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Abstract: Palm oil mill effluent (POME) is the wastewater produced during the palm oil sterilization
process, which contains substantial amounts of nutrients and phosphorous that are harmful to the
environment. High BOD and COD of POME are as high as 100,000 mg/L, which endanger the
environment. Effective pre-treatment of POME is required before disposal. As microalgae have
the ability of biosorption on nutrients and phosphorous to perform photosynthesis, they can be
utilized as a sustainable POME treatment operation, which contributes to effective biofuel production.
Microalgae species C. pyrenoidosa has shown to achieve 68% lipid production along with 71% nutrient
reduction in POME. In this study, a brief discussion about the impacts of POME that will affect the
environment is presented. Additionally, the potential of microalgae in treating POME is evaluated
along with its benefits. Furthermore, the condition of microalgae growth in the POME is also assessed
to study the suitable condition for microalgae to be cultivated in. Moreover, experimental studies
on characteristics and performance of microalgae are being evaluated for their feasibility. One of
the profitable applications of POME treatment using microalgae is biofuel production, which will
be discussed in this review. However, with the advantages brought from cultivating microalgae in
POME, there are also some concerns, as microalgae will cause pollution if they are not handled well,
as discussed in the last section of this paper.

Keywords: palm oil mill effluent (POME); microalgae; green approach; effluent treatment; bio-
fuel production

1. Introduction

The global palm oil market demand stood at 71.48 million tons in 2019, and the growth
rate is estimated to be 2.3% from 2020 to 2027 [1]. Palm oil is able to decrease cholesterol
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level, boost brain health, reduce oxidative stress, slow the progression of health disease,
increase vitamin A status, and improve skin and hair health [2]. The demand for palm oil
is increasing constantly because of the increasing rate of consumer awareness regarding
healthy products. Palm oil has been reported to be used in 50% of all consumers product
sold daily. With the high demand for palm oil, the amount of biomass produced will
continuously increase. Palm oil mill effluent (POME) is one of the primary biomasses that
are produced in the palm oil mill in the form of wastewater produced from sterilization,
extraction, and clarification processes in a palm oil mill. The wastewaters that are produced
contain 90% of water, 0.6–0.7% of residual oil, 2–4% of suspended solids, and 4–5% soil
particles [3]. A normal palm oil mill plant schematic diagram with biomass palm oil mill
effluent is as shown in Figure 1.
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Figure 1. Schematic diagram of POME treatment.

In a commercial industry for palm oil processing, every ton of fresh fruit and palm
oil will produce 0.5 and 2.5 ton of effluent, respectively [4]. Due to the acidic nature of
the contaminant and very high level of biological oxygen demand (BOD), POME cannot
be disposed without specific treatment due to the pollution threat to the environment [5].
Treating POME before disposal is one of the concerns and necessities for every palm
oil manufacturer. POME treatment is a standard requirement that needs to be followed
in order to persist in the manufacturing industry. Most of the POME treatments lead
to biological handling due to its high lipids, nitrogenous compound, and protein and
minerals content [6]. There are three main methods that are commonly preferred by
the palm oil manufacturer, which are anaerobic digestion, feedstock for biodiesel, and
composting method. Some of the manufacturers convert the POME produced from their
plant into biodiesel by dark fermentation process, whereas some use treated POME on land
application of compost production to act as fertilizer of the palm oil trees [7]. However,
most of the manufacturers prefer anaerobic digestion, as it is cost friendly and can reduce
the BOD and chemical oxygen demand (COD) [8]. Additionally, the biogas produced can
be utilized as electricity generation to be supplied back to the palm oil mill.

POME treatment using microalgae to produce biofuel appears to be a highly compet-
itive tool in recent years due to the global energy security issue [9,10]. Improvements
via biomodifications can achieve economics of biodiesel production [11]. Successful
biomethane, biohydrogen, and bioethanol can be produced via POME treatment using
microalgae [12]. This paper presents a brief review of biofuel production from POME
treatment using microalgae. The current study discusses the application of microalgae in
POME treatment from a unique perspective, focusing on reviewing microalgae and POME
by employing an interrelationship approach. The understanding of the interrelationship is
crucial for exploring microalgae’s role in POME treatment, where the biofuel production
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is of interest. The paper first examines the potential of microalgae in POME treatment
and discusses the biofuel production from POME treatment in second part. The future
perspectives and challenges of microalgae usage in POME treatment are also discussed in
this paper.

