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Abstract: Because the production of aggregates for mortar and concrete is no longer sustainable,
many attempts have been made to replace natural aggregates (NA) with recycled aggregates (RA)
sourced from factories, recycling centers, and human activities such as construction and demolition
works (C&D). This article reviews papers concerning mortars with fine RA from C&D debris, and
from the by-products of the manufacturing and recycling processes of building materials. A four-
step methodology based on searching, screening, clustering, and summarizing was proposed. The
clustering variables were the type of aggregate, mix design parameters, tested properties, patents,
and availability on the market. The number and the type of the clustering variables of each paper
were analysed and compared. The results showed that the mortars were mainly characterized
through their physical and mechanical properties, whereas few durability and thermal analyses were
carried out. Moreover, few fine RA were sourced from the production waste of construction materials.
Finally, there were no patents or products available on the market. The outcomes presented in this
paper underlined the research trends that are useful to improve the knowledge on the suitability of
fine RA from building-related processes in mortars.

Keywords: circular economy; sustainability; construction and demolition works; secondary raw
materials

1. Introduction

Spreading the idea of sustainability is one of the greatest challenges nowadays, both
for scientific and civil communities. In fact, the world has to face the scarcity of natural
resources, the need of raw materials, and the increasing amount of waste to be disposed
of [1]. Due to the lack of balance among those instances, severe and immediate measures
have to be taken. As a result, in the last few years, the whole scientific world has focused
on the circular economy as a strategy which is useful both to reduce natural resource
consumption and waste production, and to recycle and reuse the waste as secondary raw
materials [2].

It is worth noting that the construction world is one of the most impactful human ac-
tivities, as all of the phases of its process consume natural resources and produce waste [3].
With respect to the depletion of resources, concrete and mortar are two of the most used
materials—twenty five billion tons per year [4]—and their volume is about 65–80% aggre-
gates [1]. Because NA are mainly obtained by dredging river beds or by mining stone in
quarries, they cause a significant environmental impact [5]. The waste from the construc-
tion world generally relates to the scrap materials produced at the building site during
the construction and demolition. In Europe, the amount of C&D waste is about 45% of
the total European waste [6], and due to its high volume, it is necessary to find an al-
ternative solution to its disposal because of the lack of available spaces for landfills [7].
As a consequence, C&D waste has been declared a European priority area, and several
directives have been written in order to define mandatory targets for its recovery. Moreover,
if the boundaries of the analysis are extended and the environmental impact of building
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materials production itself is considered, we can note that C&D waste covers only a part of
the whole ‘construction world’ waste. Because they are increasing their waste production
from year to year [5], the factories which produce building materials are becoming an
environmental issue, alongside other factories’ by-products—e.g., plastic, glass—which are
produced daily but slowly recycled [8].

The aforementioned instance of reducing both the waste production and the natural
resource depletion due to aggregates has driven us—in the last few years—to investigate
the feasibility of alternative aggregates sourced by recycling processes and so-called RA.
The researchers have focused on several types of RA with various sources, sizes, and fields
of use [9–12]. Many materials have been considered, such as plastic [13,14], ceramics [15],
concrete [16], masonry [17], industrial and agricultural waste [18], and glass [19], along
with several applications, such as concrete, mortars, pavements, and asphalt. However,
while the concretes made with RA have been deeply examined, less is known about the
mortars made with RA [2].

Two main categories of mortars and their relative performances are regulated by Italian
(UNI) and European (EN) standards UNI EN 998-1 and 2:2016. Because the aggregates
influence the performances and hence the field of use of RA mortars, this paper aims
to investigate which are the most- and the least-employed types of RA in the current
literature, and for which kind of mortars they are used. In order to achieve these purposes,
a four-step methodology was employed in order to define and then analyze a set of
one hundred and four papers written in the time interval 2015–2020. The data on the
aggregates, mix proportions and tested properties were collected and then processed using
two summarizing sequences. The results of this investigation may be useful to extend the
research lines to the less-used RA, and the less-tested properties, with particular reference
to RA related to building material factories, which are necessary to fulfill the circular
economy targets for the construction world.

2. Methodology

The present study was based on a four-step methodology which aimed to analyze
papers containing mortars with recycled aggregates from building-related processes, such
as construction and demolition works (C&D), and the production and recycling of building
materials. The expression ‘building-related processes’ does not refer to the ‘cradle compo-
nent’ of the fine RA, but rather to their chemical and physical properties. Hence, the fine
RA do not have to be sourced from a factory which produces building components—e.g.,
tiles, bricks, windows—but it is necessary that the fine RA-source treats the materials of
the building components, e.g., ceramics, plastic, glass. This means that plastic fine RA from
recycled bottles—as well as ceramics from defective tiles—are included; agricultural or
heavy metal waste are excluded, instead.

Both qualitative and quantitative analyses were conducted. The workflow consisted
of searching, screening, clustering, and summarizing phases, as shown in Figure 1. Each
phase is detailed in the subheadings below. From now on, the nouns ‘records’, ‘papers’
and ‘articles’ are used as synonyms, and the expression ‘RA’ always refers to fine recycled
aggregates.
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Figure 1. Four-phase workflow scheme. The rectangles indicate the processes, the parallelograms indicate the inputs and
outputs of the processes, the rhombuses indicate the decisions, and the curly brackets indicate the aim of each phase. The
rounded rectangle indicates the final point of the workflow.

