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Abstract: Transformational computing paradigms, such as artificial intelligence, home automation,
and the Internet of Things, are being rapidly applied to consumer electronics products, thus aiding in
the development of integrated and innovative features. Hence, ubiquitous computing and electronic
devices are increasingly becoming essential to everyday life. In this context, a wide gulf often exists
between the capabilities and technical features of consumer electronic devices and the consumers’
understanding of such devices and ability to operate them correctly and effectively. This study
proposes a machine-readable knowledge model representing technical terms in product specifications
along with a product knowledge graph to discover semantic relationships among various products.
Formal concept analysis is applied to conceptually analyze the specification terms of heterogeneous
electronic products and design a hierarchical knowledge structure of extracted concepts, to elaborate
the proposed knowledge model.

Keywords: consumer electronics; product knowledge; knowledge graph; ontology model; formal
concept analysis

1. Introduction

According to Growth from Knowledge [1], manufacturers are presenting new con-
sumer electronics with innovative features, and consumers prefer premium home appli-
ances that provide convenient and unique experiences. Nonetheless, consumers tend to
find it necessary to apply some effort in understanding such devices. For instance, consider
a modern television remote control with a dozen or more buttons that no one in some
households can remember ever using. In general, manufacturers provide product specifica-
tions or manuals, and retailers selectively provide consumers with key features of their
products. A specification refers to detailed precise requirements that have to be satisfied by
a product or service. A product technical specification often refers to a particular document
to explicitly state technical standards in detail (https://tinyurl.com/yyzv3qjm (accessed
on 10 October 2020)). It provides the main facts of a product, so that any audience, from de-
velopment teams to customers, can precisely understand the features and capabilities of
the product.

Information contained in specifications or manuals, however, is often insufficient [2].
First, such specifications tend to be difficult for many consumers to understand because
they are written using technical terms [3]. Consumers tend to understand products based
on their usages, such as connecting to the Internet or watching a movie; however, most
specifications provide technical information on product capacities without sufficient natural
language description. Second, the terms in product specifications are not yet standardized.
Equivalent information is often expressed in different terms and values depending on
manufacturers [4]. For example, the frame interpolation techniques of Samsung and LG TVs
are marked as Auto Motion Plus and TruMotion 100, respectively; therefore, it is difficult to
compare them. Third, it commonly remains difficult to check the compatibility of different
devices [3]. For instance, checking whether high-definition videos on a Samsung Galaxy
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S20 (Samsung) are properly displayed on an OLED TV (LG) using only the specifications
might be a difficult task. If manufacturers use standard vocabulary, it will be easier to
judge the compatibility between heterogeneous products.

Knowledge graphs are one approach to resolve this limitation. They define the mean-
ing of machine-readable vocabulary, and can express relationships between the vocabulary
terms [5]. Since Google applied knowledge graph technology to search [6], there has been a
trend of providing large-scale data in various domains as knowledge graphs [5]. Numerous
studies continue to be conducted in the field of consumer electronics, much of which focuses
on providing taxonomy (https://www.google.com/basepages/producttype/taxonomy.
en-US.txt (accessed on 10 October 2020)) and categorizing consumer electronics or enabling
product search functions. Several studies have proposed ontology models for home appli-
ances [7]. Meanwhile, as electronic devices become diversified and product functions more
complex, knowledge models can enable the representation of comprehensive vocabularies
and their relationships, using a hierarchical structure ordering relations among various
vocabularies. Formal concept analysis (FCA) has been applied to analyze and design such
systems. FCA is a mathematical data analysis technique based on lattice and order the-
ory [8], which extracts concepts from binomial relationships between objects and attributes,
and constructs hierarchical structures of levels of relationships between concepts. FCA has
been applied to various fields [9,10], and is especially used in object-oriented domain mod-
elling [11] and ontology construction with hierarchical concept structures [12,13]. Based
on such prior research, this study extracts common vocabularies from a list of product
specifications using FCA techniques and elaborates a set of derived formal concepts to
design the proposed knowledge model.

This study introduces a knowledge model, representing technical specifications of
electronic products at a semantic level. A set of technical terms are extracted from collected
specification datasets, and relationships between products and technical terms, which
are used in product specifications, are analyzed. In particular, conceptual analysis is con-
ducted to discover common vocabularies among various electronic devices; furthermore,
a knowledge model is designed using common formal concepts extracted by this analysis.

The remainder of this study is organized as follows. Section 2 describes some related
work, and Section 3 briefly outlines the proposed approach. Section 4 introduces FCA
with a theoretical background. Section 5 describes the results of our conceptual analysis
of aggregated datasets. Section 6 presents a knowledge model for expressing various
product specifications, used to transform a product knowledge graph. Section 7 describes
the evaluation results on five use cases, employing product knowledge graphs. Finally,
Section 8 presents our conclusions.