2. Microalgae as a Potential Tool in POME Treatment
2.1. Microalgae Cultivation in POME and Benefits of Treating POME with Microalgae

Microalgae are a group of various unicellular microorganisms such as blue-green
algae, eukaryotic protists, and prokaryotic cyanobacteria. These microorganisms have a lot
of good characteristics that bring benefits to various types of biotechnological processes.
Microalgae can be grown through photosynthesis and use light, carbon dioxide, nutrients,
and water to turn into energy for cell development [13]. Microalgae mainly consist of lipids,
proteins, and carbohydrates as their major chemical component [14]. The composition of
the components varies for different cells. Microalgae are very flexible and adaptable to
grow in various types of environments. They are flexible and can be cultivated in both open
ponds and closed photobioreactors [15,16]. Microalgae constituents of different species are
listed in Table 1 below.

Table 1. Constituents of different microalgae species.

Microalgae Lipid Protein Carbohydrate

B. braunii [17] 33–86 4–40 20
C. rheinhardii [18] 18–22 46–48 17
C. ellipsoidea [19] 10–30 34–35 24–51

C. pyrenoidosa [19] 8–35 31–47 20–57
C. vulgaris [20] 10–50 29–58 12–17
S. platensis [21] 4–13 42–63 8–30

D. tertiolecta [22] 3–13 26–61 22
E. gracilis [23] 11 29 32

Wastewater treatment using microalgae is an eco-friendly process that can eliminate
pollution [24]. Microalgae have potential in treating POME, because algae grow using
solar energy via photosynthesis, and converting them into biomass can bring profit by
utilizing nitrogen and phosphorous compound that are present in POME. The growth
rate of microalgae is very fast due to their very high photosynthetic efficiency, which is
10 times faster than terrestrial plants. Besides that, using microalgae to treat POME is
very economically friendly, as biomass of microalgae growth in POME can potentially be a
major source of biofuel [25–27]. Another advantage of using microalgae is that they can be
cultivated on non-agricultural land [28]. Using microalgae to treat POME can also help by
lowering down the BOD and COD, which can help in preventing pollution [29].

The possibility of using POME for microalgae cultivation is very wide and beneficial.
This is due to the fact that not only can using microalgae to treat POME reduce the nutrient
level contained in it, but the biomass produced can also be utilized as bulk biomass or
value-added product. Contaminant in cultivated microalgae on POME is rich in lipids,
proteins, and carbohydrates, which are mainly focused on animal feed and fuel. On the
other hand, microalgae produce high value biofuel and bioactive compounds, which are
beneficial for energy and pharmaceutical industry, respectively. Several experiments had
been done by researchers with different types of microalgae, and the outcome of the studies
is as shown in Table 2.
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Table 2. Microalgae performance cultivated in POME.

Microalgae Species Nutrient
Reduction (%)

Lipid Production
(%)

Growth Rate
(1/day)

Biomass
Productivity

(g/L/d)
Duration (d)

Chlamydomonas [30] 68 60 1.2 0.08 7
Chlorella sp. [31] - - 0.066 0.058 15
S. plantesis [21] - - - 9.8 13

C. pyrenoidosa [32] 71.16 68 1.8 0.13 10
T. suecica [33] 95 27 - 0.211 7
N. oculata [34] 93.6 39 - 0.52 7

Treating POME with microalgae is a better way compared to the conventional method
such as anaerobic digestion, as the latter is unable to fulfil the requirements set by Depart-
ment of Environment, as the BOD level exceeds 100 mg/L before release to the aquatic
environment [35]. Treating POME with microalgae is very beneficial for all the palm oil
manufacturers due to its environmental-friendliness and economical-friendliness [24]. In
addition, one of the benefits of microalgae usage is that it can absorb carbon dioxide from
the atmosphere and release oxygen into the system, which can lead to higher oxygen
concentration in the system [15].

Microalgae are flexible to grow in any suitable environment, and therefore do not
cost anything. POME is one of the most suitable places for microalgae growth, as it
has all the elements that are needed for microalgae to grow, which are light, carbon
dioxide, nutrients, water, and phosphorous [36]. Thus, microalgae can form naturally in
POME pond. Additionally, pre-treated POME can be used to produce biohydrogen using
microalgae [37]. Furthermore, algae can also grow in the presence of heavy metals [14].
This means that microalgae not only can remove organic compound, but also are capable
of removing heavy metals [38].

