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Abstract: Due to the recent appearance of shares socioeconomic pathway (SSP) scenarios, there
have been many studies that compare the results between Coupled Model Intercomparison Project
(CMIP)5 and CMIP6 general circulation models (GCMs). This study attempted to project future
drought characteristics in the Cheongmicheon watershed using SSP2-4.5 of Australian Community
Climate and Earth System Simulator-coupled model (ACCESS-CM2) in addition to Representative
Concentration Pathway (RCP) 4.5 of ACCESS 1-3 of the same institute. The historical precipitation
and temperature data of ACCESS-CM2 were generated better than those of ACCESS 1-3. Two
meteorological drought indices, namely, Standardized Precipitation Index (SPI) and Standardized
Precipitation Evapotranspiration Index (SPEI) were used to project meteorological drought while a hy-
drological drought index, Standardized Streamflow Index (SDI), was used to project the hydrological
drought characteristics. The metrological data of GCMs were bias-corrected using quantile mapping
method and the streamflow was obtained using Soil and Water Assessment Tool (SWAT) and bias-
corrected meteorological data. As a result, there were large differences of drought occurrences and
severities between RCP4.5 and SSP2-4.5 for the values of SPI, SPEI, and SDI. The differences in the
minimum values of drought index between near (2021–2060) and far futures (2061–2100) were very
small in SSP2-4.5, while those in RCP4.5 were very large. In addition, the longest drought period
from SDI was the largest because the variation in precipitation usually affects the streamflow with a
lag. Therefore, it was concluded that it is important to consider both CMIP5 and CMIP6 GCMs in
establishing the drought countermeasures for the future period.

Keywords: drought; SDI; shared socioeconomic pathway; SPEI; SPI

1. Introduction

Since the 1900s, the global average concentration of greenhouse gases have increased
rapidly, leading to the changes in the characteristics of meteorological variables and more
occurrences in extreme events [1]. Studies have reported an increase in the frequency
and intensity of disasters such as flooding, drought, heatwaves, etc. due to the impacts
of climate change [2–4]. Of the natural disasters, droughts are critical as they can occur
in both wet and dry climates [5] and they can be prolonged with devastating impacts.
A drought can be generally classified as meteorological, hydrological, agricultural, and
social. The other droughts are triggered by the meteorological drought as it occurs as a
result of inadequate precipitation or atmospheric water balance from a long-term mean. In
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2014, Brazil experienced its worst droughts in 80 years [6]; there were consecutive drought
events in the United States between 2011 and 2016, leading to several billion dollar loses
in agriculture [7]. In East Africa, three countries, namely, Ethiopia, Somalia, and Kenya,
were ravaged by droughts between 2011 and 2012 that affected about 13 million people
and caused the loss of lives and livelihoods [8].

In South Korea, there have been abnormal meteorological events such as severe long-
term drought of 2013–2015. Therefore, there have been tremendous studies on the analysis
of drought characteristics in Korea for the historical periods [9–12] and future projection us-
ing general circulation models (GCMs) [13–16]. For the quantitative assessment of drought
characteristics, various droughts indices can be used such as Standardized Precipitation
Index [17], Standardized Precipitation Evapotranspiration Index [18], and Streamflow
Drought Index [19]. Most studies concluded that droughts have become more frequent
and more severe [20] and will be much longer and larger [21].

Intergovernmental Panel on Climate Change (IPCC) developed new climate scenarios
for Assessment Report 6 (AR6) shared socioeconomic pathways (SSPs) that considers social
and economic factors together. SSPs scenarios are defined by various land use and green-
house gas emission constraint conditions obtained according to the integrated evaluation
model [22]. Therefore, many global climate research centers that had developed their own
GCMs for RCP scenarios are upgrading or have improved for new SSP scenarios. The
new GCMs showed better performances for the historical periods due to the use of more
observed data and the improvement of physical simulation engine for South Korea [23],
China [24,25], India [26], Tibet [27], Iran [28], Africa [29], and South Asia [30]. However,
Zhu et al. [31] found the difficulties in simulating several meteorological variables such as
cold nights and warm days over the Tibetan Plateau while better performances in most
precipitation indices were found over China. Jiang et al. [32] found that models have
improved from Coupled Model Intercomparison Project 5 (CMIP5) to CMIP6 for climato-
logical temperature and precipitation and winter monsoon but display little improvement
for the interannual temperature and precipitation variability and summer monsoon in East
Asia monsoon. Therefore, the comparative studies between Coupled Model Intercompar-
ison Project 5 (CMIP5) and CMIP6 have been conducted all over the world in terms of
spatial distributions [33], uncertainty analysis [34], future projections [35], and drought
characteristics of India [36] and China [37,38].

This study projected the drought characteristics from RCP4.5 of CMIP5 for Australian
Community Climate and Earth System Simulator 1-3 (ACCESS1-3) and SSP2-4.5 of CMIP6
for ACCESS CM2 using three drought indices. Two meteorological drought indices, Stan-
dardized Precipitation Index (SPI), and Standardized Precipitation Evapotranspiration
Index (SPEI) were applied, and a hydrological drought index, Streamflow Drought Index
(SDI), was used in determining drought from the simulation results of Soil and Water
Assessment Tool (SWAT) using the two GCMs. The study area is the Cheongmicheon
watershed, which has suffered from frequent droughts and thus has been a popular subject
in Korea [39].

