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Abstract: The ongoing research toward meeting global energy demands requires novel materials
from abundant renewable resources. This work involves an investigation on nitrogen-doped carbon
nanotubes (N-CNTs) synthesized from relatively low-cost and readily available biomass as carbon
precursors and their use as electrodes for supercapacitors. The influence of the ionic liquid 1-butyl-3-
methylimidazolium chloride, or its combination with either sugarcane bagasse or cellulose (IL-CNTs,
ILBag-CNTs, and ILCel-CNTs, respectively), in the synthesis of N-CNTs and the resultant effect
on their physical and electrochemical properties was studied. Systematic characterizations of the
N-CNTs employing transmission electron microscopy (TEM), thermogravimetric analysis, X-ray
photoelectron spectroscopy (XPS), elemental analysis, nitrogen sorption analysis, cyclic voltammetry,
and electrochemical impedance spectroscopy were performed. TEM data analysis showed that the
mean outer diameters decreased, in the order of IL-CNTs > ILBag-CNTs > ILCel-CNTs. The N-CNTs
possess only pyridinic and pyrrolic nitrogen-doping moieties. The pyridinic nitrogen-doping content
is lowest in IL-CNTs and highest in ILCel-CNTs. The N-CNTs are mesoporous with surface areas in
the range of 21–52 m2 g−1. The ILCel-CNTs had the highest specific capacitance of 30 F g−1, while
IL-CNTs has the least, 10 F g−1. The source of biomass is beneficial for tuning physicochemical
properties such as the size and surface areas of N-CNTs, the pyridinic nitrogen-doping content, and
ultimately capacitance, leading to materials with excellent properties for electrochemical applications.

Keywords: carbon nanotubes; biomass; cellulose; sugarcane bagasse; capacitance

1. Introduction

Across the globe, the quest for sustainable energy supply has seen societies moving
from the extensive usage of petroleum to renewable sources of energy, with active research
still ongoing [1]. Mainly, the energy from the sun, which is in abundance, is being highly
considered, amongst other alternative reliable sources of energy. The challenge is to effec-
tively harness and store solar energy [2]. Therefore, firstly, photovoltaics are successfully
implemented in the conversion of energy from the sun directly into electricity [3]. Secondly,
the power converted from the sun is amassed using energy storage devices such as batteries
and supercapacitors.

What distinguishes supercapacitors from batteries is their integral constituents and
the mechanisms associated with their charge and discharge processes [4]. Supercapacitors
possess higher energy-storage and power-delivery capability than batteries [5]. Thus, they
are suitable for use in devices where there is a great power demand at relatively short
periods. In addition, supercapacitors are associated with a longer life cycle, fast charge
and discharge rates coupled with low internal resistance [5]. Hence, they are suitable for
applications that require storing high current transient electrical surges to improve the
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efficiency and energy of a system. Supercapacitors are currently gaining popularity in
diverse applications, including portable electronic devices, hybrid electric vehicles, and
commercial electric utilities [6]. Since there has been an increase in energy demand and
reliability, supercapacitors are continuously involved in modification with new electrode
materials. These materials allow for operation over a wider potential window with a
rapid current response to voltage reversal, which offers high specific capacitances, thus
enhancing their storage abilities [7,8].

Mesoporous carbon nanostructured materials (CNMs) are prominent electrode mate-
rials for supercapacitors, and this is due to their low cost, exceptional cycle stability, and
wide voltage operating windows [9]. Research on the use of biomass-derived CNMs as an
electrode material for supercapacitors exists [7,8]. However, to the best of our knowledge,
this is the first report on the effect of the precursor composition (IL or IL + biomass) on the
properties and electrochemical performance of the resulting carbon nanotubes (CNTs).

The unique one-dimensional geometry of CNTs and the associated physicochemical
properties such as mechanical strength and excellent electrical properties afford CNTs to
be suitable for charge storage and numerous other applications [10]. For achieving a high
specific capacitance, a characteristic carbon material should possess a high electroactive
surface area and suitable pore sizes that match the size of electrolyte ions [10].