2. Related Work

A knowledge graph encodes data in the form of graph structures, capturing relation-
ships between entities in a flexible style [3,5]. Early research on knowledge graphs focused
on general knowledge and common sense, such as Dbpedia [14] and Wikidata [15]. Such
knowledge graphs are mainly aimed at expressing basic social and geographical infor-
mation, such as well-known people, cities, countries, and airports. Recently, knowledge
graphs have been rapidly applied by businesses. Google and Bing’s search engines are
representative examples of applying knowledge graphs [16], while Google Home and
Amazon Alexa use knowledge graphs in virtual assistant services [17].

In the field of e-commerce, knowledge graphs are applied in product search and
recommendation. Research has been conducted on representing product information
with ontology models such as GoodRelations [18], Consumer Electronics Ontology [7],
and Schema.org [19,20]. Furthermore, various studies have been conducted to establish
large-scale knowledge graphs at a commercial level. Ontology-based product data man-
agement (OPDM) has been demonstrated using several types of ontology as an extension
of GoodRelations. Home appliances, such as vacuum cleaners, televisions, and tablet
PCs, have been incorporated into vocabularies. Currently, these vocabularies are able to
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represent some of the general characteristics of consumer products; nevertheless, they are
subject to limitations in expressing specifications at a detailed level. For example, accord-
ing to the television vocabulary (http://www.ebusiness-unibw.org/ontologies/opdm/
television.html#HDMI (accessed on 10 October 2020)), the obk:HDMI class can express the
HDMI function in an xsd:boolean format, which is unable to describe the role, capacity,
or relationships of other vocabularies on a specification. The related vocabulary of OPDM is
designed similarly. Meanwhile, the product class of Schema.org can be used for describing
products and services. However, this class aims to describe the basic metadata of a product
(e.g., brand, global trade item number, logo, model, and offers). The knowledge model
proposed in this study is designed to semantically describe technical terms expressed in
specifications for electronic products, and aims define relevant technical terms as well as
their capacities and semantic interrelations.

Zhu et al. proposed a runtime knowledge graph for home automation and introduced
conceptual models for representing relationships between Internet of Things devices for
smart home application development [21]. Mitsubishi Electric Corporation developed a
compact AI knowledge representation and reasoning solution for human–machine inter-
faces, which is powered by a knowledge graph integrating user information and device
specifications [22]. Xu et al. introduced a product knowledge graph for e-commerce,
defining a set of key entities from product information and various product relations [23].
This knowledge graph evaluated the performance on knowledge completion, and used
search rankings and recommendations from http://grocery.walmart.com (accessed on
10 October 2020). Moreover, Alonso et al. introduced a commercial knowledge graph
of http://walmart.com (accessed on 10 October 2020), aiming to aid users to search for
products by discovering the relationships between products, brands, and categories [23].
Amazon also uses a product graph to answer user questions about products and related
knowledge [5,24]. In particular, they introduced a practical broad graph approach to
describe general facts by extracting product profiles from the Web. This graph does not rep-
resent full-fledged semantics, because it lacks references for product knowledge, and has
difficulty curating new products along with broad categories of products.

FCA is a mathematical model for deriving a concept hierarchy from a collection
of objects and their attributes [25,26]. It is an applied branch of lattice theory [27,28],
and has become popular for knowledge representation and data analysis since 1980 [29].
FCA has been widely adopted in the design and construction of ontology models [30–34].
Recently, Ferré and Cellier proposed a method to reconstruct a binary context using a
hypergraph based on a notion of pattern basis [34]. González and Hogan introduced a
framework for calculating an ontology schema from a large-scale knowledge graph using
FCA. They proposed lightweight structures to build a concept hierarchy, and evaluated
their algorithms against the Wikidata dataset [35]. In addition, embedding techniques have
been adopted to enhance classical concept analysis [36,37]. In this study, FCA on product
types and specification terms is applied to discover the relationships between vocabularies,
and used to define a hierarchical knowledge model structure.

3. A Development Process of a Knowledge Graph

In general, a product specification comprises a set of technical items. As shown in
Figure 1 as an example, a ‘FEATURES’ specification for a consumer device consists of a
group of specification items. This example includes eight functions (items); here, individual
functions are expressed as function names and values. Each specification has one or more
specification groups, and each group has various specification items.