2. Methodology
2.1. Study Procedure

This study consists of 5 steps as shown in Figure 1. The first step is to perform the
bias correction for the simulations of RCP4.5 of ACCESS1-3 and SSP2-4.5 of ACCESS-CM2
using 3 quantile mapping methods. Here, the statistical performances for ACCESS1-3 and
ACCESS-CM2 are compared. The second step is to formulate the SWAT model for the
Cheongmicheon watershed. The calibration procedure is completed using SWAT-CUP
(Calibration and Uncertainty Procedure; Abbaspour et al. [40]) and the observed discharges
at Wonbu Bridge station. The third step is to generate the climate and runoff projections
for the historical and future periods. The future scenarios for RCP4.5 and SSP2-4.5 were
the bias-corrected data. The fourth step is to calculate three drought indices SPI, SPEI, and
SDI for RCP4.5 and SSP2-4.5. The future periods are divided into two separate periods:
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near (2021–2060) and far (2061–2100). The fifth step is to compare the future drought
characteristics for near and far futures between RCP4.5 and SSP2-4.5.

Sustainability 2021, 13, x FOR PEER REVIEW 3 of 22 
 

charges at Wonbu Bridge station. The third step is to generate the climate and runoff pro-
jections for the historical and future periods. The future scenarios for RCP4.5 and SSP2-
4.5 were the bias-corrected data. The fourth step is to calculate three drought indices SPI, 
SPEI, and SDI for RCP4.5 and SSP2-4.5. The future periods are divided into two separate 
periods: near (2021–2060) and far (2061–2100). The fifth step is to compare the future 
drought characteristics for near and far futures between RCP4.5 and SSP2-4.5. 

 
Figure 1. Flow chart in this study. 

2.2. Study Area and Datasets 
The Cheongmicheon watershed selected in this study is located at 37°34′12″–37.6000° 

N and 127°0′23″–127.0639° E. The Cheongmicheon is the first tributary of the Han River, 
with a watershed area of 595.13 km2 and a stream length of 62.76 km. The land uses are 
forests (44.0%), agricultural land (42.5%), urban areas (5.6%), grasslands (2.7%), water 
bodies (2.6%), bare lands (1.8%), and wetlands (0.7%). The study area has suffered from 
frequent droughts since 2014 [41]. Because the Cheongmicheon watershed is one of the 
watersheds designated by the International Hydrological Program (IHP), it is a watershed 
with relatively rich long-term hydrological and topographic data [42]. 

In this study, the Korea Meteorological Administration, the Water Management In-
formation System (WAMIS), and the Environmental Geospatial Information Service were 
used to collect basic topographic, climate, and hydrologic data. The study area was di-
vided into a total of 9 sub-watersheds on the basis of the Digital Elevation Model (DEM) 
required for the formulation of SWAT model, as shown in Figure 2. The climate data of 
the Icheon weather station near the Cheongmicheon watershed and the streamflow data 
of the Wonbu Bridge were used for the SWAT model. The information of weather and 
streamflow stations is shown in Table 1. 
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2.2. Study Area and Datasets

The Cheongmicheon watershed selected in this study is located at 37◦34′12′′–37.6000◦

N and 127◦0′23′′–127.0639◦ E. The Cheongmicheon is the first tributary of the Han River,
with a watershed area of 595.13 km2 and a stream length of 62.76 km. The land uses are
forests (44.0%), agricultural land (42.5%), urban areas (5.6%), grasslands (2.7%), water
bodies (2.6%), bare lands (1.8%), and wetlands (0.7%). The study area has suffered from
frequent droughts since 2014 [41]. Because the Cheongmicheon watershed is one of the
watersheds designated by the International Hydrological Program (IHP), it is a watershed
with relatively rich long-term hydrological and topographic data [42].

In this study, the Korea Meteorological Administration, the Water Management In-
formation System (WAMIS), and the Environmental Geospatial Information Service were
used to collect basic topographic, climate, and hydrologic data. The study area was divided
into a total of 9 sub-watersheds on the basis of the Digital Elevation Model (DEM) required
for the formulation of SWAT model, as shown in Figure 2. The climate data of the Icheon
weather station near the Cheongmicheon watershed and the streamflow data of the Wonbu
Bridge were used for the SWAT model. The information of weather and streamflow stations
is shown in Table 1.

2.3. GCMs and Future Climate Change Scenarios

The General Circulation Model (GCM) represents the physical processes of the atmo-
sphere, ocean, glaciers, and surface, and is a suitable model for simulating climate change
and prediction according to an increase in greenhouse gas concentration. GCM is a model
composed of a three-dimensional grid, and the spacing between the grids is composed
of a minimum of 250 km and a maximum of 600 km. This study used the ACCESS1-3 for
RCP4.5 and ACCESS-CM2 for SSP2-4.5, which all have been developed by the Centre for
Australian Weather and Climate Research (CAWCR), a partnership between CSIRO and
the Bureau of Meteorology. ACCESS1-3 includes RCP4.5 that stabilizes radiative forcing
at 4.5 Wm−2 in the year 2100 without ever exceeding that value, and includes long-term
global emissions of greenhouse gases, short-lived species, and land-use-land-cover in a
global economic framework [43]. ACCESS-CM2 adopted the SSP scenario that considers
social and economic factors together on the basis of radiative forcing. In this study, the
SSP2-4.5 scenario was used, assuming that the degree of climate change mitigation and
socio-economic development is at an intermediate stage. The information of two GCMs
used in this study is shown in Table 2.
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Figure 2. Description of sub-watersheds including the locations of meteorological and streamflow stations.

Table 1. Information of weather and streamflow stations.

Name of Station Latitude Longitude Observation Period

Icheon 37.264 127.484 1984–2019

Wonbu Bridge 37.163 127.634 1985–2019

Table 2. Station information.