2.1. Searching

This phase aimed to define an analysis dataset which fitted the purpose of the study.
A bibliometric search of the literature was carried out in order to compose the starting
set of papers. The searching database, time interval, type of paper, and search queries
were chosen as the bibliometric parameters. Only full papers were recruited for this
literature review.

In the first stage, the papers were sourced from Science Direct, with a time interval of
ten years (2010–2020) and several search queries. The database filter “research articles” was
employed in order to select the experimental papers. The search was limited to “research
articles” because this study needed experimental data about the formulation and the
characterization of mortars with RA. The Boolean operators AND, OR and NOT were used
to define the search strings. The searching database tool “find articles with these terms”
was employed, and no further filters were applied on the title or the abstract. Firstly, the
most general input “recycled AND aggregate” was given, followed by “recycled AND
mortar”, “recycled AND aggregate AND conglomerate”, “recycled AND aggregate AND
mortar” and finally “recycled AND aggregate AND mortar NOT concrete”. Because the
present study reviews mortars with RA, the last string was used to exclude the papers
which analysed concrete with RA. The use of singular or plural nouns in the strings did
not affect the search results.

Because of the high number of papers which suited the queries, in the second stage,
some of the searching parameters were changed, as described below. The same database
and type of paper of the preliminary stage were employed, whereas the time interval was
reduced to six years (2015–2020) and a filter on the title was added. The papers were
searched with “recycled AND aggregate AND mortar AND TITLE mortar”, and with “re-
cycled AND aggregate AND rendering AND TITLE rendering”. The keyword “rendering”
substituted “mortar” in order to narrow the search field down, and to focus on a specific ap-
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plication of the mortars. The query “recycled AND aggregate AND conglomerate”—from
the first stage—was repeated with the time interval 2015–2020.

2.2. Screening

The analysis dataset of the searching phase was deeply examined in order to select the
papers which suited the eligibility criteria, in accordance with the Prisma flow diagram [20].

Firstly, the duplicates, the unpublished articles, and the papers not written in English
were removed. Then, the records of each search query were assessed with respect to the
following eligibility criteria:

• The object of the record. This criterion was used to eliminate the papers which did not
answer the aim of the present study. Firstly, the articles which focused on geopolymers,
concretes, and conglomerates for road asphalt or pavements were excluded. In fact,
the formulation, the mixing procedure, and the chemical-mineralogical characteristics
of geopolymers differ from traditional mortars. Secondly, because different types of
conglomerate require specific laboratory tests, in accordance with the regulations,
the papers about concretes and conglomerates for road applications were excluded,
because the data they produced were beyond the interest of this review.

• The source of the RA. This filter eliminated the papers which employed sludge, since
sludge is a highly heterogeneous material, and its consistency is not solid. Moreover,
RA sourced from food industry waste or from biomasses were excluded because of
their organic matter, as well as the RA containing hazardous or toxic materials from
heavy industries, because of the supplementary treatments they need.

• The role of the RA. Papers in which the RA substituted the binder—rather than being
used as an aggregate—were removed from the analysis dataset.

After the assessment, the final dataset of articles was available.

2.3. Clustering

The purpose of this phase was to organize the collected data of the final dataset. An
Excel database was created, and an ID number was assigned to the records. Then, each
article was opened and the data about general information—the title, year of publication,
journal of publication, keywords, authors, object of the study, presence or lack of patents,
availability on the market—mix design, and testing procedures were manually entered.
The data were both textual and numerical. The textual data were recorded with ‘yes’ or
‘no’, depending on the presence or the lack of the variable, respectively; the numerical
data were reported with their value and unit of measurement. If more than one mix was
analysed in the record, only the data corresponding to the mixes with the maximum and
minimum values were reported in the Excel database.

Then, four macro-clustering variables (A, B, C, and D) were defined on the basis of
the data collected:

• A: type of aggregate,
• B: mix design,
• C: tested properties,
• D: patents and availability on the market.

A tree structure was created; the general clustering variables—A, B, C, and D—were
on the top as ‘root nodes’, then new layers of ‘branch nodes’ were added, and the variables
were progressively detailed until the bottom level of ‘leaf nodes’ was defined and no further
‘ramifications’ were found.

The aggregates were coded in relation to their source:

• A1: C&D,
• A2: factories and recycling centers.

An additional distinction was made in A2:

• A2.1: building materials factories,
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• A2.2: recycling centers.

Moreover, they were classified on the basis of their chemical nature. The A-variable
classification is reported in Figure 2.

Figure 2. ‘A-type of aggregate’ classification. The aggregates were classified by their source (A1, A2)
and materials (A1.1–A1.5; A2.1.1–A2.1.6; A2.2.1–A2.2.4); the figure reports the hierarchical structure
of the classification.

The B-variable included the data collected on the mix proportion among the con-
stituents of the analysed mortars:

• B1: number of mixes,
• B2: recycled aggregates (RA) to natural aggregates (NA) ratio,
• B3: water to cement mass ratio,
• B4: aggregate to binder ratio,
• B5: superplasticizer or other additives.

Figure 3 reports the B-variable classification.
The data collected on the tested properties were grouped as described below:

• C1: physical properties,
• C2: mechanical properties,
• C3: durability,
• C4: thermal and hygrometric properties,
• C5: chemical and mineralogical properties,
• C6: sustainability issues including environmental and economic analyses.
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Figure 3. ‘B-mix proportions’ classification. The figure reports the hierarchical structure of the
classification.