The development of the product knowledge graph was divided into two steps. First,
terms in the specifications were extracted and analyzed in a formalized process; then,
the knowledge graph was constructed. Analyzing the technical terms involves the ex-
traction of vocabularies from heterogeneous product specifications, definition of common
vocabularies, and application of common vocabularies between products. The specification
vocabularies were analyzed at the level of groups (T2–T3) and items (T4–T6). When specifi-

http://www.ebusiness-unibw.org/ontologies/opdm/television.html#HDMI
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cation groups and items were extracted from the collected dataset (T1), redundancy was
removed and refined for comprehensive vocabularies to establish a reference vocabulary
(T2 and T4). However, because the number of specification items was large and there
were many similar clusters, the analysis target was specified through refinement work (T6).
The specification groups and items obtained through FCA (T3 and T5) were applied to
design and transform the knowledge model. First, the classes and hierarchical structures
of the knowledge model were defined. Then, the specification vocabularies, which were
extracted from the collected specifications, applied common specification groups and items
appropriate to the product types (T7). Finally, a product knowledge graph was created
(T8). The analytical process of this study is summarized in Figure 2.

Figure 1. Specification group and specification items of a product specification.

Figure 2. Overall process of analyzing formal concepts from collected specifications and transforming a product
knowledge graph.

4. Formal Concept Analysis
4.1. Background

FCA is a mathematical model, defining attributes of concepts and creating a conceptual
hierarchy based on the interdependence relations of attributes [27]. The basic structure
of FCA is context. Context consists of a set of objects, a set of attributes or properties,
and relationships between objects and attributes. More formally, a formal definition of
context as follows:

Definition 1. Formal context K = (G, M, I), where G is a set of objects, M refers to a set of
attributes, and I ⊆ G × M represents the binary relation between G and M. In other words,
the elements of G and M represent the objects of the context and properties that each object can have.
For an object g with an attribute m, the relation is represented by gIm or (g, m) ∈ I, meaning that
g has m.

Such a formal context can be represented in the form of a matrix. The head of the
rows and columns of the table is composed of objects and attributes. For each cell of
the table, if the object and attribute related to the cell satisfy the binary relationship I,
the cell is denoted by ‘X’; otherwise, it is left blank. Table 1 shows an example context table
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comprising the following products g = {‘Air Conditioner’, ‘Cell phone’, ‘Monitor’, ‘TV’,
‘Washer’} and their attributes as specification items m = {‘display’, ‘filter’, ‘hdmi’, ‘wifi’}.

Table 1. Formal context C.

C Display Filter Hdmi Wifi

Air conditioner × ×
Cell phone × ×

Monitor × ×
TV × × ×

Washer × × ×

A list of formal concepts is extracted from the formal context. Each concept is defined
as a pair of the form (O, A), and a more formal definition is obtained as follows.

Definition 2. For an arbitrary context K = (G, M, I), when O ⊆ G and A ⊆ M, if intent(O) =
A
∧

extent(A) = O is satisfied, (O, A) is called a formal concept. The following is also satisfied.
Intent(O) := {a ∈ M|∀o ∈ O : (o, a) ∈ I}, extent(A) := {o inG|∀a ∈ A : (o, a) ∈ I}.

The formal concept (O, A) is defined by the Galois connection consisting of intent
and extent; by intent(O) and extent(A); and by the set of attributes common to all objects
of O and attributes of A. The list of concepts in Table 2, which is extracted from Table 1,
shows how the upper and lower hierarchal order relations can be defined based on extent
or intent.

Definition 3. For any concept (O1, A1), (O2, A2) of a given context K = (G, M, I), the upper-
lower concept relationship (O1, A1) ≤ (O2, A2) is a type of partial order relation, defined as follows.
(O1, A1) ≤ (O2, A2)⇔ O1 ⊆ O2(⇔ A1, ⊇ A2).

Table 2. Formal concept generated from Table 1.

Concepts Extensions Intensions

C1 ∅ {display, filter, hdmi, wifi}

C2 {TV} {display, filter, hdmi }

C3 {Washer} {display, filter, wifi}

C4 {Cell phone, Monitor, TV} {display, hdmi}

C5 {TV, Washer} {display, wifi}

C6 {Air conditioner, Washer} {display, filter}

C7 {Air conditioner, Cell phone, Monitor, TV, Washer} {display}

This concept has the characteristics of hierarchical structure in that it has fewer extents
than the upper concepts, while simultaneously having larger intents. The upper-lower
concept relationship (≤) between concepts is a partially ordered set called a concept lattice
or Galois lattice [8]. Figure 3 shows a concept lattice corresponding to the formal context
that is represented in Table 1. The lines in Figure 3 indicate hierarchical relationships: from
top (most general) to bottom (most specific). C2 is a subconcept of C4. The extension of
C2 is TV, and the extension of C4 is {Cell phone, Monitor, TV}. Meanwhile, the intent of
C2 is {display, filter, hdmi}; however, the intent of C4 has {display, hdmi} without ‘filter’.
In this study, the Galois lattice hierarchical structure is used to analyze the functions that
electronic products have in common. In other words, ‘display’ in C7 can be interpreted as a
function or feature provided by all products in a given context.
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Figure 3. Concept lattice for Table 1.