Microalgae have been examined as a potential target to extract lipid for biofuel pro-
duction due to their economical-friendliness and environmental-friendliness [39,40]. Fur-
thermore, recent studies have been shown to enhance microalgae for further biofuel pro-
duction [41–43]. Figure 2 shows the bioethanol production using bioengineered microalgae
Synechocystis sp. PCC 6803, with a theoretical yield of 0.696 g ethanol/g CO2 [44]. Pro-
tein removal in algae solution has been studied by using membrane chromatography
technique [45]. Lipid content in microalgae is very much related to the performance of
microalgae in the wastewater system [43]. Lipid is made up of a functionally diverse
group of compounds, meaning different types of microalgae will have various lipid content.
Thus, microalgae C. vulgaris (CV) and C. pyrenoidosa (CP) were cultivated in a medium
containing POME with concentration of 10:90, 50:50, and 95:5 (raw POME: algae ratio) to
evaluate its lipid production [46]. Both microalgae are able to adapt to POME wastewater,
and CV has better growth rate and acclimatization compared to CP in POME for 20 days.
They also tended to stabilize themselves, as shown by the constant absorbance value after
day 14. Both microalgae attained their optimum growth under POME: algae ratio of 95:5
and concentration ratio of 10:90 are unsuitable for microalgae growth. Despite the better
growth of CP than CV, CP still produced more lipid content than CV at ratio 95:5. Both
CP and CV were found to grow well in POME, but CP dominated in POME. This shows
POME, as a carbon-enriched medium, can enhance microalgae growth to reduce pollution
in wastewater. On the other hand, oleaginous microalgae can produce oil efficiently in the
presence of sunlight due to their high lipid content (30–70%) [47].
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Figure 2. Bioethanol production pathway using Synechocystis sp. PCC 6803. Reproduced from [44]
with permission from The Royal Society of Chemistry.

Furthermore, biomass formed from microalgae is very valuable, as it can be used to
produce many useful applications. Utilizing microalgae biomass can be very profitable
for palm oil manufacturers, as the products that are produced from microalgae biomass
are high end products such as food colorant, vitamins, cosmetics, and pharmaceutical
applications [48,49]. These applications are very profitable value products. Also due
to the richness in protein of microalgae biomass, it can also be used as ruminant feed
for animals [50,51]. Microalgae are also a potential biofuel feedstock material due to
their capable characteristics [52]. It was found that using POME to cultivated microalgae
Spirulina platensis contains 1.8 g/L biomass and 0.216 g/L phycocyanin, which can be
utilized for the products aforementioned [53]. Moreover, microalgae have high level of
polyunsaturated fatty acids, which are highly comparable with the fish fatty acids and
are able to replace them. Different algae have their own ability to be utilized on different
products [54]. The residual biomass of green algae that are extracted from wastewater can
be further processed into many applications such as livestock feed, organic fertilizer, and
biostimulants and used for energy cogeneration to produce electricity and heat energy.

Table 3 outlines the annual biodiesel production, yield, and land required for different
source types [55]. High biofuel yield and low land requirement of microalgae point towards
the positive usage of microalgae as biofuel producer. Additionally, biofuel production
using microalgae does not compete with production of food for humans, and therefore
does not possess food crisis in the long run. Thus, cultivating microalgae in POME not
only can remove the pollutant material in the palm oil mill, but also produce valuable
biomass by-product. Thorough analysis on experimental and modelling results indicates
that microalgae are capable of aiding in global warming prevention and can be used as an
alternative energy source [56]. Besides that, microalgae do not require fertile land to grow,
as they can grow in wastelands such as brackish, wastewater, or ocean [50,57]. This shows
that the cultivation of microalgae does not compete with resources for food production
such as rice that require big piece of land to grow. Moreover, microalgae will be more
environmentally sustainable with respect to extensive cultivation of crops.
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Table 3. Annual biodiesel production, yield, and land required for different source type [55].