Modeling
Centers Models

Resolution
(Longitude ×

Latitude)
Temporal Span Models

Resolution
(Longitude ×

Latitude)
Temporal Span

ACCESS ACCESS
1-3 1.9◦ × 1.2◦

- Historical period:
1970–2005

- Projection period:
2006–2100

ACCESS
-CM2 1.25◦ × 1.88◦

- Historical period:
1970–2014

- Projection period:
2015–2100

2.4. Quantile Mapping Method

Since the GCM is composed of data in the form of a grid, differences in precipitation
values and hydrological factors occur when compared to the actual observed points.
Because there have been many developed methods for bias correction, the performances
of the bias-corrected data were all different according to the selection of method [44]. The
quantile mapping is a representative method for the correction of the difference between
the simulated value of GCM and the observed, and is one of the most effective bias
correction methods [45,46]. In the quantile mapping method, the quantile function should
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be calculated to make the distribution of simulated GCM values equal to the distribution
of observed values, as shown in Equation (1).

P0 = h(Pm) (1)

where P0 is observed precipitation, Pm is GCM simulated precipitation, and h is transfor-
mation function. Thus, the observed precipitation is calculated from the inverse function
of the cumulative distribution function (cdf) as shown in Equation (2).

P0 = F0
−1(Fm(Pm)) (2)

where Fm is the cdf of Pm, and F0
−1 is the inverse function of the cdf of P0.

Quantile mapping applied in bias correction included non-parametric quantile map-
ping, which provides good results for extreme percentiles [45]. This study fits a quantile–
quantile plot using a smoothing spline of non-parametric quantile.

2.5. SWAT and SWAT-CUP

The SWAT model can simulate the prediction of the effect of runoff, sediment, and
nutrients in the watershed according to changes in various types of soil, land use, and land
management conditions over a long period of time in a complex land use watershed [47].
The SWAT model can construct four physical sub-models (hydrology model, soil loss model,
nutrient substance model, and stream tracking model) using input data that are relatively
easy to access. The hydrological model analysis reflects the hydrological circulation of
interception, surface runoff, intermediate runoff, infiltration, base runoff, waterway loss,
and evapotranspiration, as shown in Equation (3).

SWt = SW0 +
t

∑
i=0

(
Rday −Qsur f − Ea − wseep −Qgw

)
(3)

where SW0 is initial soil moisture content (mm), SWt is final soil moisture per day (mm),
Rday is precipitation (mm), Qsur f is surface runoff (mm), Ea is evapotranspiration (mm),
Wseed is penetration, Qgw is groundwater runoff (mm), and t is time (day).

The method of parameter correction of SWAT model can be largely divided into man-
ual calibration and automatic calibration. The SWAT model basically provides a manual
correction function, but it is difficult to guarantee the reliability of the simulation result
because the correction result may vary according to the user’s skill level depending on
subjectivity. To solve this problem, the SWAT-CUP program was developed to provide
automatic correction of SWAT parameters. The SWAT also has the advantage of being
able to run simulations for large watersheds without extensive monitoring data and has
the capability of predicting changes in hydrological parameters under different manage-
ment practices and physical environmental factors [48,49]. This study used the SUFI2
algorithm, one of the optimization techniques that can quantify and express the uncertainty
of parameters by the multivariate uniform distribution of Hypercube [40].

The procedure of the SUFI2 algorithm is as follows.
In the first step, the objective function g(b) and the initial uncertainty ranges [bj, abs_mean,

bi, abs_max] for the parameters are defined. In this study, the Nash–Sutcliffe efficiency (NSE)
was chosen as the objective function. Here, bj is the jth parameter, j = 1, · · · , m, and m is
the number of parameters to be estimated.

The Latin Hypercube sampling is carried out in the hypercube [bmin, bmax] (initially
set to [bj, abs_mean, bj, abs_max]), and the corresponding objective functions are assessed. The
sensitivity matrix J and the parameter covariance matrix C are calculated as follows:

Jij =
∆gi
∆bj

i = 1, · · · , Cn
2 ; j = 1, · · · , m (4)
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C = s2
g

(
JT J

)−1
(5)

where s2
g is all combinations of two simulations, and s2

g is the variance of the objective
function values resulting from the n runs.

The 95PPU is calculated. It has two indices, i.e., the p-factor and r-factor. The r-factor
is estimated as

r− factor =
dx

σx
(6)

where σx is the satandard deviation of the measured variable X, and dI is the average
distance between upper and lower boundary of 95PPU, which is calculated as follows:

dx =
1
k

k

∑
l=1

(XU − XL)l (7)

where l is a counter; k is the number of observed data points; and QL (2.5th) and QU (97.5th)
are the lower and upper boundaries of the 95PPU, respectively.

Because parameter uncertainties are initially large, the value of d tends to be quite
large during the first sampling round. Therefore, future sampling rounds are needed with
updated parameter ranges.

2.6. Drought Index
2.6.1. Meteorological Drought Index

The SPI was developed to quantify drought at a given time interval (temporal res-
olution) for precipitation distribution from historical data. This tool can also be used to
monitor periods of anomalously wet/dry events. According to McKee et al. [17], SPI
calculation is based on the long-term precipitation taken for the required period. The
computation of the SPI involves fitting a gamma probability density function (pdf) to a
given frequency distribution of rainfall at a station. The α and β parameters of the gamma
distribution are estimated for each timescale of interest (i.e., 1, 3, 6, and 12 months) and for
each month of the year. The gamma distribution is defined by its pdf:

g(x) =
1

βατ(α)
xα−1e− x

β , x ≥ 0 (8)

where α and β are shape and scale parameters, respectively; x is the rainfall amount;
and τ(α) is the gamma function. Maximum likelihood solutions are used to estimate
α and β. The resulting parameters are then used to find the cumulative probability of
observed rainfall event for a given month and timescale. The cumulative probability, after
its computation, is transformed to the standard normal random variable z with a mean
equal to 0 and the variance of 1, which is the value of the SPI.