4.2. Concept Refinement

Each formal concept has a different number of products and specification terms. Note
that a significance of concepts can be evaluated by measuring occurrences of objects and
attributes within each. A significance score of a concept S(c) is computed by using both the
absolute and relative frequencies of the extents and intents within each concept modified
from [38].

S(c) =
1
N

(
∑
i=1

∑
k=1

A(oiak)× R(oiak)

)
× 1

100
(1)

where A(oiak) is the absolute frequency of attributes ak of the object oi in cluster c,
and R(oiak) is the normalized frequency of the attributes of objects oi in this concept.
Thus, to obtain S(c) in each cluster, the absolute and relative occurrence of each attribute
are multiplied, and a score is summed for each object. The objects’ scores are then summed
and averaged.

By using the occurrences of each keyword from Table 3, Sc of C4 (i.e., {Cell phone,
Monitor, TV}, {display, hdmi}), and C6 (i.e., {Air conditioner, Washer}, {display, filter}) can
be computed as follows:

S(C4) =
1
3 ×

((
37× 37

65 + 49× 49
86 + 50× 50

72

)
+

(
28× 28

65 + 37× 37
86 + 18× 18

72

))
× 1

100 = 0.39

S(C6) =
1
2 ×

((
35× 35

47 + 10× 10
36

)
+

(
12× 12

47 + 10× 10
36

))
× 1

100 = 0.17

Table 3. Occurrences of each keyword.

Display Filter Hdmi Wifi . . . ∑

Air conditioner 35 12 0 0 . . . 47

Cell phone 37 0 28 0 . . . 65

Monitor 49 0 37 0 . . . 86

TV 50 0 18 4 . . . 72

Washer 10 10 0 16 . . . 36

From the above example, the significance of two concepts can be directly calculated
from the frequencies of attributes (keywords) for each object. The significance depends on
the frequencies of objects and attributes, rather than on their total number. In particular,
when there are numerous similar formal concepts, the significance score is used as a
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threshold value, and concepts below a certain score are excluded from the analysis. This
method is applied to the analysis of specification items, to reduce the scope.

5. Conceptual Data Analysis Using FCA

From Specifications to Formal Concepts

For conceptual analysis, 497 products are selected from different manufacturers.
A specification is collected by crawling manufacturer websites, as well as those of re-
tailers such as BestBuy. Table 4 summarizes the results of analyzing specification groups
and items via FCA. The specification items are divided into ‘Original’ and ‘Revised’ based
on refinement work.

• Specification groups. The formal context is configured by removing duplicates from
objects for 15 product types (devices) and 96 specification groups. In other words, it
includes a set of attributes (specification groups) as Agroup that all objects (electronic
products) of Ogroup have in common, or a set of objects having attributes of Agroup.
The number of concepts extracted from this context was Cgroup = 50, while the height
of the lattice was Hgroup = 7. Excluding the top and bottom concepts, the average
number of objects included in one concept was eight, and the range was 1 < Ogroup <
9′ meanwhile, the range of attributes was 1 < Agroup < 34.

• Specification items. The number of specification items extracted from the collected
specification was 14,519, from which 2783 items were removed as duplicates. The num-
ber of concepts extracted from context (i.e., 15 × 2783) is Coriginal = 179. The extent
of a concept, excluding itself, was 1 < Aoriginal < 19, and the range of intent was
1 < Ooriginal < 13.

• Refined specification items. The concept refinement, described in Equation (1), was
applied to select a part of Coriginal . The 179 formal concepts, which were included in
Coriginal , excluded concepts with S(c) < 0.2 or less. At this point, the product types and
specification items included in the concept were excluded. Through this process, six
products were filtered out, and the total number of specification items was reduced.
Consequently, the revised concept Crevised was obtained in a formal context with nine
products and 1902 specification items. There are 49 revised concepts Crevised, and the
extent and intent ranges are 1 < Arevised < 8 and 1 < Orevised < 119, respectively.

Table 4. Statistics of analyzing specification groups and items by FCA.