Source Type Yield (L oil/ha Year)
Land Required

(m2/kg Biodiesel
Year)

Biodiesel Production
(kg/ha Year)

Corn 172 66 152
Hemp 363 31 321

Soybean 636 18 562
Jatropha 741 15 656
Camelina 915 12 809
Rapeseed 974 12 862
Sunflower 1070 11 946

Castor 1307 9 1156
Palm oil 5366 2 4747

Microalgae 58,700–136,900 0.1–0.2 51,927–121,104

2.2. Condition of Growth of Microalgae in POME

Microalgae can grow in any medium that has all the nutrients necessary for algae
growth. The nutrients that are necessary for algae growth include nitrogen, phosphorus,
and carbon, which can be found in POME pond [58]. The growth rate and lipids produced
from microalgae can be increased with light intensity, glucose, and carbon dioxide concen-
tration [59–61]. From the experiment, it was found out that higher concentration of carbon
dioxide increases the microalgae growth rate. POME is a suitable medium for growth of
microalgae, as it is rich in all the nutrients necessary for algae growth and sufficient amount
of sunlight, as it is an open pond medium. Table 4 shows the POME constituents, which
are suitable for microalgae growth.

Table 4. Constituents of POME [62,63].

Parameter Mean Range

pH 4.2 3.4–5.2
BOD (mg/L) 25,000 10,250–43,750
COD (mg/L) 51,000 15,000–100,000

Total solids (mg/L) 40,000 11,500–79,000
Suspended solids (mg/L) 18,000 5000–54,000

Volatile solids (mg/L) 34,000 9000–72,000
Oil and grease (mg/L) 6000 130–18,000

Ammoniacal nitrogen (mg/L) 35 4–80
Total nitrogen (mg/L) 750 180–1400

For microalgae growth, there are several variables that play a crucial role to meet
the condition for growth. Microalgae mainly undergo photosynthesis for growing; thus,
light intensity and concentration of carbon dioxide will be a major component that can
directly affect the growth of microalgae. Effect of light intensity and concentration of
carbon dioxide was carried out to evaluate the on the growth of microalgae, as shown in
Figure 3 [64]. In this study, microalgae growth is directly proportional to light intensity,
which is also supported by another study [65]. High concentration of carbon dioxide will
lead the medium to be acidic, which significantly decreases the photosynthetic activity
and slows down the growth rate. Optimal CO2 concentration was found to be 12.5% [66].
On the other hand, maximum lipid production of Ettlia sp. YC001 was found to be under
0.05% CO2 concentration and light intensity of 400 µE/m2/s [67]. Additionally, highest
photosynthetic activity and maximum oxygen production rate were found to be with green
light, at different microalgae loadings [68].
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Microalgae are metabolically flexible and have a short doubling time. There are many
species of microalgae, in which most of the microalgae are photoautotrophs. Many species
undergo metabolic shift to heterotroph in different type of conditions and environments.
Microalgae carry out photosynthesis as the main energy source and utilize carbon dioxide
and organic molecules for carbon source. Besides that, POME pond is in stagnant condition,
as the wastewater is disposed into a pond without any flow. This will help in growth of
microalgae, as water movement will disrupt the growth of microalgae, as they can only
grow in a calm stream.

The range and optimum conditions for microalgae growth in POME for lipid produc-
tion are shown below in Table 5.

Table 5. Conditions of microalgae growth in POME [69].

Parameter Range Optimum

Temperature (◦C) 16–27 18–24
Salinity (g/L) 12–40 20–24
Light Intensity 1000–10,000 2500–5000

Photoperiod (light:dark) - 16:8 (Minimum)
24 h (Maximum)

pH 7–9 8.2–8.7
CO2 rate 1–4% 1% of volume in air
Nutrients - N:P (16:1) and Silicon

2.3. Pre-Treatment of POME for Microalgae Growth

There are several processes to pre-treat POME in order to maintain a healthy growth
rate of microalgae in the system. Many types of pre-treatment, such as thermal, chemical,
mechanical, and biological processes, are ways to treat the wastewater before cultivation.
Pre-treatment of POME, such as coagulation process and absorption, can be done in order
to improve the penetration of light during culturing process of microalgae in POME sys-
tem [70]. The coagulation process was done by using rice starch and tapioca starch. On
the other hand, the absorption process was done by using activated carbon from other
biomass such as palm kernel shell, which makes it a good way to utilize the biomasses
produced in the mill. The pre-treatment was evaluated by optimizing several different
parameters which are pH, particle size, stirring speed, and dosage. The pre-treatment
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methods were performed with culturing of S. dimorphus, C. vulgaris, and D. sanlina. Absorp-
tion process using activated carbon from palm kernel shells achieved better reduction in
turbidity (83.33%), COD (83.91%), and suspended solids (92.30%) than coagulation using
rice and tapioca starch. However, the absorption process takes a much longer time than
coagulation [70].

