Annex 1

Previous travelling habits	New travelling habits		Assumptions	
	Car-sharing		Change based on the kilometres travelled by car owners/ Assumption that the individual quits vehicle ownership	
		19.09%	Reduction of the annual kilometres travelled when using car-sharing.	
		24.80%	of the kilometres are driven by the shared car	
Con		34.00%	of the km done by CS used to be done by private car	
Car- dependent		41.00%	of the km done by CS used to be done by train	
		4.00%	of the km done by CS used to be done by bus	
		3.00%	of the km done by CS used to be done by bike	
		1.00%	of the km done by CS used to be done by private car as passenger	
		17.00%	Trips that wouldn't have been done or trips done as passengers. It does not make sense to assign this % to walking.	
Car-free	Car-sharing		Change based on the kilometres travelled by car-free	
Carriee		3.72%	Increase in the km travelled after joining CS	

Annex 2

Steps to build the fleets

Peer-to-peer vehicles

Empirical data from a peer-to-peer company was used to build average vehicles. Rentals from 2018 were analysed as follows:

- 1. Identify the most rented vehicle differentiating brand and model for every fuel type
- 2. Search for official manuals that contain information about tailpipe emissions and fuel consumption of these vehicles. When vehicle manuals were not available we search for information in https://www.autoverleden.nl/ using the vehicle licenses available in the peer-to-peer database (for fuel consumption urban values were taken)
- 3. Group vehicles considering their fuel consumption and tailpipe emissions. Build averages of each group (Table S1)
- 4. For additional passengers in the car an increment of 6% in fuel consumption was modelled.

Type of fuel Group **Tailpipe emissions Fuel consumption** Small vehicle 108 g of CO₂/km 0.045 l/km 0.058 l/km Medium vehicle 130 g of CO₂/km Petrol 0.094 l/km Big vehicle 225 g of CO₂/km Small vehicle 140 g of CO₂/km 0.058 l/km Diesel 0.058 l/km Big vehicle 130 g of CO₂/km 0.1945 kWh/km Electric

Table S1-Peer-to-peer average vehicles fuel consumption and tailpipe emissions

Private vehicles

Publicly available data was used to build the private fleet following these steps for fuel consumption and tailpipe emissions for diesel and gasoline (Table S2):

1. Divide in ranges the tailpipe emissions and fuel consumption for every fuel type

- 2. Identify the percentage of vehicles in each range
- 3. Group the ranges in three categories to build average vehicles
- 4. For additional passengers in the car an increment of 6% in fuel consumption was modelled.

In the case of electric vehicles:

- 1. Identify the model and brand that are dominant in the fleet
- 2. Search for official manuals that contain the energy consumption per km driven

Table S2 - Private fleet average vehicles fuel consumption and tailpipe emissions

Type of fuel	Group	Tailpipe emissions	Fuel consumption
	Small vehicle	110 g of CO ₂ /km	0.0412 l/km
Petrol	Medium vehicle	150 g of CO ₂ /km	0.045 l/km
	Big vehicle	180 g of CO ₂ /km	0.063 l/km
	Small vehicle	100 g of CO ₂ /km	0.037 l/km
Diesel	Medium vehicle	120 g of CO ₂ /km	0.041 l/km
	Big vehicle	160 g of CO ₂ /km	0.054 l/km
Electric			0.127 kWh/km

Business-to-consumer

The average vehicle were assumed to have similar characteristics than the ones that are offered by Green Wheels. For additional passengers in the car an increment of 6% in fuel consumption was modelled.

Table S3 - Business-to-consumer average vehicles fuel consumption and tailpipe emissions

Type of fuel	Group	Tailpipe emissions	Fuel consumption
Dotrol	Small vehicle	124 g of CO₂/km	0.04 l/km
Petrol	Medium vehicle	189 g of CO₂/km	0.06 l/km
Electric			0.127 kWh/km

Private ebikes

The average bike was assumed to have the same characteristics as the model Dolce Comfort FDST from stella (Table 4).

Table 4 - ebike average energy consumption

Type of fuel	Fuel consumption
Electric	0.035 kWh/km

Private motorcycles

The average motorcycle was assumed to be BMW R 1250 GS Adventure

Table S5 - Motorcycle average fuel consumption and tailpipe emissions

Type of fuel	Tailpipe emissions	Fuel consumption
Petrol	110 g of CO₂/km	0.035 l/km

Public transport

The average bus, metro, train and tram was obtain from the project STRAM personenvervoer 2014. The values are as follows:

Table S6 - Well-to-wheel emissions from public transport source: STREAM project

Type of fuel	Public transport mode	Well-to-wheel emissions
Petrol	Bus	124 g of CO₂/km
Petrol	Tram	76 of CO₂/km
Petrol	Metro	83 of CO ₂ /km
Petrol	Train	39 of CO₂/km

Annex 3

To start we calculate the amount of citizens that belong to certain age group in Amsterdam:

of citizen in age group x = Amsterdam population * % of NDL population in age group x

Then these numbers are adjusted to population that can drive (the first age group includes people that cannot have a driving licence). Now we calculate car ownership in Amsterdam:

Car owners in Amsterdam = # of citizen in age group x * Rate of owners within an age group in the NDL

This value is later adjusted due to a lower rate of ownership in metropolitan areas (these reduction numbers are arbitrary)

The non-owner is the rest of the population that commutes (there is a percentage of the population that doesn't travel because they're sick or old.)