The classification of the C-variable is reported using a bulleted list in order to facilitate
its understanding, whereas its hierarchical structure is reported in Figures A1–A3:

• C1.1: fresh state properties,
• C1.1.1: bulk density,
• C1.1.2: slump value,
• C1.1.3: viscosity,
• C1.1.4: air content,
• C1.2: hard state properties,
• C1.2.1: bulk density,
• C1.2.2: porosity,
• C1.2.3: water adsorption by total immersion,
• C1.2.4: water adsorption by capillarity (g/cm3),
• C1.2.5: water adsorption by capillarity coefficient (kg/m2min0.5),
• C1.2.6: water adsorption by capillarity (mm),
• C1.2.7: water adsorption by capillarity rate (mm/min),
• C2.1: 28-day compressive strength,
• C2.2: 28-day flexural strength,
• C2.3: elastic modulus,
• C2.3.1: 28-day elastic modulus,
• C2.3.2: 90-day elastic modulus,
• C2.4: 28-day bonding strength,
• C2.5: 28-day adhesion,
• C3.1: coefficient of Chloride diffusion,
• C3.2: 90-day chloride ion penetration,
• C3.3: alkali silica reaction expansion,
• C3.3.1: 14-day alkali silica reaction expansion,
• C3.3.2: 28-day alkali silica reaction expansion,
• C3.4: frost resistance,
• C3.5: accelerated ageing test with heat–freeze/freeze–thaw cycles,
• C3.6: permeability to water under pressure,
• C3.7: 28-day gas permeability coefficient,
• C3.8: 28-day sorptivity coefficient,
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• C3.9: carbonation depth after 28-day of carbonation,
• C3.10: drying shrinkage,
• C3.10.1: 28-day drying shrinkage (mm),
• C3.10.2: 28-day drying shrinkage (%),
• C3.11: mass changes after drying and wetting cycles,
• C4.1: thermal properties,
• C4.1.1: thermal conductivity,
• C4.1.2: thermal diffusivity,
• C4.2: hygrometric properties,
• C4.2.1: vapor permeability,
• C4.2.2: resistance to vapor permeability,
• C5.1: X-Ray Diffraction (XRD),
• C5.2: Thermo Gravimetric Analysis (TGA),
• C5.3: Scanning Electronic Microscope (SEM),
• C5.4: Leaching test,
• C5.5: measure of acidity with pH test,
• C5.6: X-Ray Fluorescence spectroscopy (XRF),
• C6.1: Life Cycle Analysis (LCA),
• C6.2: economic viability.

The D-variable reported the presence of patents or other types of intellectual property
protection (D1), and the availability of the tested mixes on the market (D2). These data gave
information on the research development, and on the suitability of the collected mixes.

2.4. Summarizing

Two sequences were followed in this phase. In the first one, named S1, “A-type of
aggregate” was selected as the driving variable, and the papers with the same A-leaf node
were selected and processed. This choice was made because the information about the type
of aggregate was available for each record.

The number of papers in each A-leaf, A-branch, and A-root node was computed and
named ni.j.k, ni.j and ni respectively, with:

• j = 1, 2, 3, 4, 5, if i = 1
• j = 1, 2 and k = 1, 2, 3, 4, 5, 6, if i = 2

The total amount of output data from this operation was named ‘N’.
In the same way, the information on the other macro-clustering variables was pro-

cessed. For each A-leaf node, the ID numbers of the papers were reported in rows, whereas
the minimum and the maximum values of relative B–D—if they were present—were re-
ported in columns, as shown in Figure 4. Then, the number of not-empty cells in each
column was counted, and its ratio to the corresponding ni.j.k was computed.

The ratios were finally used to compare the formulation and the testing procedures
of the collected mortars across each A-leaf node. In S1, the numerical or textual values
of the variables were not considered; only their presence or lack thereof were processed
to compute the aforementioned ratios. Moreover, the operations on the number of not-
empty cells enabled us to extend the evaluations to A-branch and root nodes, and to the
whole dataset.

In the second sequence—S2—the field of use of mortars was chosen as the driving
parameter. On the basis of the distinction between masonry and rendering mortars, the
UNI EN 998-1,2:2016 specifications were used to group the dataset records. Five cate-
gories of masonry mortars are indicated in UNI EN 998-2:2016, depending on their 28-day
compressive strength. As regards rendering mortars, UNI EN 998-1:2016 indicates six
types of them, depending on their 28-day compressive strength, capillary water adsorp-
tion, dry bulk density, permeability to water under pressure, vapor permeability, and
thermal conductivity.
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Figure 4. S1 sequence database. An extract of the Excel sheet about the A-leaf node ‘A1.1’ is shown.
The ID numbers of the papers are reported in rows; the corresponding B, C, D values are reported in
columns. The number of not-empty cells in each column is reported in the blue-colored row.

The dataset papers were classified by both normative specifications, and the number
of records in each mortar class was computed. Tables 1 and 2 report the UNI EN 998-1:2016
and UNI EN 998-2:2016 specifications and the corresponding types of mortar.

Table 1. UNI EN 998-1:2016 specifications for rendering mortars. The mortar classes and relative performances 1 are reported.

Mortar Class 2 fc
MPa

W
kg/m2min0.5

ddry
kg/m3

p
mL/cm2

m l
W/mK

GP CSI to CSIV W0 to W2
LW CSI to CSIII W0 to W2 <1300
CR CSI to CSIV W0 to W2
OC CSI to CSIV W1 and W2 <1
R CSII >0.3 kg/m2 after 24 h <15
T1 CSI to CSII W1 <15 <0.10
T2 CSI to CSII W1 <15 <0.20

1 fc = 28-day compressive strength; W = water capillary adsorption coefficiency; ddry = dry bulk density; p = permeability to water under
pressure; m = vapour permeability coefficiency; l = thermal conductivity; 2 GP = general purposes; LW = lightweight mortar; CR = colored
mortar; OC = one coat for external use; R = renovation works; T = thermal mortars.