SPEI is calculated by the difference between precipitation and potential evapo-trans-
piration (PET). To determine PET, the Thornthwaite [50] method, which is easy to collect
and simple to calculate, is used, and the calculation process is the same as Equation (9).

PET = 16K
(

16T
I

)m
(9)

where T is monthly average temperature and unit is ◦C, and I is the year heat index
obtained by summing the month (m) heat index. Moreover, K is a function of latitude and
month.

Di is calculated by the difference between precipitation and evapotranspiration ac-
cording to different time scale. The drought index is calculated by converting it to a normal
distribution [18].

Di = Pi − PETi (10)
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Dk
n =

k−1

∑
i=0

Pn−i − PETn−i (11)

where k is the synthesis time scale, and n is the month used in the calculation.

2.6.2. Hydrological Drought Index

SDI, which is a hydrological drought index, is calculated as Equation (12) [19].

SDIi,k =
Vi,k −Vk

Sk
(12)

where Vi,k is the flow accumulated during the ith period in the ith year, and Vk and Sk
represent the average and standard deviation of the accumulated river water, respectively.
The critical level is mainly the average Vk. In small scale rivers, the flow rate approximates
the Gamma distribution type, and the probability distribution type is distorted. Therefore,
the flow rate must be converted to fit the normal distribution. When converting to a
two-variable log-normal distribution type, SDI is finally equal to Equation (13), and yi,k is
a value obtained by taking the natural logarithm of the amount of river water, such as in
Equation (14).

SDIi,k =
yi,k − yk

Sy,k
, i = 1, 2, · · · , k = 1, 2, 3, 4 (13)

yi,k = ln(Vi,k), I = 1, 2, · · · , K = 1, 2, 3, 4 (14)

As shown in Table 3, the hydrological drought defined by SPI, SPEI, SDI are extreme
drought if the value is less than −2, severe drought if it is less than −1.5, moderate drought
if it is less than −1, and mild drought if it is less than 0; if it is more than 0, it is classified as
no drought [19].

Table 3. Classification of drought index range [17–19].

Drought Index Range
Classification of Drought

SPI, SPEI SDI

>2.00 Extremely wet

No drought
1.50 to 1.99 Very wet

1.00 to 1.49 Moderately wet

0 to 0.99
Near normal

−0.99 to 0 Mild drought

−1.00 to −1.49 Moderately dry Moderate drought

−1.50 to −1.99 Severely dry Severe drought

<−2.00 Extremely dry Extreme drought

3. Result
3.1. Step 1: Quantile Mapping Result

The results of bias-correction for precipitation and temperature in RCP 4.5 and SSP2-
4.5 future climate change scenarios are shown in Figure 3. As a result of the application of
bias correction, all performances were much improved. In the precipitation of RCP4.5, the
R2 of precipitation increased from 0.08 to 0.99 and RMSE (root mean square error) decreased
from 16.16 to 1.55. The standard deviation increased from 11.80 to 14.11. In the case of
temperature, R2 increased from 0.91 before shift correction to 1.00, and RMSE decreased
from 4.46 before shift correction to 0.05. The standard deviation increased from 9.51 to
10.48. In SSP2-4.5, the R2 of precipitation increased from 0.04 to 0.99 before bias-correction,
and RMSE decreased from 16.65 before shift correction to 1.70. The standard deviation
increased from 11.98 to 14.06. In the case of temperature, R2 increased from 0.83 before
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bias correction to 1.00, and RMSE decreased from 6.60 before shift correction to 0.05. The
standard deviation increased from 8.68 to 10.47.
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3.2. Step 2: SWAT Formulation

The parameters of SWAT were designated as variables related to groundwater, hy-
drologic response unit, basin, sub-catchment, soil, channel routing, and management that
can affect the runoff process. All required 23 parameters of SWAT were considered and
calibrated using the SUFI2 algorithm of SWAT-CUP. In this calibration, NSE was used as
an objective function. For the calibration of SWAT, several studies [51–53] recommended
performing simulations, mainly for 500–1500 times. In this study, parameters were opti-
mized through 1000 iterations. The values of all considered parameters were determined
as shown in Table 4.

The analysis results using the observed flow data at the Wonbu Bridge station in 2018
are shown in Figure 4. As a result of calibration, R2 increased from 0.914 to 0.958 and the
NSE increased from 0.004 to 0.786. Therefore, it was confirmed that the SWAT model was
well formulated.
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Table 4. Soil and Water Assessment Tool (SWAT) input parameters and their ranges selected for calibration.

