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Abstract: In this paper, we present a successful experimental validation of the velocity optimization
for a cable car passing over a support. We apply the theoretical strategy developed in a previous
work, refined by taking into account in a simple manner the hauling cable dynamics. The experiments
at the ropeway Postal–Verano (South Tirol, Italy) have shown a significant reduction of the pendulum
angle amplitude for both the descent and the ascending rides, as predicted from simulations. Fur-
thermore, we measured a smoother progress of the torque at the driving engine during the vehicle
support crossings.

Keywords: ropeway; vehicle oscillations; numerical optimization; experimental validation

1. Introduction

Oscillations of cables and vehicles in ropeway applications play an important role,
and there exists a rich literature about simulations of cable and vehicle vibrations [1–12].
Most investigations deal with the direct problem: given the geometry and the mechanical
parameters, they consider the dynamics of the system. In practice, however, often the
inverse problem arises, which concerns the way how parameters must be selected in order
to optimize certain mechanical properties. In a recent work, we theoretically investigated
a cableway vehicle passing over a support, addressing in particular, the suppression of
the unwanted oscillations of the vehicle which lead to an uncomfortable sensation for the
passengers [1]. After mathematically formulating the problem as an optimization task, we
derived the equations of motion, taking into account both vehicles of a classical aerial rope-
way. We defined a system of differential equations to numerically compute a suitable cost
function J defined via the two phase-space trajectories of damped pendulums with time-
dependent suspension point coordinates. We only considered in-plane oscillations of the
pendulums, such that each vehicle has one degree of freedom. The minimization of J was
addressed numerically by different solvers for global optimization provided by Mathematica
(Random Search and Nelder–Mead; here, we use the Nelder–Mead algorithm, [13]).

In this paper, we apply the theoretical approach to an existing structure, the ropeway
in Postal–Verano, South Tirol, realized by Doppelmayr Italia in 2017. We perform the
numerical computations of a refined model and compare the results with experimental
investigations. We demonstrate the effectiveness of the developed theory towards a
reduction of the vehicle oscillations.

We invite the reader to watch the accompanying short video/animation (Supplemen-
tary Materials) before reading the article. We believe that this will immediately make the
problem statement, as well as the reached results clear. Both in the paper and in the video,
we use a so–called original velocity profile for comparison. This profile was obtained as
a first attempt to solve, by hand, the problem of improvement of the vehicle behavior
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when passing over the support. It was inspired by the following fact: If the effect of the
damper is neglected, a pendulum whose suspension point moves along an arbitrary trajec-
tory remains in equilibrium, provided the horizontal component of the velocity remains
constant. For the ascending ride, the velocity direction on the support flattens and, to
ensure a constant horizontal component, one has to decelerate the vehicle. The moderate
achievement of the original velocity profile served as motivation to consider the issue more
in depth, and was the starting point for this research project.

2. Characterization of the System

We briefly discuss the main features of the system. The cableway vehicle is modeled
as a damped pendulum, with the suspension point (carrier truck) moving with (partially)
controllable velocity v. The speed of operation away from the stations and single support
is v = 10 m/s. We treat both vehicles in theory as equal (damping, pendulum length),
so we distinguish the vehicles only by the driving direction. In practice, however, both
vehicles are considered individually (vehicle 1 and 2), and in fact, there are differences in
the measurement results, which in theory should be equal for both.

As experimental investigations have shown, the reduced pendulum length lp of the
vehicle is weakly mass-dependent [14]. To capture this dependence, we use a simple linear
function (see Table 1), valid to estimate lp between an empty and fully loaded vehicle
(35 passengers).

The damping of the pendulum arises from two parts: a mass-independent part coming
from the damper (two discs pressed together with a constant force, one fixed at the carrier
truck, the second at the hanger) and a mass-dependent part caused by the drag bolt/socket,
which is proportional to the weight of the vehicle. Both contributions obviously act in an
opposite direction to the angular velocity, where the angular velocity of the carrier truck ψ̇
also plays an important role (see left part in Figure 1). To describe the path of the carrier
trucks, we use a mathematical approach, presented in detail in [15]. Here, we need the
main results only: For a given support head geometry, we can find a parametrization that
fits well with the real structure (similar to a clothoid) and has the properties of finite first
and second derivatives (analytically available), see Figure 1. We describe the path outside
the support head with straight lines. The length of this path was chosen to be as short
as possible, such that this approximation is sufficiently fulfilled (the exact trajectory of
the ropeway vehicle is more involved, even within a quasi-static calculation [16]), and as
long as needed to ensure well-defined initial conditions for the pendulums, so that the
phase-space trajectories start at the origin. In all considerations, the air resistance was of
minor influence and neglected. The parameters of the system, which are important for this
investigation, are listed in Table 1.