Material engineering by the inclusion of a heteroatom during doping of the carbon
material should provide favorable surface characteristics that promote ion intercalation. Of
interest is the introduction of heteroatoms such as sulfur, boron, or nitrogen in the graphitic
carbon network [11]. N-enriched carbon structures can establish a high capacitance, and
this is due to the Faradaic redox reactions, i.e., pseudo-capacitance effects, provided by the
nitrogen functional groups [11,12]. Additionally, improved electron donor capability and
enhanced surface wetting by the electrolyte can increase the charge storage [12].

Our current work focuses on studying the electrochemical performance of CNTs
synthesized using renewable raw materials, namely sugarcane bagasse or cellulose, in
combination with ferrocene and an ionic liquid, namely, 1-butyl-3-methylimidazolium
chloride ([C4MIM]Cl). The primary objectives were to perform capacitance measurements
of the N-CNTs and interpret the results with respect to the nitrogen-doping effect, surface
area, and tube diameter, amongst others, emanating from the impact of sources. This
work contributes advantageously to material beneficiation from available, renewable, and
abundant waste biomass for the fabrication of electronic devices such as supercapacitors.

2. Materials and Methods

All materials and methods employed are stated, and experimental details are provided
in subsequent sections under sample preparation, characterization, and electrochemical
measurements.

2.1. Preparation of the Samples

H2SO4 (98%) was obtained from Merck, South Africa, HNO3 (70%) was obtained from
Associated Chemical Enterprises, South Africa. Ferrocene, 98% (AR), and cellulose Avicel®,
PH 101, 50 µm were purchased from Sigma Aldrich, Germany. Sugarcane bagasse was
obtained frozen from the Sugar Milling Research Institute (SMRI). Sugarcane bagasse was
shredded to small pieces, sieved, and dried at 100 ◦C for 10 h (weight constant). After
drying, the bagasse was ground with mortar and pestle to fine particles.

The ionic liquid (IL), 1-butyl-3-methylimidazolium chloride ([C4MIM]Cl), was pre-
pared as previously described [13].

The synthesis of CNTs was conducted with either sugarcane bagasse (Bag) or cellulose
(Cel) with ferrocene and [C4MIM]Cl (IL), following the previously reported procedure
(Scheme 1) [13].



Sustainability 2021, 13, 2977 3 of 12

Sustainability 2021, 13, x FOR PEER REVIEW 3 of 13 
 

The synthesis of CNTs was conducted with either sugarcane bagasse (Bag) or cellu-
lose (Cel) with ferrocene and [C4MIM]Cl (IL), following the previously reported proce-
dure (Scheme 1) [13]. 

 
Scheme 1. Schematic presentation of the synthesis of nitrogen-doped carbon nanotubes (N-CNTs). 

In short, ferrocene (0.25 g) and either IL-Bag or IL-Cel solution (containing 10% of 
either biomass; 9.75 g) were mixed (to make 2.5 wt % of catalyst) in an ultra-sound soni-
cator (Digital ultrasonic heater UD150SH-6L) for approximately 20 min. Then, the mixture 
was transferred into a 10 mL plastic syringe and set for injection using a purpose-built 
injection system. The injection system had the requisite gas fittings and was designed to 
deliver the mixture directly into the centre of a quartz tube located within a horizontally 
aligned tube furnace. 