Table 2. UNI EN 998-2:2016 specifications for masonry mortars. The mortar classes and relative
performances are reported 1.

Mortar Class fc
1

MPa

M1 1
M2.5 2.5
M5 5

M10 10
M15 15
M20 20

1 28-day compressive strength.

3. Results

The results are presented with the following sequence: searching, screening, and
summarizing.

3.1. Searching

The number of records from the search queries “recycled AND aggregate”, “recycled
AND mortar”, “recycled AND aggregate AND conglomerate”, “recycled AND aggregate
AND mortar”, and “recycled AND aggregate AND mortar NOT concrete” was 39,991,
11,857, 581, 5560, and 1345, respectively. The addition of the Boolean operator “NOT” to
the query “recycled AND aggregate AND mortar” reduced the search records by about
76%. This filter was used—as explained in Section 2.1—to exclude the concretes because
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they were beyond the field of interest. However, the filter was not appropriate because
it omitted the papers about mortars with RA originating from the recycling of concretes,
which were of great interest.

The search records were then sorted by their year of publication, and an exponential
growing trend was generally found, as is shown in Figure 5. “Recycled AND aggregate
AND mortar” exhibited the highest growth change (+1105%), followed by “recycled AND
mortar” (+685%), “recycled AND aggregate AND mortar NOT concrete” (+625%), “recycled
AND aggregate AND conglomerate” (+456%), and “recycled AND aggregate” (+433%).

Figure 5. Trends of the search records within the time interval 2010–2020. The number of records is plotted against the year
of publication: (a) “recycled AND aggregate AND mortar NOT concrete”, “recycled AND aggregate AND conglomerate”;
(b) “recycled AND aggregate AND mortar”, “recycled AND mortar”, “recycled AND aggregate”.

In the second stage of the bibliometric search, the addition of filters and the shortened
time interval resulted in a far smaller number of records: “recycled AND aggregate AND
mortar AND TITLE mortar” numbered 543, and “recycled AND aggregate AND rendering
AND TITLE rendering” numbered 10. Finally, the records from the query “recycled AND
aggregate AND conglomerate” with the time interval 2015–2020 numbered 418.

3.2. Screening

The screening phase was conducted on this analysis dataset:

• recycled AND aggregate AND mortar AND TITLE mortar: 543 records,
• recycled AND aggregate AND rendering AND TITLE rendering: 10 records,
• recycled AND aggregate AND conglomerate: 418 records,

with a total number of 971. On the basis of the Prisma flow diagram, eight duplicates
and 30 unpublished papers were excluded. The elimination of the RA applications which
were barely related to this study—according to the criteria presented in Section 2.2—
resulted in the following eligible records:

• recycled AND aggregate AND mortar AND TITLE mortar: 93 records,
• recycled AND aggregate AND rendering AND TITLE rendering: 3 records,
• recycled AND aggregate AND conglomerate: 8 records.

Many of the records focused on the use of RA for the stabilization of soils, asphalt and
road constructions and concretes; hence, they were not suitable for this review. The final
dataset consisted of 104 records.

3.3. Summarizing

After the Excel database was created and the data were entered, some preliminary
analyses were performed by processing the data about binders. One hundred and twenty
three inputs were found—because some mixes employed blended binders—and the cement
and the lime were the most and the least frequent ones, respectively. In fact, cement
was counted 104 times, and the hydrated and the hydraulic lime three and two times,
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respectively. The other binders mostly included steel factory by-products—such as ground
granulated blast furnace slag and fly ash—and were counted 14 times.

With respect to the terminology employed in the Section 2.4, the following two
subsections report the results of the summarizing sequences S1 and S2.

3.3.1. S1 Sequence

As regards the data about the type of RA, 137 values were counted, because in some
papers more than one type of RA was used. The RA were sourced from C&D (A1) for about
45%, and from factories and recycling centers (A2) for about 55%. In A2, 64% originated
from recycling centers (A2.2), and only 36% from building materials factories (A2.1). In
the whole analysis dataset, plastic (23%), ceramics (18%), and cementitious materials (17%)
were the most popular source materials, whereas natural (2%), stone (4%) and mineral (5%)
were the least popular ones, as shown in Figure 6.

Figure 6. Distribution of RA source materials within the analysis dataset. The number of counts and
the percentage of each category are shown.

The distribution of the source materials was also processed for A1, A2.1, and A2.2
separately, as shown in Figure 7. The ceramics exhibited a regular trend, whereas the other
materials were unequally distributed. No plastic aggregates originated from C&D, and no
glass aggregates came from building materials factories. The cementitious materials were
always sourced from C&D, except for one case from building materials factories.

Figure 7. Distribution of the RA source materials in the A1, A2.1 and A2.2 branch nodes. The number
of counts of each material is shown.
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The ni.j.k, ni.j, and ni values are reported in Figure 8. As was already mentioned, the
papers were counted more than once if they contained more than one type of aggregate.

Figure 8. Distribution of RA based on the ‘A-type of aggregate’ variable. The number of papers in each node is reported.