Table 1. Values for the main parameters characterizing the system: α± are the tangent angles (α+ mountain, α− valley side) and rc the
radius of curvature at the center of the support head with length l, respectively. The velocity vmax is the maximum operational speed
and vmin the chosen minimal allowed velocity to pass the support. The modulus of the damping is md and the reduced pendulum
length depends weakly on mass m, where 1970 kg (empty) ≤ m ≤ 4770 kg (loaded).

α− [◦] α+ [◦] rc [m] l [m] md [m/s2] vmin
[m/s]

vmax
[m/s] lp [m]

44.5 6.3 28 23.76 0.132 + 308/m(kg) 5 10 6.3 + 0.00015 [m(kg)−1970]

The governing differential equation for the pendulum angle ϕ of the vehicle (obtained
using a suitable Lagrangian [17], for details of the derivations see [1]), whose suspension
point (pivot) has cartesian coordinates (X, Y) and prescribed velocity v, is given by

lp

[
ϕ′′v2 + ϕ′vv′

]
+
[

X′′v2 + X′vv′
]

cos(ϕ) +
[
Y′′v2 + Y′vv′

]
sin(ϕ)

+g sin(ϕ) + mdsign(ϕ′ − ψ′) = 0 .
(1)
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Here, the independent variable is the curve parameter s (to simplify the comparison
between measurements and the numerical calculations, we use s instead of the time as an
independent variable), and g is the earth acceleration. The last term in Equation (1) models
the damping of the pendulum, where the sign function ensures the correct dissipative
character of the damping, and the prefactor md takes into account the observed mass
dependence (see Table 1). The argument of the sign-function also contains the derivative
ψ′(s), which is the curvature of the support head, since ψ(s) is the angle of the support
head tangent. For the numerical computations, we have to take into account two driving
directions, and consequently, two paths and two pendulum angles ϕ1,2, as well as two
different velocities, as discussed in the next section.

lp
s=0

α-

α+
ψ

φ

P = (X,Y)
v

-11.88 0 11.88
0.0

0.5

1.0

1.5

2.0

s [m]

X'(s)

Y'(s)

X''(s)

Y''(s)

r/rc

Support geometry

Figure 1. Sketch of the system and some geometrical quantities for the support head. The radius of curvature r has the minimal value
rc at the center of the support. The tangents at the end points of the support head are tan(α∓) = Y′(s)/X′(s)|s=−l/2,l/2. The point
s = 0 here indicates the center of the support head. The derivatives X′′(s), Y′′(s) are given in units m−1.

2.1. Hauling Cable Dynamics, Three Velocities Model, and Cost Function

The assumptions from the previous sections would allow a quite robust simulation
with high accuracy, because the coeffients of the differential equations are continous
functions in the whole integration range (the sign function was replaced by an appropriate
continuous approximation), evaluable to arbitrary precision (as provided by Mathematica’s
NDSolve command). However, the main problem remaining is the exact velocity of
the carrier truck. It is difficult to find a simple description which is in accordance with
the measured velocities. In particular, we believe that the measured velocities show a
superposition of deterministic (elasticity of the oscillating hauling cable and damped
movement of the counterweight [18]) and stochastic (wind, [19]) influences of the same
order of magnitude. The wind (not captured in Equation (1)) obviously affects the dynamics
of the vehicle itself, and also induces oscillations in the hauling and track cable [20]. In
order to proceed, we therefore apply a simple three-velocities model, with vc the completely
controllable velocity of the driving disk, va the velocity of the ascent, and vd the velocity of
the descent vehicle, respectively:

va(s) = vc(s) + δva(s) , vd(s) = vc(s) + δvd(s) . (2)

We assume for both corrections vc(s)≥δva(s), δvd(s), and use for the latter Gaussian
shapes, centered around the positions of the support (in particular, we use δva(s) =
0.3 exp[−0.01s2] m/s and δvd(s) = 0.3 exp[−0.02s2] m/s, written without the relative
displacement). This ansatz is purely phenomenological, derived from several velocity
measurements and only restricted to the region near the support, which is in fact the
most interesting part of our optimization problem. Furthermore, we assume that these
corrections are independent of vc, and consequently, we can use both for any velocity
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profile vc (the original, as well as the optimized). For vc(s) itself, we use an expression as
in [1],

vc(s; Sj, Vj) =
4

∑
j=1

Θ(s− Sj)Θ(Sj+1 − s)