Another pre-treatment of POME is acid–heat treatment. POME contains lignin from
the plant component, which results in its dark colour. The dark coloured liquid contains
lignin, cellulosic, hemicellulosic, hexose, and pentose [71]. By using acid–heat pre-treatment
method, the hydrogen yield was found to increase as the contents of carbohydrate in POME
broke down into glucose. Lignin in POME is very soluble in acidic solution, which will
be removed by the pre-treatment process [72]. This pre-treatment will help in growth of
microalgae, as it brings more sugar into the medium. Additionally, this pre-treatment
clears up the dark coloured lignin, which will enable more light to enter the medium for
microalgae growth.

In order to optimize the usage of microalgae for POME, pre-treatment of POME
should be done to lower the BOD, COD, turbidity, suspended solids, and microorganism
content. One of the researchers used water lily to lower the content of COD and BOD in
POME, as the medium for microalgae S. platensis [73]. Another researcher used filtration
method to remove contaminants from POME, which resulted in the increase of lipid
productivity [74]. A new method of autoclaving was applied to treat the wastewater, which
turned into an increase in microalgal biomass yield and productivity [75], whereas a similar
treatment combining autoclaving, centrifugation, and filtration was applied to treat the
wastewater [76]. In these treatments, microalgae were found to accumulate high lipid levels
when cultivated in POME medium. Moreover, pre-treatment of POME before cultivation of
microalgae can also be done by adding chemical agent or activated carbon to coagulate and
absorb the colour. With the addition of activated carbon to the wastewater, the turbidity
of wastewater will be lowered, which will help the microalgae to perform photosynthesis
more efficiently. A study shows that adding activated carbon to the medium have no
negative impact on microalgae [77].

3. Biofuel Production from POME Treatment Using Microalgae
3.1. Characteristics of Algae for POME Treatment

Microalgae bring a lot of advantages to POME treatment due to their unique character-
istics and show multifaceted roles in wastewater treatment [9]. Many algae characteristics
are suitable to treat wastewater such as POME. One of microalgae’s characteristics is that
they can grow using photosynthesis [58]. This characteristic can fix the problem of a high
amount of carbon dioxide in the system, by decreasing the carbon dioxide level in the
system, as microalgae use it for photosynthesis [78]. Microalgae also support aerobic
bacterial oxidation of organic matter, producing oxygen by photosynthesis, which aids
in POME treatment [29]. This characteristic of algae will help to solve the problem of
high BOD and COD that occurs in POME [79]. In addition, photosynthesis will generate
nutrients and carbon dioxide, which will be used for growth of algal biomass; for example,
nitrogen in the algal cell bound to proteins tends to be compose of 45–60% of dry weight,
and phosphorus is essential for synthesis of nucleic acids, phospholipids, and phosphate
esters [80].

Microalgae have high capacity for inorganic nutrient uptake, as they use nitrogen and
phosphorous to grow, because both components are elements that provide nutrition to
algae. They are able to rearrange the molecules to make use of nitrogen and phosphorus to
produce food and energy for growth. Nutrient load in the wastewater will be decreased
with algae, consuming nitrogen and phosphorous for growth. One of the microalgae
C. Vulgaris displayed nutrient removal efficiency of 86% and 78% for inorganic nitrogen
and phosphorous, respectively [81].

On the other hand, microalgae can be utilized to remove heavy metals present in
POME [82,83]. Heavy metals that are present in POME can be detoxified, transformed,
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and volatilized by microalgae metabolism. Due to the characteristic of microalgae being
non-pathogenic, gases released will not harm the atmosphere. Microalgae can utilize
the waste as a nutrition source for growth and consume the pollutants. Biosorption
of microalgae is the adsorption process of heavy metals on their surfaces. In addition,
using microalgae as biosorbents for biosorption process to remove heavy metals in the
wastewater is also feasible [84,85]. Microalgae have high metal binding capabilities due
to their characteristics of having properties such as lipids, polysaccharides, and protein
on the surface of microalgae cell wall [86]. These properties on the cell wall contain some
functional groups such as amino, hydroxyl, carboxyl, and sulphate that can act as binding
sites for the heavy metals. This concludes that microalgae are suitable and reliable for
removing heavy metals from the POME system.

