylan
hemicelluloses by esterification or crosslinking with other compounds to reduce their
hydrophilic character and to be more appropriate for paper coatings.
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