√
V2

j + (V2
j+1 −V2

j )
s− Sj

Sj+1 − Sj
, (3)

where Θ(s) is the unit step function and Sj, Vj are eight design variables (Sj = position, Vj =
velocity at the position Sj, located around the support), free for optimization. Equation (3)
is constructed such that the acceleration dvc/dt = vcdvc/ds is piecewise constant, as
required by the motor–control.

The cost function J is defined with the help of the phase-space trajectory of the
dynamical system, and therefore J contains the pendulum angles and the derivatives of
both driving directions, ϕ1, ϕ′1 and ϕ2, ϕ′2. We set up J as

J[Sj, Vj] = ∑
k=1,2

∫ smax

smin

ds
vc(s)

{
1
2

l2
pvc(s)2 ϕ′2k + glp

[
1− cos(ϕk)

]}
. (4)

By minimization of J, we obtain the four points (Sj, Vj)j=1...4 for the optimal velocity
within the interval [smin, smax], where smax − smin = 400 m, see Figure 3. Since we allowed
for variation of the positions of the four points within small regions around the support
(ensuring disjunct intervals in position), the run-time was essentially constant and equal to
the original run-time. An incorporation of the run-time in the cost function J was therefore
not necessary [1]. In order to better approach the measurements in which we used empty
vehicles, the minimization of J was executed for the empty vehicles as well. However, it
turns out that the solution depends only negligibly on the vehicle mass. This indicates that
the obtained optimal velocity profile is rather robust under different loadings (to capture
the mass dependency, it is possible to generalize the cost function by summation over
many loads).

3. Experimental Validation and Discussion

The experimental setups and methods of velocity, as well as pendulum angle mea-
surements are discussed and presented in detail in our recent work [14]. There, one can
find results obtained with the original velocity profile, as well as damping measurements
of the static vehicle with different loadings. Here, we use these methods and results to
make a comparison with the new, optimized velocity profile. Furthermore, we use here the
improved velocity model expressed by Equation (2) to better fit the theory and experiment.

We start the discussion with Figure 2, which shows the measured vehicle velocities
(vehicle 1 only, where in the video this is the vehicle in the background) for the descent and
ascent case. In order to estimate velocity fluctuations for different rides, we made several
measurements, where two of them are plotted for both driving directions. The dashed
lines correspond to the theoretical corrected velocities, using the Gaussian modifications
according to Equation (2). Figure 3 shows the optimal and the original velocity profile,
together with the Gaussian corrections. The four labeled points indicate the solution of
the minimization of J. The solution shows a slower speed, compared with the original
velocity profile. This is not surprising, because we set the minimal allowed velocity at 5
m/s—more interesting, however, is the position of the points 2 and 4, which are located
at the support head. This is also in contrast to any traditional velocity profile, where one
simply decelerates before and accelerates after the support passing. Figure 4 contains the
results of the video evaluation, the pendulum angles for the original (row (a)), and the
optimized velocity profile (row (b)) for both vehicles and both driving directions. The
results of simulations are also shown. One can see a difference between the two vehicles
in the measurements, in particular for the descending ride in (b), where in the region
s ≈ −40 . . .−15 m, a constant deceleration along a straight line should result in equal
pendulum angles, which indeed is not the case. Since an uncertainty in vc is certainly not
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the reason for this difference, we believe that it is caused by a weak blowing wind. The
most significant effect of the optimization is visible in the ascending ride. From (a) to (b),
we can see that the second swinging is reduced from ≈ 11◦ to ≈ 3◦. In panel (c) we plotted
the corresponding phase-space trajectories in the most interesting s− parameter region.
The trajectories for the optimal velocity profile are contracted to the origin, which also
demonstrates the effectiveness of the optimization. In Table 2, the measured/simulated
results for some quantities are summarized. We observe a reduction of the cost function J
and the max. amplitude of the vehicle oscillations ∆ϕ for both driving directions, where
simulations and measurements coincide better for the ascending ride, since the relative
measurement error is smaller.