Some evaluations were performed before the ratios for the B, C, and D variables were
computed. B1 ‘number of mixes’ was excluded from the analysis because it was not useful
for the summarizing operations; in fact, the S1-sequence does not deal with the numerical
values of variables, but rather considers the number of times a variable was measured.
Because the number of mixes was always specified, it was an ineffective data. For the same
reason, the variables which expressed the same property in different units of measurement
were aggregated as follows:

• C1.2.4, C1.2.5, C1.2.6 and C1.2.7, because they measured the capillary water adsorption.
• C3.1 and C3.2, because they measured the chloride ion penetration.
• C3.10.1 and C3.10.2, because they measured the drying shrinkage.

The ratios of the variables B, C, and D were plotted in clustered bar charts in order
to highlight two complementary aspects, quantitative and qualitative, respectively. The
height of the bars gives information about the size distribution of the ratios depending on
the A-leaf node, i.e., given the A-leaf node, the number of papers in which the variable was
collected to the total number of papers of that A-leaf node. The density of the bars—the
variety of colors—underlined the most- and the least-analysed variables, i.e., the number
of A-leaf nodes in which the variable was collected out of the total number of A-leaf
nodes. This means that the height and the density of the bars are not directly proportional.
The color palette consists of 15 units which correspond to the RA categories, i.e., the
A-leaf nodes.

Figures 9–12 report some extracts from the graph in order to facilitate its understand-
ing, whereas the whole chart is shown in Figure A4.
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Figure 9. B-ratio of the B leaf nodes. The clustered bar chart plots the values of the B-ratio of the corresponding B leaf nodes.

Figure 10. C1-ratio of the C1 leaf nodes. The clustered bar chart plots the values of the C1-ratio of the corresponding C1
leaf nodes.

Figure 11. C2-ratio of the C2 leaf nodes. The clustered bar chart plots the values of the C2-ratio of the corresponding C2
leaf nodes.
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Figure 12. C3-ratio of the C3 leaf nodes. The clustered bar chart plots the values of the C3-ratio of the corresponding C3
leaf nodes.

As shown in Figure 9, the B-ratio was generally a high number, with a mean value
of 46%. As regards the density of the bars, the most frequent information was about the
water to binder ratio (B3)—which covered all of the RA categories— followed by the RA to
NA ratio (B2) and the aggregates to binder ratio (B4). In the last two cases, the value was
expressed more frequently by mass than by volume: the B2.2 and B4.2 bars were higher
and more dense than the B2.1 and B4.1 bars; in fact, the aggregate to binder ratio by volume
(B4.1) was used only in 20 out of the 137 data points.

Among the C1 variables—except for viscosity (C1.1.3) and air content (C1.1.4)—the
physical properties were frequently measured for all of the RA. The most dense C1 variables
were the fresh-state properties bulk density (C1.1.1) and slump value (C1.1.2), and the
hard-state properties bulk density (C1.2.1), porosity (C1.2.2), and water adsorption by total
immersion (C1.2.3). The C1.2.1 ratios were, on average, 64%; this means that the bulk
density was measured for nearly all of the papers of each A-leaf node, and for nearly all of
the A-leaf nodes (dense and high bars). On the contrary, C1.1.1, C1.1.2, C1.2.2 and C1.2.3
were measured for nearly all of the A-leaf nodes, but their ratios were on average 27%,
40%, 21%, and 29%, respectively (dense and low bars). The water adsorption by capillarity
(C1.2.4 to C1.2.7) was measured in one out of 27 of the data points from building material
factories (A2.1), whereas it was measured in all of the categories of recycling centers (A2.2),
with an average ratio of 35%, and in three out of five categories of C&D (A1.1), with an
average ratio of 43%. The C1 chart is reported in Figure 10.

An irregular trend was found among the mechanical properties (C2), as shown in
Figure 11. The compressive and flexural strength (C2.1 and C2.2, respectively) were the
densest and highest variables because they were measured for all of the A-leaf nodes
(variety of colors), with an average value of 83% for C2.1 and 64% for C2.2. Compressive
strength—in particular—was frequently examined in the A1 and A2.1 classes, with average
values of 87% and 88%, respectively. On the contrary, the other mechanical properties were
rarely computed: the mean values of the 28-day and 90-day elastic modulus (C2.3.1 and
C2.3.2), 28-day bonding strength (C2.4), and 28-day adherence (C2.5) were 5%, 17%, 19%,
and 7%, respectively.

The C3 and C4 variables—related to durability and thermal–hygrometric properties—
exhibited a low ratio and a low density of their bars. As shown in Figures 12 and 13, the
bars are scattered, and few colors of the available range are present. The C3 ratios were, on
average, lower than 10%, with the minimum value of 2% for the accelerated ageing test
of their heat–freeze and freeze–thaw cycles (C3.5), and for the permeability under water
pressure test (C3.6). The only exception in C3 was the 28-day drying shrinkage (C3.10.1



Sustainability 2021, 13, 2756 14 of 31

and C3.10.2), with 28 data points out of 137, 10 A-leaf nodes out of 15, and a mean ratio
of 26%.

Figure 13. C4-ratio of the C4 leaf nodes. The clustered bar chart plots the values of the C4-ratio of the corresponding C4
leaf nodes.

Among the thermal and hygrometric properties, thermal conductivity (C4.1.1) exhib-
ited the densest and highest bars, with 14 data points out of 137, seven A-leaf nodes out of
15, and a mean ratio of 25%. The RA from recycling centers were the most covered, with
nine data points out of the aforementioned 14, followed by building material factories, with
three data points out of 14, and by C&D, with two data points out of 14. With reference to
the corresponding A-branch node, C&D were the least covered (two data points out of the
total 62 records from A1).