Input Parameter Description
Range

Fitted
Min Max

Ground
water

ALPHA_BF Baseflow alpha factor 0 1 0.685

GW_DELAY Groundwater delay time 0 500 122.50

GW_REVAP Groundwater re-evaporation coefficient 0.02 0.2 0.14

GWQMN Threshold water level in shallow aquifer for baseflow 0 5000 3275.00

RCHRG_DP Deep aquifer percolation fraction 0 1 0.83

REVAPMN Threshold depth of water in the shallow aquifer for
re-evaporation 0 500 212.50

Hydrologic
response

unit

CANMX Maximum canopy storage 0 100 1.5

EPCO Plant uptake compensation factor 0 1 0.82

ESCO Soil evaporation compensation factor 0 1 0.18

SLSUBBSN Average slope length 10 150 49.90

Basin

SFTMP Snowfall temperature −20 20 3.80

SMFMN Melt factor for snow on December 21 0 20 5.10

SMFMX Melt factor for snow on June 21 0 20 3.50

SMTMP Snow melt base temperature −20 20 −6.60

SURLAG Surface runoff lag coefficient 0.05 24 22.68

TIMP Snow pack temperature lag factor 0 1 0.83

Sub-catchments CH_N1 Manning’s “n” value for the tributary channels 0.01 30 23.55

Soil

SOL_AWC Available water capacity of the soil layer 0 1 0.15

SOL_K Saturated hydraulic conductivity 0 2000 1370.00

SOL_Z Depth from soil surface to bottom of layer 0 3500 17.50

Channel
routing

CH_K2 Effective hydraulic conductivity in main channel
alluvium −0.01 500 117.49

CH_N2 Manning’s “n” value for the main channel −0.01 0.3 0.07

Management CN2 Initial SCS runoff curve number for moisture
condition II 35 98 37.21
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3.3. Step 3: Generation of Climate Variables and Runoff

After calibration, the runoff was estimated by dividing the entire period into the near
(2021–2060) and the far (2061–2100) futures, and all results are shown in Table 5.

Table 5. Change ratios of precipitation, temperature, and flow in the historical and future value.

Period GCM
Precipitation–

Flow–
Temperature

Historical
(1984–2019)

Near Future
(2021–2060)

Far Future
(2061–2100)

Change Ratio
(%)

Near Far

Annual

RCP4.5
Prec. (mm) 1342.1 1395.3 1423.6 4.0 6.1

Flow (m3/s) 440.9 491.9 507.2 11.6 15.0
Temp. (◦C) 12.1 11.1 12.5 −8.3 3.3

SSP2-4.5
Prec. (mm) 1342.1 1205.7 1188.5 −10.2 −11.4

Flow (m3/s) 440.9 417.2 412.3 −5.4 −6.5
Temp. (◦C) 12.1 10.9 12.9 −9.9 6.6

Spring
(Mar–May)

RCP4.5
Prec. (mm) 213.2 334.1 363.3 56.7 70.4

Flow (m3/s) 183.9 373.9 387.3 103.3 110.6
Temp. (◦C) 11.8 10.1 11.9 −14.4 0.8

SSP2-4.5
Prec. (mm) 213.2 358.5 358.9 68.2 68.3

Flow (m3/s) 183.9 468.5 455.9 154.8 147.9
Temp. (◦C) 11.8 5.7 7.8 −51.7 −33.9

Summer
(June–

August)

RCP4.5
Prec. (mm) 793.9 650.9 668.9 −18.0 −15.7

Flow (m3/s) 965.5 822.9 874.4 −14.8 −9.4
Temp. (◦C) 24.3 23.1 24.1 −4.9 −0.8

SSP2-4.5
Prec. (mm) 793.9 406.1 388.4 −48.8 −51.1

Flow (m3/s) 965.5 525.6 507.8 −45.6 −47.4
Temp. (◦C) 24.3 21.7 23.3 −10.7 −4.1

Autumn
(September–
November)

RCP4.5
Prec. (mm) 262 275.1 267.3 5.0 2.0

Flow (m3/s) 526 538.4 540.1 2.4 2.7
Temp. (◦C) 13.3 12.7 14.6 −4.5 9.8

SSP2-4.5
Prec. (mm) 262 224.3 224.7 −14.4 −14.2

Flow (m3/s) 526 336.5 340.0 −36.0 −35.4
Temp. (◦C) 13.3 16.9 19.6 27.1 47.4

Winter
(December–
February)

RCP4.5
Prec. (mm) 73 135.2 124.1 85.2 70.0

Flow (m3/s) 88.3 232.4 226.9 163.2 157.0
Temp. (◦C) −1.4 −1.6 −0.6 14.3 −57.1

SSP2-4.5
Prec. (mm) 73 216.7 216.6 196.8 196.7

Flow (m3/s) 88.3 338.4 345.5 283.2 291.3
Temp. (◦C) −1.4 −0.8 0.6 −42.9 −142.9

In the case of RCP4.5, the annual average precipitations for both futures increased to
1395.3 mm (4.0%) in the near future and 1423.6 mm (6.1%) in the far. On the contrary, in the
case of SSP2-4.5, the annual average precipitation in the future was analyzed to decrease to
1205.7 mm (−10.2%) in the near future and 1188.5 mm (−11.4%) in the far.

In spring (MAM) of RCP4.5, the precipitation increased to 334.1 mm (56.7%) in the
near future and 363.3 mm (70.4%) in the far. The average flow increased to 373.9 m3/s in
the near future and 387.3 m3/s in the far. In SSP2-4.5, the runoff increased to 358.5 mm
(68.2%) in near future and 358.9 mm (68.3%) in the far, and the average flow increased to
468.5 m3/s (154.8%) in the near future and 455.9 m3/s (147.9%) in the far. In summer (JJA),
the average precipitations of RCP4.5 decreased to 650.9 mm (−18%) in the near future
and 668.9 mm (−15.7%) in the far, and the average flow decreased to 822.9 m3/s (−14.8%)
in the near future and 874.4 m3/s (−9.4%) in the far. In SSP2-4.5, the runoff decreased
to 406.1 mm (−48.4%) in near future and 388.4 mm (−51.1%) in the far, and the average
flow decreased to 525.6.1 m3/s (−45.6%) in the near future and 507.8 m3/s (−47.4%) in the
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far. In autumn (SON) of the RCP4.5, the precipitation increased to 275.1 mm (5.0%) in the
near future and 267.3 mm (2.0%) in the far. The precipitation in the near was larger than
that in far future. The average flow increased to 538.4 m3/s (2.4%) in the near future and
540.1 m3/s (2.7%) in the far. On the contrary, in the SSP2-4.5, the precipitation decreased to
224.3 mm (−14.4%) in the near future to 224.7 mm (−14.2%) in the far. The average flow
increased to 336.5 m3/s (−36.0%) in the near future and 340.0 m3/s (−36.4%) in the far. In
winter (DJF) of RCP4.5, the precipitation largely increased to 135.2 mm in the near future
and 124.1 mm in the far, and the average flow decreased to 232.4 m3/s in the near future
and 226.9 m3/s in the far. In SSP2-4.5, the precipitation increased largely to 216.7 mm in
the near future and 216.6 mm in the far, and the average flow increased to 338.4 m3/s in
the near future and 345.5 m3/s in the far.