The performance of microalgae in treating POME is mainly based on the ability to
remove the undesired products in the medium. There are many undesired products
contained in POME wastewater that are also pollutants that can harm the environment,
which must be treated in order to prevent pollution from POME. The undesired products
contained in POME are nitrogen, phosphorus, BOD, COD, heavy metals, and many more,
which can be eliminated by the cultivation of microalgae due to their unique characteristics,
which utilize the undesired products for growth.

There are many types of microalgae that can be used to treat POME, though getting
the most efficient microalgae is very important to get maximum work done [50]. Much
research was carried out to remove nitrogen and phosphorous to treat POME with various
types of microalgae. Comparing all the microalgae used, Chlamydomonas was found to be
the most efficient microalgae, as it has the fastest growing rate among all the microalgae,
along with the ability to remove pollutants in POME [30]. Chlamydomonas consumes COD
as a growing medium and uptakes it for itself. COD consumption rate of Chlamydomonas
was found to be 58%. Chlamydomonas is optimum in removing pollutant substances and
consumed most COD with the concentration of 250 and 1000 mg/L of POME, respectively.

An experiment was carried out to evaluate the efficiency of microalgae to remove these
undesired products such as COD and nutrients consisting of ammonium and phosphorus.
This experiment was done with two types of microalgae, C. vulgaris and A. brasilense,
cultivated in different conditions. Microalgae are shown to be able to remove ammonium,
phosphorous, and COD in both types of cultivation condition, agitation and aeration.
However, microalgae performance in removing the components may vary in different
types of cultivation condition, where agitation cultivation is more suitable in removing
phosphorus and COD, while aeration is suitable to remove all components generally [87].

Another experiment was carried out on removal of COD and total nitrogen from
POME [88]. There are two variables that are manipulating the removal percentage of
nitrogen, which is the Na-alginate concentration percentage and the time of microalgae in
contact with POME. Higher Na-alginate concentration shows better removal of nitrogen,
while POME with blank beads shows no improvement in removing nitrogen over time,
as there were no cells to remove the nitrogen. This proves that higher concentration of
microalgae will perform better in removing nitrogen in POME medium. On the other hand,
the time in contact of POME and the microalgae is also affecting the removal percentage of
nitrogen. This trend shows that the removal percentage of nitrogen increased over time
with microalgae in contact with POME, as longer treatment time is allowed to increase the
removal efficiency. The trend of COD removal is similar to that of nitrogen removal as the
removal efficiency of COD increased over time. The nitrogen and COD removal percentage
was 62% and 65%, respectively, for concentration of 8%.

The experiments above proved that microalgae are able to remove undesired product
such as COD, phosphorous, nitrogen, ammonia, nutrients, etc., providing a cost effective
and sustainable solution for POME treatment.
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3.2. Increased Production of Biodiesel Feedstock Using Microalgae from POME Treatment

There are many benefits of treating POME with microalgae. This method of treatment
for POME not only can reduce the pollutants contained in the wastewater, but also creates a
new opportunity for other applications. Microalgae that are cultivated in POME can be used
as feedstock for the production of biofuels. This is because microalgae have high biomass
yield, and they utilize smaller land areas that are not suitable for food production [57].
Besides that, the ability of microalgae to utilize emitted carbon dioxide for photosynthesis
will offer a carbon neutral biofuel [89].

The quality of biodiesel feedstock from conversion of microalgae is based on their
high biomass content, lipid productivity, and suitable fatty acid compositions. One of
the microalgae species Chlorella is the most common microalgae that has been used for
treatment of POME, which is of major interest for production of biodiesel feedstock due
to the ability to accumulate large amount of lipids under stress [90]. To further review
the availability of Chlorella microalgae acting as a feedstock for biodiesel, an experiment
was done based on the growth of Chlorella in different cultivation systems using POME as
medium to evaluate the algae formed for biodiesel feedstocks. It was found that POME is
rich in N and P nutrients, which are able to support photosynthesis and produce biomass
such as lipid, protein, and carbohydrate that can be converted into products such as
biodiesel [46,91,92]. Chlorella microalgae cultivated in medium containing POME has
the highest growth rate evaluated by all three photobioreactors. The biomass and lipid
production of Chlorella microalgae cultivated in POME was higher than other standard
medium, demonstrating the high potential of microalgae in biodiesel production feedstock.
With this treatment, not only POME can be treated, but additional profit can also be
gained by utilizing the microalgae cultivated as biodiesel production feedstock. Thus,
this experiment concludes that POME is a good medium to cultivate Chlorella microalgae.
Additionally, lifecycle assessment has proven biodiesel production via microalgae to be
highly feasible [93].