Types Content Specification Groups
Specification Items

Original Revised

Formal context The number of objects 15 15 9

The number of attributes 96 2783 1902

Formal concept

The number of concepts 50 179 49

Average number of extents 4 4.6 7

Average number of intents 3 3.3 3

The number of edges 108 474 110

Lattice height 7 11 7

As shown in Figure 4, the concept lattice is tightly connected by 474 edges, and the
height of the lattice is Horiginal = |12|. C2, which has ‘Wifi’ as a common property, is the
top concept that includes 13 electronic devices, i.e., 87% of devices. In C3

original , 12 devices

have ‘display’ as an attribute. Meanwhile, C5
original includes 12 devices that have ‘Wifi’ and

‘Bluetooth’ as common attributes. C8
original includes devices that have ‘EnergyConsumption’

as a common attribute. The extent of C8
original can be interpreted as a major feature of
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products with relatively high energy consumption such as ‘AirConditioner’, ‘AirPurifier’,
‘DishWasher’, ‘MicroWave’, ‘Range’, ‘Refrigerator’, and ‘Washer’. However, 91% of the
extracted concepts can be considered common vocabulary, while the averages of Aoriginal
and Ooriginal are 4.6 and 3.3, respectively. In other words, because individual concepts
are separated by one or two differences in the properties they contain, similar concepts
can exist on a large scale. To solve this problem, it is necessary to select a concept to be
considered by calculating its importance.

Figure 4. A concept lattice of (original) specification items.

Compared to Coriginal , Crevised contains concepts that have numerous common vocabu-
lary or product types. The average of Arevised and Orevised are 3 and 7, respectively. That is,
it can be observed that several products can use the same specification items. For example,
C37

revised contains ‘Refrigerator’, ‘VacuumCleaner’, and ‘WashingMachine’ as the intent and
‘EnergyEfficiencyClass’, ‘GrossDimension’, ‘GrossWeight’, ‘NetDimension’, ‘NetWeight’,
and ‘NoiseLevel’ as the extent. In addition, TV and monitor commonly define 119 specifica-
tion items (i.e., C24

revised). The two product types have similar functions. Figure 5 visualizes
the concept lattice of Crevised. The lattice height was Crevised = 7.

Figure 5. A concept lattice of revised specification items.
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In summary, the hierarchal structure of relations between concepts, which are repre-
sented as upper and lower, can be interpreted as a relationship in which the specification
group is commonly used in numerous devices. In the proposed approach, the results
of concept analysis are applied to design knowledge models and construct a knowledge
graph. First, a common specification group is derived, regardless of the type of product.
The inconsistent terms used by manufacturers or retailers are integrated using the results
of concept analysis. Second, similar specification items are aligned to specification groups,
regardless of products. The products and specification groups included in the formal
concept form a starting point, and the specification items can be adjusted according to spec-
ification groups. Third, the value and range of the specification items can be normalized.
Currently, the specification item ‘Network’ has several values such as ‘Gigabit LAN’, ‘802.
11’, ‘Bluetooth’, ‘Bluetooth v5.0’, and ‘Yes/No’. The specification group that is included
in the formal concept is a common attribute used in heterogeneous product lists, and can
extract specification items, which are included in specification group, and define a list of
allowed values. Once a specification group is defined for a certain device, the specification
item is selected from a list of allowed items or values.

6. Knowledge Graph for Consumer Electronics

6.1. Knowledge Graph Model

A knowledge model is designed to semantically express the vocabulary of the collected
product specifications. As illustrated in Figure 6, each product is represented by an instance
of ce:Product, which is a subclass of the class Product from Schema.org. Each device has
a set of product specifications (ce:SpecificationSet), and each specification comprises a
collection of specification groups (ce:SpecificationGroup) with individual specification items
(ce:SpecificationSubject). Then, a knowledge graph is constructed based on this ontology
model, expressing the structure and semantics of product data and the transformation of
information from product specifications to formalized knowledge in a graph format.

Figure 6. The meta-model of consumer electronics.

6.2. Defining Product Categories

All CE products are defined as subclasses of the ElectronicProduct class; products with
similar features are grouped into subclass relationships. For designing top-level classes,
several classifications such as manufacturers (Samsung Electronics), Consumer Reports,
Amazon, and Best Buy, are collected and revised. Subsequently, 10 classes are defined:
AccessoryDevice, AirConditioningHeatingDevice, AudioDevice, CellPhone, CleaningDevice, Com-
puterOrTablet, KitchenAppliance, NetworkDevice, SmartWatch, and VideoDevice. In addition,
73 detailed product types are organized as sub-classes of the 10 classes. The classes can
abstract the product categories to some extent, and extend additional classes freely as
needed to expand the range of the expression. For example, audio-related items are defined
as the AudioDevice class (e.g., HomeAudio, Headphone, Mp3Player, SoundBar, and Speaker is
defined as subclasses).
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6.3. Specification Groups and Subjects

The specification groups reflect the formal concepts of Cgroup, which are established
via FCA. All revisions of individual groups are based on the product type and specification
groups included in the concept. If a potential group does not match an existing defined
group, it is replaced with the specification group in the formal concept; if it does not
exist, the group is added. Through this technique, specification groups used by different
products are integrated, and interoperability is established between specifications.