A horizontally aligned tube furnace, fitted with a main zone temperature controller, 
was set to the desired temperature using a ramp rate of 10 °C/min. The carrier gas, 10% 
H2 balanced in Ar, was switched on at 600 °C, and a flow rate of 100 mL/min was applied. 
When the respective desired temperature was reached, injection of the sonicated mixture 
into the chemical vapour deposition (CVD) system at a set injection rate of 0.8 mL/min 
followed. The reaction was set for 30 min, and after that, the furnace was allowed to cool 
down to room temperature. All the samples collected were purified. The purification pro-
cess involved calcining all samples using a muffle furnace at 300 °C in air for 3 h, followed 
by ultrasonication in H2SO4/HNO3 (3:1 by volume) for 40 min using an ultrasonic heater. 
Thereafter, the mixture was refluxed at 100 °C for 24 h at a constant stirring speed of 300 
rpm. After refluxing, the acid was neutralized with a solution of NaOH, and the mixture 
was ultrasonicated for 1 h. After filtration and washing with deionized water (until the 
pH was 7), the materials were dried at 120 °C for 3 h. The CNTs synthesized from IL and 
ferrocene are denoted IL-CNTs, while those from the IL-bagasse and IL-cellulose mixtures 
are denoted as ILBag-CNTs and ILCel-CNTs, respectively. 

2.2. Characterization 
Characterization of the carbon nanostructures utilized TEM (JEOL JEM 1010) with 

the aid of Image J software for structural dimension determination. Elemental analysis 
was performed using an LECO CHNS-932 elemental analyzer standardized with acetan-
ilide. X-ray photoelectron spectroscopy (XPS) analysis was performed with a Thermo ES-
CAlab 250Xi equipped with monochromatic Al Kα (1486.7 eV) X-rays. An X-ray power of 
300 W, with an X-ray spot size of 900 μm, pass energy (Survey) of 100 eV, pass energy (Hi-
resolution) of 20 eV, and pressure of 10−8 mbar were used. The thermogravimetric analysis 
utilized the TA instruments Q seriesTM Thermal Analyzer DSC/TGA (Q600) with a TA 
instruments universal analysis 2000 software for data acquisition. The samples were run 
in oxygen at a 100 mL/min flow rate and from ambient temperatures to 1000 °C at 10 
°C/min. Nitrogen sorption studies were performed with a Micromeritics TriStar 3020 
V1.03 (V1.03) instrument. Surface area and porosity were calculated with the use of 
Brunauer–Emmett–Teller (BET) and Barrett–Joyner–Halenda (BJH) methods, respec-
tively. 

  

Scheme 1. Schematic presentation of the synthesis of nitrogen-doped carbon nanotubes (N-CNTs).

In short, ferrocene (0.25 g) and either IL-Bag or IL-Cel solution (containing 10% of
either biomass; 9.75 g) were mixed (to make 2.5 wt % of catalyst) in an ultra-sound sonicator
(Digital ultrasonic heater UD150SH-6L) for approximately 20 min. Then, the mixture was
transferred into a 10 mL plastic syringe and set for injection using a purpose-built injection
system. The injection system had the requisite gas fittings and was designed to deliver
the mixture directly into the centre of a quartz tube located within a horizontally aligned
tube furnace.

A horizontally aligned tube furnace, fitted with a main zone temperature controller,
was set to the desired temperature using a ramp rate of 10 ◦C/min. The carrier gas, 10%
H2 balanced in Ar, was switched on at 600 ◦C, and a flow rate of 100 mL/min was applied.
When the respective desired temperature was reached, injection of the sonicated mixture
into the chemical vapour deposition (CVD) system at a set injection rate of 0.8 mL/min
followed. The reaction was set for 30 min, and after that, the furnace was allowed to cool
down to room temperature. All the samples collected were purified. The purification
process involved calcining all samples using a muffle furnace at 300 ◦C in air for 3 h,
followed by ultrasonication in H2SO4/HNO3 (3:1 by volume) for 40 min using an ultrasonic
heater. Thereafter, the mixture was refluxed at 100 ◦C for 24 h at a constant stirring speed
of 300 rpm. After refluxing, the acid was neutralized with a solution of NaOH, and the
mixture was ultrasonicated for 1 h. After filtration and washing with deionized water
(until the pH was 7), the materials were dried at 120 ◦C for 3 h. The CNTs synthesized from
IL and ferrocene are denoted IL-CNTs, while those from the IL-bagasse and IL-cellulose
mixtures are denoted as ILBag-CNTs and ILCel-CNTs, respectively.