The other variables, thermal diffusivity (C4.1.2), vapor permeability (C4.2.1), and
resistance to vapor permeability (C4.2.2), showed 1%, 4%, and 5% ratios, respectively. The
results are shown in Figure 13.

The chemical and mineralogical properties (C5) followed an irregular trend, as shown
in Figure 14. From C5.1 to C5.4, the mean ratio of 15% was observed, with the maximum
value of 31% for the SEM analysis (C5.3), and the minimum value of 8% for TGA (C5.2)
and Leaching test (C5.4), whereas for the pH test and XRF (C5.5 and C5.6) the ratio was on
average 1%. C5.3 covered 13 A-leaf nodes out of 15, and 33 data points out of 137, among
which 16 data points were from C&D.

Figure 14. C5, C6 and D-ratios of the C5, C6 and D leaf nodes. The clustered bar chart plots the values of C5 and C6, and
the D-ratio of the corresponding C5, C6 and D leaf nodes.
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Only two and three data points out of 137 were about LCA (C6.1) and economic viabil-
ity (C6.2), respectively, and no data were found about patents or other types of intellectual
property protection (D1), or the availability of the tested mixes on the market (D2).

The mean ratios across the A-branch nodes—A1, A2.1 and A2.2—were then plotted
separately in order to further analyze the outcomes of the presented charts. As shown
in Figure 15, RA from building material factories and recycling centers covered almost
all of B, C, and D variables—41 and 42 out of 44, respectively—but their ratios were, on
average, lower than the C&D ones. The values were 20% for A2.1 and A2.2, and 25%
for A1. In addition, the data on RA from recycling centers included nearly all of the
durability (C3) and thermal-hygrometric (C4) properties which were omitted in the other
two classes, instead.

In the end, the number of counts of each B, C, and D leaf node compared to the
total number of data (N) was computed and was named the N-ratio. As reported in
Figure 16, the mix proportions (B) and physical properties (C1) were the most frequent
variables across the whole dataset, whereas C3 and C4 were the less-common ones. C2
and C5 confirmed their irregular trends, because some of these variables resulted in high
ratios—e.g., C2.1, C2.2, C5.3—and others resulted in low ratios.

Figure 15. B, C, and D ratios of the B, C, and D leaf nodes for the A1, A2.1, and A2.2 branch nodes. The clustered bar chart
plots the values of the B, C and D ratios of the corresponding B, C, and D leaf nodes.
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Figure 16. N-ratios of the B, C, and D leaf nodes. The N-ratio is the number of counts of each B, C, and D leaf node to the
total number of data points (137). The clustered bar chart plots the values of the N-ratios of the corresponding B, C, and D
leaf nodes. The ratios are sorted in decreasing order.

Supplementary graphs—Figures A5–A8—were plotted to compare the materials—
such as ceramics, cementitious materials, plastic, and glass—which were in common to the
different RA sources. The outcomes confirmed that the hard-state physical properties and
the mechanical properties were the most frequent variables. No thermal and hygrometric
properties were computed for the cementitious RA—both from C&D and building material
factories—and few analyses on the durability were performed across all of the aforemen-
tioned source materials. The list of the collected papers with their relative ID numbers,
A-leaf nodes, and reference numbers is reported in Figure A9.

3.3.2. S2 Sequence

Moving on from the UNI EN 998-1:2016 specifications for rendering mortars, the
collected papers were filtered on the basis of:

• 28-day compressive strength: C2.1,
• water adsorption by capillarity: C1.2.4–C1.2.7,
• dry bulk density: C1.2.1,
• permeability to water under pressure: C3.6,
• resistance to vapor permeability: C4.2.2,
• thermal conductivity: C4.1.1.

As regards the compressive strength, eight records were found in CS I, 22 in CS II,
30 in CS III, and 77 in CS IV. The filter on C1.2.4–C1.2.7 resulted in eight records for W1 and
six records for W2; W0 was not considered, because it corresponds to ‘no declared value’.
Only five records were suitable for the regulatory indications about the bulk density, and
one record was suitable for the permeability to water under pressure. In fact, the collected
mortars were generally heavyweight mortars, and their dry bulk density was on average
1798 kg/m3, which is higher than the normative threshold of 1300 kg/m3 for lightweight
mortars. In regard to the thermal–hygrometric performances, five records were suitable
both for C4.2.2 and C4.1.1.

The combination of the abovementioned specifications—reported in Table 1—resulted
in the classification of the collected RA mortars for rendering purposes. No records were
appropriate for the one coat external use category (OC): C3.6 was lower than 1 mL/cm2 only
in one paper, but its water adsorption by capillarity was much higher than the regulatory
limit. Moreover, only one record was classified as thermal mortar because, in the other two
cases, there was no information about C4.2.2 and C1.2.4–C1.2.7.

The general purpose, lightweight mortars, and colored renderings were counted
six, four, and six times, respectively. Table 3 reports the paper ID for each category of
rendering mortars.
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Table 3. Rendering mortars according to the UNI EN 998-1:2016 specifications. The paper IDs
which were suitable for the normative indications are reported; the title of the papers is reported in
Figure A9.

GP 1 LW 1 CR1 OC 1 R 1 T 1

8 5 8 8 8
26 22 26 98
39 29 39
49 83 49
60 60
96 96

1 The acronyms referred to the UNI EN 998-1:2016 classifications.

Three lightweight mortars (LW) out of four—paper IDs 5, 22 and 29—were formulated
with plastic RA from building material factories (A2.1.2), and three general purpose (GP)
and colored mortars (CR) were sourced from plastic RA from recycling centers (A2.2.1):
paper IDs 26, 39 and 49.