As shown in Table 5, the size of the specification groups vary by product types.
In the extracted dataset, the specification group for monitors and refrigerators was the
most used (418 and 256, respectively); even after removing redundancy, the ratio remains
similarly high. In contrast, air conditioners and washing machines have relatively few
group names after removing duplicates. Notably, our adjustment of the specification
group lead to the size of the revised groups increasing for all products, except Mobile.
For example, Oven, Air conditioner, and Dish washer increased by 55%, 45%, and 40%,
respectively, compared to previous initial groups. Because these products use a method of
enumerating specification items within a few groups, without dividing the specification
group in detail, the application rate of common specification group names increased.
As shown in Table 6, four specification groups, such as Exterior Feature, General Feature,
Performance, and Robotic, were added to the Air conditioner product category, and the
frequency of the existing group was slightly changed.

Specification items refer to individual hardware or software functions that are ex-
pressed in various vocabularies, depending on the manufacturers and products. The Crevised
obtained by FCA is used as a normalization reference. TV is used as a source for a basic
vocabulary because these specification items are relatively normalized. The existing spec-
ification items decrease by 10% to 40% depending on product type. As the functions of
products such as mobiles (from 151 to 91: 40%) and refrigerators (from 238 to 160: 33%)
become more diverse and complex, the provided specification items tend to be subdi-
vided. These products have a relatively high application rate of common vocabulary. The
specification group and specification items are mapped to the SpecificationGroup and
SpecificationSubject classes of the knowledge model, respectively. Table 7 presents an
example of the converted result based on Cgroup and Crevised, which is derived based on
FCA. For example, the noise level of the air conditioner is moved to the performance group
commonly used by other products, the group name is changed, and the specification subject
is assigned a noise level. The names of the revised group and items follow the basis of the
formal concept, and the descriptions of the original source are added as additional infor-
mation of the knowledge model (i.e., rdf:comment). After reflecting the result of the formal
concept, 96 and 1345 instances were newly declared as rdf:type of the SpecificationGroup
and SpecificationSubject class, respectively. The range of value of SpecificationSubject in
the knowledge model differs according to class. Most values of the specification items
extracted from the original source were in text (1622) and number (277) format; however,
the value of SpecificationSubject can be limited to the exact meaning by adding the Re-
source (677) and Enumeration (815) format. The text value as a range decreased by 196.
Resource refers to the value of SpecificationSubject corresponding to a specific class; further,
Enumeration refers to Boolean values, such as ‘Yes’ or ‘No’, and values divided into ‘Level1’
or ‘Level2’ such as EnergyEfficiency. The value of each range defines the representative
format after removing the unit and other labels from the value extracted from the original
source. It is difficult to specify a representative format, such that all applicable values are
allowed and specified in a literal format. Finally, relatedProductType explicitly represents
the product types with the SpecificiationSubject class. From the 1902 specification items
analyzed, about 380 items were mapped to two or more products, which is helpful in
finding relationships among heterogeneous products.
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Table 5. Statistics from formal concept analysis (FCA) of specification groups.

Product Types The Number of Specification Groups
The Number of Distinct Specification Groups

Original Groups Revised Groups

Air Conditioner 222 10 14

Dish washer 90 11 16

Mobile 151 18 16

Monitor 418 30 34

Oven 198 11 17

Refrigerator 238 20 25

TV 256 15 17

Vacuum cleaner 133 16 17

Washing machine 196 7 9

Total 1902 138 165

Table 6. Status of original and revised specification groups.

Original Group Revised Group

Specification Groups The Number of Specification Items Specification Groups The Number of Specification Items

Air Flow 12 Air Flow 12

Air Purification 26 Air Purification 25

Capacity 24 Capacity 24

Convenience 28 Convenience 28

Electrical Data 15 Electrical Data 15

Energy Efficiency 27 Energy Efficiency 27

Noise Level 17 Noise Level 16

Operating Mode 27 Operating Mode 27

Physical specification 23 Physical specification 22

Technical Information 23 Technical Information 20

- - Exterior Feature 1

- - General Feature 3

- - Performance 1

- - Robotic 1

Total 222 Total 222
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Table 7. A list of selected specification groups and items for representing the product knowledge model. Three or four items of each products are randomly selected.