2.2. Characterization

Characterization of the carbon nanostructures utilized TEM (JEOL JEM 1010) with the
aid of Image J software for structural dimension determination. Elemental analysis was
performed using an LECO CHNS-932 elemental analyzer standardized with acetanilide.
X-ray photoelectron spectroscopy (XPS) analysis was performed with a Thermo ESCAlab
250Xi equipped with monochromatic Al Kα (1486.7 eV) X-rays. An X-ray power of 300 W,
with an X-ray spot size of 900 µm, pass energy (Survey) of 100 eV, pass energy (Hi-
resolution) of 20 eV, and pressure of 10−8 mbar were used. The thermogravimetric analysis
utilized the TA instruments Q seriesTM Thermal Analyzer DSC/TGA (Q600) with a TA
instruments universal analysis 2000 software for data acquisition. The samples were
run in oxygen at a 100 mL/min flow rate and from ambient temperatures to 1000 ◦C
at 10 ◦C/min. Nitrogen sorption studies were performed with a Micromeritics TriStar
3020 V1.03 (V1.03) instrument. Surface area and porosity were calculated with the use of
Brunauer–Emmett–Teller (BET) and Barrett–Joyner–Halenda (BJH) methods, respectively.

2.3. Electrochemical Measurements

The electrochemical tests were performed using cyclic voltammetry (CV) and electro-
chemical impedance spectroscopy (EIS) on an electrochemical CHI 660E work station, CH
Instruments, Austin, Texas, USA. All the electrochemical measurements were achieved
by the use of a three-electrode system. The counter and reference electrodes were Pt and
Ag/AgCl, respectively. The working electrode was prepared by drop-casting the sample
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mixed with Nafion onto a glassy carbon electrode (3 mm diameter). The deposited mixture,
on the electrode, was dried at room temperature. The electrolyte, H2SO4 (0.1 M), was
prepared by diluting 98% solution with double deionized water. The electrodes used for
EIS were likewise prepared.

3. Results and Discussions

Effects of the precursor on the physicochemical properties of the synthesized CNTs
and the electrochemical performance are reported herein.

3.1. Morphological Analysis

The TEM image analysis of the three samples shows hollow tubular structures with
some bamboo compartments (Figure 1), which resemble nitrogen-doped CNTs [14,15]. The
outer diameters (ODs) of the CNTs after purification are 101, 63, and 38 nm for IL-CNTs,
ILBag-CNTs, and ILCel-CNTs, respectively. The differences in the size of CNT diameters
were attributed to the presence of oxygen in the biomass containing precursors. Oxygen
affects the activation of the catalyst, the decomposition of the carbon precursor, and also
acts as an etchant of amorphous carbon [16]. Additionally, the diameters of the purified
samples are smaller than those from the crude samples (172, 104, and 112 nm for IL-CNTs,
ILBag-CNTs, and ILCel-CNTs, respectively). Similarly, the reduction in sizes was attributed
to the etching effect of the purification processes.
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Figure 1. TEM images for the synthesized structures: (a) IL-CNTs, (b) ILBag-CNTs and (c) ILCel-
CNTs. IL-CNTs, ILBag-CNTs, and ILCel-CNTs: ionic liquid 1-butyl-3-methylimidazolium chloride,
or its combination with either sugarcane bagasse or cellulose.

Apart from being smaller, the ILCel-CNTs are notably more bent than the IL-CNTs
and ILBag-CNTs (Figure 1). The inward bent structure defects suggest that pentagons were
formed because of nitrogen doping [13].