In the case of temperature, both RCP4.5 and SSP2-4.5 showed an increasing trend.
In RCP4.5, the annual average temperature decreased to 11.1 ◦C in the near future but
increased to 12.5 ◦C in the far. This was similar to the result of SSP2-4.5. The temperature
decreased to 10.9 ◦C in the near future but increased to 12.9 ◦C in the far. In spring (MAM)
of RCP4.5, the temperature decreased to 10.1 ◦C in the near future and to 11.9 ◦C in the
far, and in SSP2-4.5, it decreased to 5.7 ◦C in the near future and 7.8 ◦C in the far. In
summer (JJA) of RCP4.5, the temperature decreased to 23.1 ◦C in the near future and
similarly to 24.1 ◦C in the far, and in SSP2-4.5, the temperature decreased to 21.7 ◦C in
the near future and to 23.3 ◦C in the far. In autumn (SON) of RCP4.5, the temperature
decreased to 12.7 ◦C in the near future but increased to 14.6 ◦C in the far, and in SSP2-
4.5, it increased to 16.9 ◦C in the near future and 19.6 ◦C in the far. In winter (DJF) of
RCP4.5, the temperature decreased to −1.6 ◦C in the near future and increased to −0.6 ◦C
in the far, and in SSP2-4.5, it decreased to −0.8 ◦C in the near future and to 0.6 ◦C in
the far (Table 5). Annual precipitation and average annual temperature are shown in
Figures 5 and 6. and precipitation and temperature changes of RCP4.5 and SSP2-4.5 are
shown in Figures 7 and 8.
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3.4. Step 4: Calculation of Drought Index
3.4.1. Historical Drought

Historical droughts were investigated using observations from the Cheongmicheon
watershed as shown Table 6. As a result, the droughts occurred most frequently (68 times,
1986–2019) in SPEI3 and SDI6. The moderate drought frequency occurred more in SPI,
SPEI, and SDI when the duration was shorter, and the number of severe droughts occurred
less in SPI, SPEI and SDI as the duration became longer. This was because the severity
became smoothed as the considered period became longer. The drought with the longest
duration is shown in Table 7 and it was therein found that droughts occurred in 1994,
2000, 2012, 2015, and 2017. In addition, it can be concluded that the most severe drought
occurred from 2014-03 to 2017-09.

To identify the spread between drought phases, we compared the variations of SPI,
SPEI, and SDI. As a meteorological drought becomes more severe, a hydrological drought
usually starts. In addition, unlike meteorological droughts, hydrological droughts do not
occur at a small and short lack of precipitation, and it can be confirmed that droughts are
relatively constant (Figure 9).

Table 6. Number of drought occurrences in Standardized Precipitation Index (SPI), Standardized
Precipitation Evapotranspiration Index (SPEI), and Streamflow Drought Index (SDI) for all durations
(historical drought).

Drought Index Duration Occurrence Moderately Severely Extremely

SPI

3 mon 66 36 23 7

6 mon 59 29 24 6

9 mon 57 20 31 6

12 mon 63 27 33 3

SPEI

3 mon 68 40 24 4

6 mon 60 32 23 5

9 mon 62 25 32 5

12 mon 64 30 31 3

SDI

3 mon 67 44 18 5

6 mon 68 43 20 5

9 mon 57 31 20 6

12 mon 60 31 22 7
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Table 7. The three longest historical droughts of SPI, SPEI, and SDI according to all durations.

Drought Index Duration
(Month)

Longest Drought Duration (Month)

Duration (Month) Year

SPI

3 5 1988-02 to 1988-06, 2014-05 to 2014-09

6 7 2001-08 to 2002-02, 2014-07 to 2014-12,
2015-07 to 2016-01

9 11 2016-08 to 2017-06

12 37 2014-07 to 2017-07

SPEI

3 7 2014-03 to 2014-09

6 8 2014-05 to 2014-12

9 11 2016-08 to 2017-06

12 37 2014-07 to 2017-07

SDI

3 6 2014-05 to 2014-10

6 11 2016-08 to 2017-06

9 12 2014-06 to 2015-05

12 39 2014-07 to 2017-09
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3.4.2. Future Drought

The SPI, SPEI, and SDI for 3-, 6-, 9-, and 12-month durations were calculated using the
data of precipitation and temperature for RCP4.5 of ACCESS1-3 and SSP2-4.5 of ACCESS
CM2. The minimum values of SPI, SPEI, and SDI in near and far futures are shown in
Table 8. In the near future, the minimum indices of SPI, SPEI, and SDI in SSP2-4.5 were
found to be slightly larger or equivalent, but those in far futures of RCP4.5 were much
larger. That is, the differences in the minimum values of drought index between near
and far futures were very small in SSP2-4.5, while the temporal changes of the minimum
drought index in RCP4.5 were very large.