Product types
Extracted specification information Revised specification information

Specification groups Specification items Specification Group Specification Subject related Product Type Range

Air conditioner

Air Purification Indicator (Cleanliness) Convenience Indicator Cleanliness Air Conditioner Literal

Noise Level Noise (dBA) Performance Noise Level Air Conditioner, Refrigerator, Vacuum Cleaner,
Dish washer Literal

Technical Information Refrigerant (Charging, g) General Feature Refrigerant Air Conditioner Number

Dish washer

Performance Energy Efficiency Class Eco Energy Efficiency Class Dish washer, Monitor, Oven, Refrigerator, TV,
Vacuum Cleaner, Washing Machine Resource

General Feature Leakage Sensor Feature Leakage Sensor Dish washer, Washing Machine Resource

Dimension Net Weight Physicalspecification Net Weight Dish washer, Vacuum Cleaner, Washing Machine,
Air Conditioner, Refrigerator, Oven Number

Mobile

Network/Bearer (NAL Certification) 2G CDMA Network Bearer Cdma2g Mobile Enumeration

Network/Bearer (International Roaming) 3G CDMA Network Bearer Cdma3g Mobile, TV Enumeration

Lens Focal Length Camera Focal Length Mobile, Monitor, TV Literal

Monitor

General Feature Analog Clean View Additional Feature Analog Clean View Monitor, TV Literal

Eco Feature Energy Efficiency Class Eco Energy Efficiency Class Dish washer, Monitor, Oven, Refrigerator, TV,
Vacuum Cleaner, Washing Machine Resource

General Feature MHL Connectivity Mhl Mobile, Monitor, TV Resource

General Feature Mobile High-Definition Link (MHL) Connectivity Mhl Mobile, Monitor, TV Enumeration

Oven

Features Child Lock Feature Child Lock Dish washer, Oven, Washing Machine Resource

Materials/Finishes Display Type Exterior Feature Display Type Oven, Refrigerator Literal

Power/Ratings Energy Efficiency Class Eco Energy Efficiency Class Dish washer, Monitor, Oven, Refrigerator, TV,
Vacuum Cleaner, Washing Machine Resource

Weights/Dimensions Loading Quantity Physicalspecification Loading Quantity Oven, Vacuum Cleaner Literal

Refrigerator

Refrigerator Feature Anti-Bacteria Air Purification Anti Bacteria Air Conditioner, Refrigerator Resource

Performance Energy Efficiency Class Eco Energy Efficiency Class Dish washer, Monitor, Oven, Refrigerator, TV,
Vacuum Cleaner, Washing Machine Resource

Energy Energy Star Rating Energy Efficiency Energy StarRating Air Conditioner, Refrigerator Resource

TV

Connectivity Audio Out (Mini Jack) Interface Audio Out Mini Jack TV, Monitor Resource

Eco Feature Energy Efficiency Class Eco Energy Efficiency Class Dish washer, Monitor, Oven, Refrigerator, TV,
Vacuum Cleaner, Washing Machine Resource

Smart Convergence WiFi Direct Connectivity Wifi Direct Monitor, TV Enumeration



Sustainability 2021, 13, 1722 13 of 17

Table 7. Cont.

Vacuum Cleaner

General Information Charging Time Power Charging Time Vacuum Cleaner Number

Accessory Dust Sensor Cleaning Mode Dust Sensor Vacuum Cleaner Resource

Cleaning Mode Turbo Mode Operating Mode Turbo Mode Air Conditioner, Vacuum Cleaner Resource

Washing machine

Feature Auto Restart Convenience Auto Restart Air Conditioner, Washing Machine Resource

Performance Energy Efficiency Class Eco Energy Efficiency Class Dish washer, Monitor, Oven, Refrigerator,
TV, Vacuum Cleaner, Washing Machine Resource

Feature Power Wash Cycle Power Wash Washing Machine Resource
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6.4. Transforming Product Specifications into a Knowledge Graph

The product knowledge graph was generated by applying the mapping rules to the
collected data. The specification information was collected and updated periodically from
internal and external data sources. The internal specification data were accessed through
a relational database, and the incremental data, which were automatically updated daily,
were stored in a file repository. Thus, the product knowledge graph was updated when
incremental data occurred changes. In contrast, external data were collected by crawling
web pages and automatically stored in a repository. A set of entities was extracted, and the
mapping rules were applied. Subsequently, all entities were mapped into the existing spec-
ification entities. All instances were converted to the JSON format, reflecting the ontology
model and mapping rules. Then, a process of validating the transformed data is followed.
A co-authoring tool was used for experts to manually revise and validate the transformed
data by experts. When this process was completed, the modified data were stored in the
NoSQL format, and converted into the product knowledge graph in batches. The prod-
uct knowledge graph had approximately 428,226 entities and 5.2 million facts for about
12,000 products, which were integrated from several data sources. The proposed product
knowledge graph supports access by a set of open application programming interfaces,
SPARQL protocol and RDF query language endpoints, and some federated queries.