The values of the pendulum angle depend only weakly on the load, as we confirmed
by simulation and observation. This is reported in Figure 5, where we plotted the pendulum
angle for the optimal velocity profile and the empty and loaded vehicle. The influence of
the vehicle’s mass on the pendulum angle is more relevant for the damping md than for
the reduced pendulum length lp. We also checked a traditional velocity profile, where the
vehicles pass the support with constant velocity of vc = 5 m/s, augmented by the introduced
Gaussian corrections δva, δvd. We obtained for the oscillation amplitudes ∆ϕ = 8.4◦/17.2◦

for the descending/ascending rides.
Moreover, we looked at the behavior of the driving engine. Figure 6 shows a mon-

itoring of the torque measured at the motor in the mountain station for the original and
the optimized velocity profile. It is interesting that during the passing around the support,
the torque is smoother, when the velocity profile is switched from the original to the opti-
mal. This means that the adjustment of the subsystems “driving engine” and “cables plus
vehicles” is improved and the energy exchange is reduced.

vc + δvd

meas.

meas.

-50 0 50 100
4

5

6

7

8

s [m]

v
[m

/s
]

Descent

vc + δva
meas. (*)

meas. (*)

-50 0 50 100
4

5

6

7

8

s [m]

v
[m

/s
]

Ascent

Figure 2. Measured vehicle velocities (always vehicle 1) for the original velocity profile (solid lines; the (*) means loaded
vehicle) and the theoretical velocities used for simulations (dashed lines). The colored bands indicate the support head.



Sustainability 2021, 13, 2986 6 of 9

1

2
3

4

δvaδvd

orig. vc

opt. vc
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/s
]
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Figure 3. Original and optimal velocity of the hauling cable at the driving disk and the applied
corrections to receive the corresponding velocities at the vehicle positions. The labeled points are the
solution of the global optimization procedure, whereas the outside points were left-fixed.
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(b) optimized
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Figure 4. Experimental results: The row (a) shows the pendulum angle versus position for the original velocity profile. In
(b), the same is shown for the optimized velocity profile. The red and blue lines are measured quantities, supported by
error bars, indicating the estimated measurement errors. The dashed lines in (a,b) were obtained by simulation. The row
(c) shows the simulated phase-space trajectories for both the original and optimized velocities, respectively.
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Figure 5. Pendulum angles for the optimal velocity profile and the two cases: empty and loaded vehicle. Furthermore, the
case is shown when the vehicle passes the support with vc = 5 m/s (plus the corrections δva, δvd) without any optimization.

(a) (b)

Figure 6. Screenshot of the control window of the computer at the mountain station for both velocity profiles, where (a)
gives the original case and (b) the optimized case, respectively. The yellow lines are the velocity profiles, and the lines in
cyan give the torque measured at the electrical engine. As one can see in the center of the images, in (a) the torque shows
two peaks when the vehicles pass the support, which disappear in (b) (white arrows).

Table 2. Summary of the experiments/simulations. The * values are the mean of both vehicles. For the ascending ride we
measured and calculated a reduction of the oscillation amplitude of ≈ 10◦, which is a significant improvement.

- J (Empty) J (Loaded) ∆ϕ Descent (Meas.*/simul.) [◦] ∆ϕ Ascent (Meas. */simul.) [◦]

original 11.4 14.3 9.5/11.6 23.5/22.8

optimized 3.9 4.0 6.0/4.3 13.0/12.9

4. Conclusions

In this paper, we presented a successful implementation of the optimal velocity profile
to steer the Postal–Verano ropeway (South Tirol, Italy). The experiments have shown a
significant improvement of the vehicle oscillation behavior for both driving directions
(ascent and descent) and the validation of the theoretical optimization procedure. In a
video accompanying this paper, we show the results by a comparison of the simulated
and real system. Apart from the improvement of passenger comfort, we also found a
significant smoothing of the torque at the driving engine. Of course, ropeways are a
kind of "individual installation" that has to be adapted to the existing conditions (terrain,
inclination, wind conditions, etc.). Accordingly, it is not so easy to evaluate a universal
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method of analysing these structures and related problems. Nevertheless, we believe that
the solution strategy adopted here has the potential, if appropriately adapted and refined,
to be applied to improve other aerial cableway plants, especially because it does not require
changes in the ”hardware”. We think that the method can have a relevant practical impact,
even for energy dissipation considerations in ropeways [21].

Supplementary Materials: The following are available at https://www.mdpi.com/2071-1050/13/5
/2986/s1.
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