The biofuel production of microalgae is dominated by the lipid compounds. Bio-
engineered methods within the cell are common effective techniques to enhance lipid
production. In this sense, the understanding of the lipid metabolic pathway within the
cell is important [94]. The net effect is light enters, leaving oxygen and chloroplast as
end products.

4. Challenges and Future Perspectives
4.1. Will Microalgae-Based POME Treatment Cause Pollution?

Microalgae are well-known wastewater treatment component that remove the pollu-
tants in the wastewater. However, mass cultivation of microalgae can cause pollution to
the environment. Mass cultivation of microalgae, also known as controlled eutrophication
process, should be managed well by harvesting the microalgae formed. This is because
decomposition of dead algal biomass will consume oxygen from the water medium [95],
which will defeat the purpose of using microalgae, as treating a component for POME
affects the aquatic lives that require oxygen for respiration. The consequence of water
pollution caused by POME is water and habitant contamination. The water that can be
used becomes limited when it is polluted by the disposed wastewater. Release of large
scale cultivation water medium to the environment will cause eutrophication and decrease
the seagrass communities which are essential for stabilizing the ecosystem [96]. Besides
that, natural habitats for animals and aquatic life will be destroyed, as the contaminants of
wastewater are very harmful to the ecosystem of the aquatic life where they are cooped up.
Next, another impact of disposing wastewater without treatment is soil degradation [5].
Untreated wastewater will tend to find way into the soil, which causes it to yield lesser
crops at a slower rate. The crops that are affected will eventually pose a potential threat to
human health and food safety.

The main challenge in global biofuel commercialization is its high production cost [58,97,98].
A lot of palm oil manufacturers prefer microalgae cultivation in open ponds because of the
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lower cost compared to reactors. However, microalgae cultivation in open ponds will make
them vulnerable to contamination. Ponds that are not properly managed and constructed
will cause a threat and pollute the environment by the leaking of content of the pond
into the ground. Although the contaminants of POME are non-toxic, they will lead to
contamination of ground water. Pollution of groundwater will also affect other streams
of water such as lakes, rivers, and oceans, as groundwater is connected to them. Nearly
half of the rivers and lakes on earth are polluted [99], and palm oil mills have also been
reported to be one of the largest contributors to the pollution of surface water, as a large
amount of POME containing high amount of nutrients from the mills are being disposed
without treatment [100].

In addition, using microalgae cultivation to treat POME will also cause impacts to
terrestrial diversity. This is due to the fact that construction of ponds will lead to displace-
ment and destruction of fauna, which will cause destruction of habitat. Environmental
impact assessment shows that the level of impact for construction of large scale ponds
for microalgae cultivation is high. The effects on terrestrial biodiversity from changing
the landscape for construction of ponds will lead to habitat lost for wildlife. An example
related to the impact of construction of large-scale microalgae cultivation ponds is the
construction of reservoirs. An average size of a reservoir is around 12 km2 area. Although
a reservoir is bigger than an expected microalgae cultivation pond, it will give an idea of
the impact that it poses. Building resources such as a reservoir will pose problems such as
loss of woodland, flora, individual species on site, and most importantly destruction of
habitat of wildlife.

It is clear that constructing microalgae cultivation ponds poses environmental threat
to the aquatic life and land habitat. However, it also poses pollution to the atmosphere.
The level of pollution is greatly dependent on the scale of cultivation medium. Large
scale cultivation medium will potentially enhance the biological fixation of carbon dioxide
from photosynthesis. The varying organisms contained in the medium will result in
different uptake of carbon dioxide from the atmosphere. As an example, a researcher
had conducted an experiment on the carbon dioxide uptake with diatom. P. tricornutum
has a carbon uptake of 1.5 mg/min and microalgae A. microcopia Nageli with carbon
uptake of 28 mg/min [15]. When the microalgae are cultivated at optimum conditions, the
carbon dioxide uptake is significantly higher. This will require a large surface to remove
the emissions: studies show that to remove 2.5% emissions of carbon dioxide requires
65,800 km2 land, which is equivalent to 0.43% of land on earth. Carbon capture from
microalgae is one of the methods to reduce emission of carbon. Microalgae tend to capture
carbon to fertilize their growth through Calvin-cycle activity. This is possible because
microalgae have active bicarbonate pumps and can concentrate bicarbonate in the cell [101].
With the capability of microalgae to capture the carbon emission, it can greatly reduce the
costs needed to remove the emission of carbon.