3.2. Chemical Composition Analysis

Elemental analysis (EA) was initially used for qualitative analysis and showed the
presence of carbon, nitrogen, hydrogen, and oxygen in the samples (Supplementary Infor-
mation, Figure S1). IL-CNTs have a higher content of doped N, followed by ILBag-CNTs
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and ILCel-CNTs. This concurs with the TEM observations where IL-CNTs were found to
have more pronounced bamboo compartments. Further elemental quantitative analysis
through XPS shows a trend of atomic nitrogen composition similar to that from EA, i.e.,
thus confirming a higher percentage of nitrogen in the IL-CNTs sample (Figure 2). The
atomic nitrogen content for IL-CNTs, ILBag-CNTs, and ILCel-CNTs are 7.2%, 7.1%, and
6.2%, respectively (Figure 2).
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Figure 2. Elemental composition of C, N, and O in all samples from XPS.

The N1s peak show a broad peak between 397.7 and 400.4 eV (Figure 3a–c), which
was deconvoluted to reveal the presence of two major nitrogen-doped species in the
carbon lattices, namely pyridinic and pyrrolic around 397.6–398.5 and 399.6–400.5 eV,
respectively [17–20]. These peaks confirm the presence of nitrogen doping in the samples,
which concurs with the presence of bent structures and bamboo compartments as observed
using TEM (Figure 1).
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The deconvoluted N1s species ratio was used to determine the percentage composition
of the identified species (Figure 3d). In all samples, the percentage of the pyridinic nitrogen
is higher than the pyrrolic nitrogen, i.e., 52%, 58%, and 71% IL-CNTs, ILBag-CNTs, and
ILCel-CNTs, respectively. Interestingly, ILCel-CNT, which shows bent structures in the
TEM analysis (Figure 1c), has the lowest pyrrolic-nitrogen content, and thus, the inclusion
of the unsymmetrical pyrrole ring is not responsible for this phenomenon. Hence, these
results suggest that the more pronounced bent structures of ILCel-CNTs are due to the
smaller tube sizes.

3.3. Thermal Analysis

The thermogravimetric analysis (TGA) profiles of the CNTs show minimal water loss
(≈2 wt %), which is expected to occur below 200 ◦C (Figure 4). There is no noticeable
decrease in weight in the range of 200–400 ◦C, corroborating TEM analysis and inferring
the absence of amorphous carbon. Significant weight loss occurs from around 500 ◦C,
with a weight loss of ≈95 wt % from both ILCel-CNTs and IL-CNTs, at 630 and 611 ◦C,
respectively, and ≈97 wt % from ILBag-CNTs samples at 618 ◦C. This was assigned to the
decomposition of N-CNTs, which is attributed to the disintegration of a single type of sp2

carbon structures. This is further supported by TEM analysis where no other structures
such as spheres, fibers, or amorphous carbons were observed (Figures 1 and 4). In addition,
the XPS analysis further supports the findings from the TGA analysis.
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The thermogram in Figure 4 indicates that the order of material tolerance to heat is
IL-CNTs < ILBag-CNTs < ILCel-CNTs, i.e., Tmax DTA of 611, 618, and 630 ◦C, respectively.
These thermal stability trends agree with the amount of doped N determined by XPS. The
thermal decomposition temperatures are close to each other, and this is due to the similar
relationship of nitrogen contents, as seen in Figure 2. IL-CNTs show the highest amount of
doped N within the graphitic structure; hence, they have relatively higher compromised
C-C bond strengths and poorer heat tolerance. Some residual Fe remains in the materials,
as evidenced by the incomplete decomposition. The sample containing ILBag-CNTs has
almost zero residual Fe content while ILCel-CNTs and IL-CNTs have a residual Fe content
of around 3 wt %. This could be due to non-dissolved Fe after the purification process
since the concentrated H2SO4/HNO3 mixture has the ability to dissolve the metal catalyst,
separate the CNTs, and remove carbonaceous impurities.