Table 8. Minimum severities of SPI, SPEI, and SDI in near and far futures for RCP4.5 and SSP2-4.5.

Duration
(Month) Period

RCP4.5 SSP2-4.5

SPI SPEI SDI SPI SPEI SDI

3
Near −1.966 −1.917 −2.017 −2.349 −2.227 −2.131

Far −2.653 −2.618 −2.522 −2.249 −2.344 −2.263

6
Near −2.374 −2.281 −2.139 −2.220 −2.173 −2.109

Far −2.940 −2.809 −2.911 −2.280 −2.351 −1.993

9
Near −2.132 −2.132 −2.132 −2.232 −2.238 −2.199

Far −2.909 −2.838 −2.893 −2.217 −2.353 −1.983

12
Near −2.192 −2.102 −2.234 −2.250 −2.145 −2.278

Far −3.117 −3.030 −2.888 −2.096 −2.418 −2.076

3.5. Step 5: Comparison of Future Drought Characteristics
3.5.1. Drought Occurrence and Severity

Occurrences and severities of droughts under RCP4.5 and SSP2-4.5 were compared as
shown in Table 9 for SPI, Table 10 for SPEI, and Table 11 for SDI. In the SPI, the numbers
of drought occurrences in SSP2-4.5 were higher in all periods. In the case of RCP4.5, it
was analyzed that the numbers of occurrences over time increased from the near to the far
futures. The numbers of severe and extreme droughts in the far future were larger than
in the near future, e.g., 32 times (54%) for 3 months, 44 (69.8%) for 6 months, 42 (72.4%)
for 9 months, and 39 (69.6%) for 12 months. In the case of SSP2-4.5, droughts occurred
uniformly in both near and far futures, e.g., 28 times (50.9%) for 3 months, 29 (51.8%) for
6 months, 33 (54.1%) for 9 months, and 26 (39.4%) for 12 months. It was found that there
was little climate variability of SSP2-4.5, which corresponds to the results of Table 8.

In the SPEI of SSP2-4.5, the number of drought occurrences in the far future was much
more than in the near future for all durations. In both RCP4.5 and SSP2-4.5, the occurrence
in far future was much larger than in the near future. Different from the result of SPI,
the numbers of severe and extreme droughts in the far future were much larger for both
RCP4.5 and SSP2-4.5.

In the near future of SDI, the numbers of drought occurrences in SSP2-4.5 were much
higher than in RCP4.5 for all periods. On the other hand, the number of occurrences in
RCP4.5 in the far future was much larger than in the near future. Thus, the occurrences in
the far future for both RCP4.5 and SSP2-4.5 were similar for all durations. In addition, the
numbers of severe and extreme droughts in the far future for both RCP4.5 and SSP2-4.5
were much larger or larger than in the near future for 3-, 6-, and 9-month durations.
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Table 9. Number of drought occurrences in SPI for all durations.

Duration GCM Period Occurrence Moderately Severely Extremely

3 months

RCP4.5
Near future 71 44 27 0

Far future 98 66 29 3

SSP2-4.5
Near future 81 54 20 7

Far future 90 62 26 2

6 months

RCP4.5
Near future 69 50 18 1

Far future 92 48 31 13

SSP2-4.5
Near future 82 55 24 3

Far future 96 67 25 4

9 months

RCP4.5
Near future 71 55 13 3

Far future 92 50 30 12

SSP2-4.5
Near future 85 57 26 2

Far future 96 63 32 1

12 months

RCP4.5
Near future 68 51 13 4

Far future 90 51 23 16

SSP2-4.5
Near future 91 51 36 4

Far future 87 61 23 3

Table 10. Number of drought occurrences in SPEI for all durations.

Duration GCM Period Occurrence Moderately Severely Extremely

3 months

RCP4.5
Near future 65 43 22 0

Far future 103 65 34 4

SSP2-4.5
Near future 63 44 13 6

Far future 109 73 30 6

6 months

RCP4.5
Near future 64 47 16 1

Far future 96 52 29 15

SSP2-4.5
Near future 57 41 15 1

Far future 113 65 41 7

9 months

RCP4.5
Near future 63 48 13 2

Far future 95 54 29 12

SSP2-4.5
Near future 48 34 12 2

Far future 113 63 46 4

12 months

RCP4.5
Near future 64 48 13 3

Far future 95 56 20 19

SSP2-4.5
Near future 61 45 12 4

Far future 107 63 38 6
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Table 11. Number of drought occurrences in SDI for all durations.

Duration
(Month) GCM Period Occurrence Moderately Severely Extremely

3 months

RCP4.5
Near future 62 39 22 1

Far future 99 60 30 9

SSP2-4.5
Near future 96 74 19 3

Far future 91 64 26 1

6 months

RCP4.5
Near future 68 54 11 3

Far future 100 60 26 14

SSP2-4.5
Near future 82 55 25 2

Far future 98 66 32 0

9 months

RCP4.5
Near future 67 50 12 5

Far future 89 48 28 13

SSP2-4.5
Near future 98 66 32 0

Far future 82 48 33 1

12 months

RCP4.5
Near future 64 47 12 5

Far future 85 46 22 17

SSP2-4.5
Near future 83 42 37 4

Far future 75 48 26 1

3.5.2. The Longest Drought Period

The longest drought periods under RCP4.5 and SSP2-4.5 were compared for all du-
rations as shown in Table 12. From the calculations of SPI, SPEI, and SDI under RCP4.5,
the longest drought periods in the far future were much longer than those in the near for
all durations. On the contrary, the longest periods in SSP2-4.5 were not consistent. The
periods in near future for 9- and 12-month durations were larger, while those for 3- and
6-month durations were similar in both futures. In addition, the longest drought period
from SDI was the largest and that from SPEI was the second largest because the variation
in precipitation usually affects the streamflow with a lag.