The relation between the RA source material and the classes of the papers is shown in
Figure 17.

Figure 17. Collected rendering mortars according to the UNI EN 998-1:2016 specifications. For each
class of rendering mortars, the papers were qualified by their source materials.

Figure 17 underlines that the collected rendering mortars were mainly formulated
with RA from building material factories or recycling centers; the lightweight mortars—in
particular—contained A2 recycled aggregates.

The same method was used to classify the collected papers on the basis of the UNI
EN 998-2:2016 specifications for masonry mortars. The number of suitable records for
M1, M2,5, M5, M10, M15, and M20 mortars were 3, 6, 13, 5, 9, and 50, respectively. The
prevalent class was M20, which covered more than half of the filtered papers. These papers
were then qualified by their A-leaf node, in order to find any relationships between the RA
type and use of mortars. The number of masonry mortar records of each A-leaf node was
evaluated and decreasingly ordered, as shown in Figure 18. The most assorted class was
M20, with 12 A-leaf nodes out of 15, among which C&D represented more papers (34 out
of 62); M15, M5, and M2,5 were more equally distributed, whereas C&D and recycling
centers dominated M10 and M1, respectively.
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Figure 18. Collected masonry mortars according to the UNI EN 998-2:2016 specifications. The records found in each
normative class were qualified by their A-leaf node, and the number in each node was computed. The figures report the
computed values—decreasingly ordered—for each masonry mortar class: (a) the M20 masonry mortar class; (b) the M15
masonry mortar class; (c) M10 masonry mortars; (d) the M5 masonry mortar class; (e) the M2.5 masonry mortar class; (f) the
M1 masonry mortar class.

As for the rendering mortars, the relationship between the RA source materials and
the classes of the papers was evaluated, and is shown in Figure 19. The list of the collected
papers with their relative ID numbers, A-leaf nodes, and reference numbers is reported in
Figure A9.
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Figure 19. Collected masonry mortars according to the UNI EN 998-2:2016 specifications. For each
class of masonry mortars, the papers were qualified by their source materials.

4. Discussion and Conclusions

The purpose of this review was to investigate the state-of-the-art of a current scientific
issue—the sustainability and circular economy of building materials—with a specific focus
on mortars packaged with recycled aggregates from building-related processes. The set of
the analysed papers included studies about both masonry and rendering mortars, with
the aim of highlighting the researchers’ major and minor points of interest in terms of
the types of RA and classes of mortars. The key findings and gaps are discussed in the
subheadings below, and were grouped according to the three variables—from the clustering
and summarizing phases of the proposed methodology—which proved to be the most
significant: the types of RA, the tested properties, and the field of use of mortars; finally, a
potential future research framework and conclusions are given.

4.1. Key Findings and Gaps
4.1.1. Types of RA

The analysis of the RA in the collected papers resulted in a sort of balance between the
two main categories of sources, C&D and factories and recycling centers. However, if C&D
and the sub-category building material factories are compared, a lack of balance appears:
62 vs. 28 papers, respectively. Because the waste from building material factories is similar
to C&D—as regards the constituent materials—it is significant that only one recycled
aggregate out of five is sourced from the former, whereas almost one out of two is sourced
from the latter. This result is consistent with those reported previously in other studies,
which observed that demolished concrete was the major source of used RA, whereas waste
from other building materials was less-often employed [11,21].

As regards the materials of the RA collected, plastic and cementitious materials were
the most frequent, and were sourced, respectively, from recycling centers and C&D. Only a
few plastic (five out one hundred and thirty seven) and cementitious (one out one hundred
and thirty seven) aggregates came from building material factories. This point highlights
the low level of circular economy implemented in the factories of building materials. A
more substantial use of industrial waste, instead, would be a successful operation, because
the factories can control the characteristics of their by-products, which are otherwise
variable, such as in C&D or recycling centers, where the source is not specified [11,22–24].

4.1.2. Tested Properties

The S1 summarizing sequence highlighted that a consistent number of the analysed
papers dealt with the physical and mechanical characterizations of RA mortars, whereas
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few works investigated the durability and thermal-hygrometric properties. The physical
properties—e.g., workability—are directly linked to the suitability of the mortars at the
building site; hence, it is necessary to measure them in order to verify the effective use of
the conglomerates [25]. However, the physical properties are not included in the normative
specifications about masonry and rendering mortars, except for their dry bulk density and
water capillary adsorption coefficient, which define some classes among the rendering mor-
tars. Despite this, water capillary adsorption was rarely measured in the analysed dataset,
especially for RA from building material factories. On the other hand, the frequent inves-
tigation of compressive and flexural strength—among the mechanical properties—was
found in other works [1,2], which in fact suggested extending the engineering properties of
the RA conglomerates to be tested, e.g., environmental protection functions. As regards
durability properties, different findings were reported in [2], but that review was mainly
about RA used in concretes, of which the durability is characterized more frequently than
for mortars [26–28]. Finally, very few collected papers investigated sustainability issues
concerning RA mortars—as regards both environmental and economic analyses—which
are key points, opting instead for the development of the tested products and their placing
on the market. In fact, no analysed mortars were patented or available on the market.