7. Evaluation

The knowledge graph thus established could be used for various purposes, and utility
through five use cases was verified. All use cases in Table 8 consisted of SPARQL queries,
and were executed in the experimental runtime environment. As shown in Listing 1,
the UC5 search for televisions weighing less than 10 kg was as follows.

Listing 1: SPARQL query of the use case 5 (UC5).

PREFIX rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>
PREFIX ce: <http :// www.example.com/ontology/product#>
SELECT DISTINCT ?s WHERE {

?s rdf:type ce:Product ;
rdf:type ce:TV;

ce:hasSpecSet ?sheet .
?sheet ce:hasSpecificationGroup ?specGroup .
?specGroup ce:hasSpecSubject cd:SetWeightWithStand ;
ce:hasValue ?value .
?value ce:specValue ?specValue ~.

filter (? specValue < 10.0) .
}

Then, UC1 found the ontology definition and function of a specific specification
item, and returned the name of the vocabulary and the semantic relationships held in the
knowledge model as results. There were seven product types that had a vocabulary. UC2
searched for products that provided a specific function; 1457 of the collected products
had ‘WiFi’ functions. UC3 and UC4 investigated the compatibility of different products,
and searched for necessary accessories to connect the products. The search result of UC3
corresponded to 869 products in Mobile, Monitor, and TV; further, the result of UC4
required 133 accessories.
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Table 8. Use cases for evaluating capability of the knowledge graph.

Use Cases Supports Searched Results Relevant Product Types

UC1:
Search for the meaning of the ‘Noise level’ function. Yes 7 Air conditioner, Dish washer, Mobile, Refrigerator,

TV, Vacuum cleaner, Washing machine

UC2:
Search for products that provide ‘Wi-fi’ function Yes 1457 Air conditioner, Mobile, Refrigerator, TV

UC3:
Search for products that support ‘MHL’ and ‘HDMI’ Yes 869 Mobile, Monitor, TV

UC4:
Search for accessories related to HDMI Yes 133 Monitor, TV

UC5:
Search for TVs under 10 kg Yes 511 TV

8. Conclusions

This study introduced a product knowledge graph that aims to represent consumer
electronics product information. The terms and structures of product specifications dif-
fer depending on manufactures and retailers. This information is often expressed in the
manufactures’ own terms, and not in a standard vocabulary. To effectively develop a
machine-interoperable information format for product specifications, a consistent data
format should be considered. This study proposes an approach of constructing a knowl-
edge model representing complex product specifications and a set of terms therein. In the
proposed method, FCA is used to extract vocabularies common to heterogeneous product
specifications. The specification groups and items of heterogeneous products are nor-
malized using common vocabularies. In particular, all common vocabularies are defined
as instances of the SpecificationGroup and SpecificationSubject classes in the knowledge
model; common attributes and values are also defined. Then, the collected product speci-
fications are transformed into a knowledge graph based on this model. This knowledge
graph can play a central role in determining the interoperability and compatibility of
heterogeneous products. A machine agent is thus enabled to understand the technical
features and capabilities of supporting compatibility between various electronic products.

However, without an effort to standardize product specifications, extracting and uni-
fying specification items from various electronic devices can still be a time-consuming task.
The proposed method in this study can be used as a reference for standardizing product
specification, including specification groups and items. At the same time, it is necessary to
consider machine learning techniques to refine and cluster various vocabularies.

Although existing vocabularies for consumer electronics provide a set of classes,
properties, and their relationships, there is a lack of detailed ontologies describing various
products and their technical characteristics. This study proposes an approach to build a
knowledge model of product specifications. However, this model does not primarily use
existing vocabularies such as Schema.org. Thus, interlinking existing vocabularies is a
topic for future research. For example, as an extension of proposed knowledge model, we
may consider linking Schema.org and investigating the simultaneous mapping of relevant
vocabularies. Moreover, automatic approaches to identify entities and establish knowledge
enrichment techniques should be studied because of the increasing number of integrated
electronic devices.
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