Like many other parts of the globe, South Korea is being affected by the many impacts
of climate change. Drought occurrence has been reported by many studies in the country.
Bae et al. [54] assessed droughts at eight stations in the country between 1981 and 2010 and
found the occurrence of droughts. Kwon et al. [55] assessed the spatio-temporal characteris-
tics of meteorological and agricultural droughts using the Standardized Precipitation Index
(SPI) and Standardized Soil Moisture Index (SSI), respectively, for 1986–2016. The study
found that there were more drought episodes under the moderate and severe conditions
at the coast of the country in the south, while at the northern parts, there were persistent
droughts of higher severity. Many other studies have also reported drought occurrences
in the country [36–38]. Similar findings have been reported from North Korea [56–58],
Japan [58], and China [59,60] that neighbor South Korea. There are also studies from other
parts of the globe that have reported increased occurrences of droughts using SPI, SPEI,
and SDI [61–63].

Although in this study the agricultural yield was not considered, climatic factors
have an influence on interannual variability of agricultural production and on water
availability. However, existing works showed that drought can have impacts on agriculture,
industries, and on human lives, as well as the ecosystem at large. Zampieri et al. [64]
showed that seasonal surface water decreases as a result of drought affected the cultivation
of rice in northern Italy. Similarly, the diversity of wheat in many European countries
showed a decline due to droughts as the climate changes [65,66]. The impacts of warming
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due to climate change on cereal crops including maize, rice, and wheat over China was
assessed [67]. The study showed that maize was very sensitive to warming and lower, and
higher yields from rice and wheat correlated to increase in temperature. The reduction in
yields was observed to be accompanied by decrease in precipitation, indicating droughts
due to lack of water resources causes decrease in yields.

Due to insufficient precipitations in South Korea in 2001, there was a decrease in
available agricultural water to as low as 10–30%, which affected rice farming as the sowing
and growth periods of the crop were delayed [68,69]. Moreover, in the year 2014, there
was an extreme drought that extended until 2015, causing critical water shortages due to
decline in water levels in numerous multipurpose dams that serve domestic and industrial
purposes in the country [70].

Table 12. The longest drought period of SPI, SPEI, and SDI.

Duration
(Month) GCM Period

The Longest Drought Period (Month)

SPI SPEI SDI

3

RCP4.5
Near future 8 9 10

Far future 14 14 13

SSP2-4.5
Near future 4 4 11

Far future 5 7 8

6

RCP4.5
Near future 10 10 10

Far future 11 13 19

SSP2-4.5
Near future 7 10 10

Far future 7 11 10

9

RCP4.5
Near future 10 10 15

Far future 19 19 18

SSP2-4.5
Near future 19 15 20

Far future 11 11 11

12

RCP4.5
Near future 15 15 19

Far future 20 21 21

SSP2-4.5
Near future 18 14 19

Far future 12 13 11

4. Conclusions

This study analyzed the future drought in the Cheongmicheon watershed using
RCP4.5 of ACCESS 1-3 and the newly released SSP2-4.5 of ACCESS CM2. The daily
precipitation and temperature data were downscaled using IDW and bias correction
methods. The streamflow was simulated using SWAT model, which was calibrated using
SWAT-CUP program. The SWAT model can perform runoff analysis of the watershed
using relatively simple input data. In previous studies [36–38], meteorological drought
indices such as SPI, SPEI, and potential evaporation were analyzed, but this study used
a hydrological drought index. Thus, three drought indices, namely, SPI, SPEI, and SDI,
were calculated for 3-, 6-, 9-, and 12-month durations. The results were analyzed for the
historical (1970–2005), near future (2021–2060), and far future (2061–2100).

The annual average precipitations and flows under RCP4.5 increased in the future
while those under SSP2-4.5 decreased in the future. Here, the increased or decreased values
in far future were larger than in the near future. The annual average temperatures in near
future decreased and then increased in the far future, except for the autumn of SSP2-4.5.
The minimum severities of SPI, SPEI, and SDI in the near future under SSP2-4.5 were
slightly larger than or equivalent to those of the far future, but those in the far future of
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RCP4.5 were much larger than in the near. That is, the differences in the minimum values of
drought index between near and far futures were very small in SSP2-4.5 while the temporal
changes of the minimum drought index in RCP4.5 were very large. From the calculations
of SPI, SPEI, and SDI under RCP4.5, the longest drought periods in the far future were
much longer than in the near for all durations. In addition, the longest drought period
from SDI was the largest and that from SPEI was the second largest because the variation in
precipitation usually affects the streamflow with a lag. Using these results, we could benefit
from establishing a future drought response plan for agriculture and water management in
the Cheongmicheon watershed.

Drought is a critical issue that can have significant impacts on the availability of
water resources for various sectors including agriculture and industry. For sustainable
agricultural and water resource availability for various purposes, adaptation and mitigation
measures based on the historical drought occurrences and the future projected are therefore
crucial to our sustainable existence. This study can be extended to more GCMs from
CMIP5 and CMIP6 because their characteristics in precipitation and temperature are
largely different. In addition, the data of more SSP scenarios, SSP1-2.6, and SSP3-7.0 can be
included because those from many CMIP6 GCMs will be generated soon.
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