3.4. Surface Area and Porosity Analysis

Nitrogen sorption and desorption data can be used to determine the surface area, pore
size distribution, as well as the ratio of micro- to mesopores. Surface area and porosity
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were calculated with the BET and BJH methods, respectively. The samples exhibit type
IV sorption−desorption isotherms with an H2 hysteresis loop observed in the range of
0.45–1.0 P/P0 (Figure 5a).
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The H2 hysteresis loop suggests the presence of pores with narrow mouths (ink-bottle
pores), comparatively constant channel-like pores, and pore network-linking effects [21],
therefore suggesting the samples are mesoporous materials. The hysteresis loop of ILCel-
CNTs is slightly broader than the other two, suggesting the presence of more porous
structures with possibly greater surface area and pore volume. This observation correlates
to the highest BET surface area of 52 m2 g−1 for ILCel-CNTs, which is followed by ILBag-
CNTs, 35 m2 g−1, and IL-CNTs with the lowest surface area of 21 m2 g−1. These surface
areas correspond to the increase in ODs of the CNTs, i.e., 38, 63, and 101 nm, respectively,
hence suggesting that the smaller the OD, the greater the surface area. The pore size
distribution of samples is displayed in Figure 5b, and the insert is for the size region
of 3.5–5.5 nm. The order of population frequency of these pores was IL-CNTs < ILBag-
CNTs < ILCel-CNTs, respectively. The most probable reason for this is the different
dimensions and composition of nitrogen-doping types leading to altered structures and
textural characteristics. The pore distribution indicates that the CNTs are mostly composed
of mesopores (2–50 nm).

3.5. Cyclic Voltammetry

Cyclic voltammetry (CV) is an effective and popular electrochemical technique fre-
quently utilized to study the electrochemical performance of materials. The charge accu-
mulation at electrodes was determined using a scan rate of 10 mV s−1 in a potential range
of 0 to 0.8 V. The specific capacitance (Cs) was calculated from the CV curves according to
Equation (1) [22]:

Cs =
∫

IdV
2υ∆Vm

(1)

where Cs is the specific capacitance (F g−1), I is the current response (A), ∆V is the potential
window (V), υ is the scan rate (V/s), and m is the mass of electrode material (g). The
capacitive performance of the CNTs was obtained in 0.1 M H2SO4 at room temperature.
The fabricated electrodes from all the N-CNT materials display some pseudo-capacitance
traits and rectangular-shaped CV curves (Figure 6). This means that all the N-CNT materials
investigated show an excellent rapid current response to voltage reversal and excellent
electrochemical capacitive behavior. A pair of reversible redox peaks at 0.43 and 0.53 V
was attributed to the presence of N introducing Faradic reactions between nitrogen atoms
in the N-CNT matrix and the electrolyte. In acidic medium, the pseudo-Faradaic effects
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resulting from CNTs with pyridinic nitrogen functionality can be characterized according
to Equation (2) [18,23]:

C* = N + e− + H+ ↔ C* NH (2)

where C* stands for the carbon network. There were no oxidation and reduction peaks of
Fe observed in CV curves, and this observation suggests that the effect of the residual Fe
nanoparticles from synthesis is negligible [24,25].
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The existence of nitrogen as a dopant in CNTs results in enhanced capacitance due to
the modified electronic properties [26]. However, an increase in pyrrolic nitrogen-doping in
N-CNTs has been reported to cause severe deterioration regarding both the electrochemical
capacitor (EC) quality and the current [27]. However, in the present work, the EC quality
did not deteriorate with an increase in pyrrolic nitrogen doping (Figure 6).

Furthermore, introducing nitrogen, an electron-rich atom, in the form of pyridinic
moieties in the graphitic carbon network adds a lone pair of electrons into the delocalized
π system [19]. The function of the lone pair of electrons is to act as a charge carrier, which
improves the charge density and, in turn, leads to increased electrical conductivity, therefore
resulting in increased capacitance [28]. It is also important to note that the substitution
of carbon with nitrogen provides natural carbon materials with other redox reactions
for pseudocapacitors [29]. On the other hand, pyrrolic nitrogen is known to induce a
high concentration of defects within the graphitic structure since five-membered rings are
formed instead of six-membered rings [30], which compromise the associated electrical
conductivity of carbon and cause a loss of capacitance.