4.1.3. Field of Use of RA Mortars

The outcomes of the S2 summarizing sequence showed that the main focus of the
analysed papers was on the highest class among masonry mortars—i.e., M20, with fifty
counts out of one hundred and thirty seven—whereas only eleven out one hundred and
thirty seven records were suitable for rendering applications. This result is consistent
with the key findings and gaps presented in Sections 4.1.1 and 4.1.2, because the aspects
‘mix design-performances–field of use’ are mutually related. In fact, if the experimental
campaign aims to investigate the feasibility of RA to substitute NA in masonry applications,
the formulation of the mortars is oriented to assure high mechanical performances. In this
case, the RA are chosen from among ceramics, cementitious materials, and plastic—because
these materials are better performing than the others—and their mechanical properties are
tested the most. In the same way, if the focus is on rendering mortars, lighter materials are
preferred, higher water to binder ratios are used, and thermal–hygrometric properties—
along with capillary water adsorption—are investigated. In the current review, the records
which were classified as rendering mortars were sourced from recycled plastic in seven
counts out of eleven, sometimes mixed with other aggregates, mainly mineral. Lightweight
mortars, in particular, were packaged with expanded and extruded polystyrene (EPS and
XPS), expanded vermiculite, rubber powder, expanded perlite, polyester (PE), and plastic
from cables. Finally, the only record which was suitable for thermal purposes contained
wood shavings and sawdust, and it was characterized through thermal conductivity,
resistance to vapor permeability, water capillary adsorption, dry bulk density, flexural and
compressive strength, and drying shrinkage.

Because RA are generally lighter than NA—due to their higher porosity—they could
be more appropriate for rendering mortars than for masonry ones, especially because the
water adsorption of RA is much higher than that of NA [29], which can affect mechanical
and durability properties of the conglomerates.

4.2. Future Research Framework and Conclusions

The methodology presented in this review can be applied to refined search strings in
order to add details and to narrow the search field down to the RA categories which proved
to be less analysed. Moreover, the collected data about RA can be further processed with
the extraction of the information about the physical properties of the RA themselves, i.e.,
density, porosity, water adsorption and grain size distribution. These properties depend
on the materials and the source of the RA and affect the properties of the conglomerates
in which the RA is used. The overlapping of this new information and the old about
the tested properties may be functional to distinguish the categories of RA which are
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more appropriate for rendering mortars, or for the applications where a lighter product is
required, e.g., lightweight floor screeds. In this way, the RA potentiality would be further
exploited and—because lower mechanical performances would be required—binders with
less impact than cement could be used.

As regards the circular economy issues, greater efforts are required to develop the
use of RA from industrial waste, in particular from building material factories. In fact,
the possibility of using by-products as secondary raw materials to produce new building
materials can lead to benefits for several stakeholders: economic and environmental
benefits for the factories themselves, and social and environmental benefits for the civil
community. This perspective can fit more properly to manufacturers who produce both
bricks and pre-mixes, because they can reduce the waste production from the former and
the natural resource consumption from the latter [30]. Nevertheless, this review found
no products available on the market among the mixes collected; hence, some hypotheses
about the obstacles to the development of commercial RA mortars can be formulated. In
fact, despite the fact that the aforementioned results suggested that the RA can substitute
the NA both in masonry and rendering mortars, few economic analyses have been found
regarding the viability of these sustainable solutions. Some authors hypothesized that the
barriers to the RAs’ systematic use mainly derive from the variability of their source and
characteristics, the lack of knowledge about their properties, and the absence of connections
between academic and industrial issues [2]. Hence, one answer could be found in the
designers’ lack of confidence in building products which contain secondary raw materials,
and their relative reliability. Because no economic demand is required, no economic supply
is given.

In conclusion, the authors of the present study suggest further analyses regarding RA
from building material factories and their suitability in mortars for lightweight applications,
with specific focus on the economic feasibility of the process; for this purpose, the research
group is currently working on an experimental campaign of the characterization of mortars
packaged with waste from aerated autoclaved concrete production. Concerning the ques-
tion about the lack of confidence in RA, a survey could be conducted involving the main
stakeholders of the building process—designers, end customers, construction companies,
and producers—in order to investigate, by a questionnaire, their opinions, confidence, and
diffidence about waste reuse in building products. The results could then be used both by
researchers and public officials to improve the awareness about the sustainable culture of
recycling in order to give new birth to waste.
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Appendix A

Figure A1. C-variable classification, first part. Two branch nodes out of six—C1 and C2—are shown.
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Figure A2. C-variable classification, second part. Two branch nodes out of six—C3 and
C4—are shown.
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Figure A3. C-variable classification, third part. Two branch nodes out of six—C5 and C6—are shown.

Figure A4. B, C, and D leaf nodes. The clustered bar chart plots the values of the B, C, and D ratios of the corresponding B,
C, and D leaf nodes.

Figure A5. B, C, and D ratios of ceramic RA. The clustered bar chart plots the values of the B, C, and D ratios of the
corresponding B, C, and D leaf nodes for ceramic RA.
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Figure A6. B, C, and D ratios of cementitious RA. The clustered bar chart plots the values of the B, C, and D ratios of the
corresponding B, C, and D leaf nodes for cementitious RA.

Figure A7. B, C, and D ratios of plastic RA. The clustered bar chart plots the values of the B, C and D ratios of the
corresponding B, C, and D leaf nodes of plastic RA.

Figure A8. B, C, and D ratios of glass RA. The clustered bar chart plots the values of the B, C, and D ratios of the
corresponding B, C, and D leaf nodes of glass RA.
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Figure A9. Set of collected papers. The A-leaf nodes, ID numbers and bibliographical information are reported. Papers
were sorted by their A-leaf nodes.
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