The synthesized N-CNTs exhibit Cs of 10, 26, and 30 F g−1 for IL-CNTs, ILBag-CNTs,
and ILCel-CNTs, respectively. The Cs is comparable to the reported values of commercially
available doped N-CNTs [31]. The total nitrogen content in the samples is very similar
(7.2%, 7.1%, and 6.2% for IL-CNTs, ILBag-CNTs, and ILCel-CNTs), but the amount of
pyrrolic N-doping decreases in the series (48%, 42%, and 29% (Figure 3d)) and is hence in
line with the literature. The data indicate that the performance of the supercapacitors can
be tuned by pyridinic nitrogen-doping composition.

Another reason for the increase in specific capacitance in that series could be the
different porosities and specific surface areas [23]. Sufficiently large surface areas must be
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accessible to the electrolyte ions for adsorption and ultimately forming a double layer. In
the above series, both the surface area and the average pore volume increase, indicating
indirectly that the surface area is available for electrosorption. This contrasts to other
reports [32,33], where no relationship between EC quality and performance with BET
surface area was found. This work indicates that the physical properties, namely, diameter,
porosity, and surface area of N-CNTs, are suitably tailored by introducing cellulose or
bagasse as feedstock combined with the ionic liquid.

Cycle stability studies were performed on all three samples at 50 mV s−1 for 50 cycles
(Figure 7a).
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It is observed that all samples are stable, with ILCel-CNTs being slightly more stable
based on the voltage window. Therefore, the most stable sample, ILCel-CNTs, which also
features the best capacitive performance, was further studied for long-term cycle stability
studies, i.e., 50, 100, and 200 cycles, as shown in Figure 7b. The voltammogram maintained
its quasi-rectangular shape at 50 and 100 cycles, at a scan rate of 50 mV s−1, indicating
quick and efficient charge transfer and excellent capacitive behavior [34]. However, it
deteriorated severely between the 100th and 200th cycles, as shown by the smaller voltage
window (Figure 7b).

3.6. Electrochemical Impedance Spectroscopy (EIS)

Nyquist plots display the frequency responses of the samples, which demonstrate
the associated impedance properties of the CNTs [35]. The high-frequency region shows
negligible charge transfer resistance for all samples (Figure 8). Ideally, in cases where
there is charge transfer resistance, the Nyquist plot may show a distorted semicircle in the
high-frequency region. However, in this case, the semicircle is absent, indicating that the
resistance is negligible, and hence, there is a remarkable charge reversal at voltage change,
leading to the rectangular shapes shown in Figure 6 for the CV analysis.

The lower frequency region of the three CNT materials shows a straight line, which is
attributed to the low ion diffusion resistance in the electrolyte, suggesting a nearly ideal
charge storage device [35]. The slope for ILCel-CNTs is slightly steeper than those for
ILBag-CNTs and IL-CNTs, suggesting faster ion diffusion and better EC quality.
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4. Conclusions

In conclusion, the results have shown that excellent electrochemical properties are im-
parted to N-CNTs when these are prepared from 1-butyl-3-methylimidazolium chloride or
a mixture of this ionic liquid with either bagasse or cellulose. Hence, the developed proto-
col allows fabricating electronic devices such as supercapacitors from renewable resources.
Depending on the starting material composition, the physical (dimensions, pore size distri-
bution, surface area), chemical (elemental composition, level of N-doping, ratio of pyridinic
and pyrollic nitrogen, thermal stability) and electrochemical properties electrochemical
capacitor, EC, (EC quality, specific capacitance, impedance) of the material are tailored. In
particular, the N-CNTs synthesized from cellulose display excellent performance.
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