Besides emission of carbon dioxide, cultivation of microalgae on large-scale will
also pollute the atmosphere by emission of methane. Methane is a gas that has potential
to cause global warming, which also affects the ozone layer that will eventually affect
climate changes and air quality. Methane is produced from anaerobic decomposition by
methanogenic bacteria. Microalgae cultivation ponds that are well managed will not have
anaerobic conditions because of the constant air interaction with the medium. Studies show
that methane is a very saturated gas above water surface with respect to the atmospheric
levels. It was also found that methane is produced by water under toxic conditions [102].
Thus, any scale of microalgae cultivation medium will make a contribution to methane
emission to the atmosphere. Application of anaerobic method to treat POME will release
greenhouse gases such as carbon dioxide, methane, and hydrogen sulphide, which are the
main gases that cause global warming [103]. Furthermore, POME will release a strong odor
to the communities nearby the oil mills if it was not managed properly.

Moreover, microalgae cultivation will also emit nitrous oxide (N2O). N2O is poten-
tially 264 times more powerful than carbon dioxide as a greenhouse gas in over 20 years’
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time [104], which means that emission of N2O must be controlled to prevent too much
leakage of greenhouse gases. Some solutions are being proposed to reduce emission of
nitrous oxide, which is cultivated under non-axenic condition. This cultivation can be done
either from autotrophic bacteria with hydrogen or sulfur as an electron donor. On the other
hand, cultivation under non-axenic condition can also be achieved by using heterotrophic
denitrifiers, which use organic compound as electron donor.

4.2. Impact on Aquatic Organism

Apart from the wastewater that was generated, POME is one of the biomasses from
palm oil production that have the highest pollution rate to the environment. POME is
100 times more polluting than the municipal sewage [30]. This is due to the fact that
POME has high BOD, COD, low pH, and colloidal nature. The effluent also contains
high concentration of organic nitrogen, phosphorous, and other types of supplementary
substances. A palm oil processing plant that utilizes 10 tons of fresh fruit per hour would
need a water treatment plant as big as what is required by half a million individuals. In a
conventional palm oil mill, a range of 600–700 kg of POME is generated for every 1000 kg
of processed fresh fruit bunch [35]. POME is often disposed in nearby waterways, which
will greatly impact the environment by creating highly acidic fluid and BOD.

Bacteria utilize oxygen to consume BOD, which causes depletion of oxygen in the
water, making it difficult for aquatic life to survive [105]. On the other hand, disposal of
POME on land will threaten the soil properties, microbes, and plants [106]. Palm oil mills
in present introduce anaerobic and facultative ponds as a conventional way to treat the
wastewater biologically. However, during the rainy season, water pouring into the water
treatment plant will tend to overflow, causing water pollution to nearby waterways.

In addition, POME does affect the growth of aquatic organism Nile tilapia at the early
stages. Exposure of POME will bring negative impact to the hatching rate, survival rate,
body length, and heart rate of Nile tilapia. This concludes that POME will bring harm to
the aquatic life; thus, disposing it into the rivers and lake should be prohibited, as it will
harm the aquatic life and affect the ecosystem [107,108]. Not only microalgae have been
investigated under POME solution, but also under seafood, wet market wastewater, and
paper industry effluent [40,109,110].

5. Conclusions

To sum up this review article, the demand of palm oil is increasing yearly, which
directly affects the amount of generated POME. Based on all the research that is reviewed,
microalgae are very highly potential component in treating POME due to their unique
characteristics, which can remove all the pollutant components present in POME. However,
some characteristics in POME might affect this treating method, such as high organic
compounds consisting of tannis, lignin, and phenolic compound, which can affect the
microalgae growth. Besides that, the suspended solids that cause POME to be dark in
colour will also affect microalgae from performing photosynthesis, as it is difficult for
light to penetrate through the water. Thus, pre-treatment of POME is still essential to
obtaining optimum performance from microalgae treatment. In this review article, the
experimental performance of microalgae on POME was reviewed. Results show that
the removal percentage of pollutant materials such as COD, nitrogen, and phosphorous
is significantly high and efficient. This shows the potential of microalgae in treating
wastewater such as POME with low cost. The biomass produced from microalgae can also
be used for various applications, from biofuel to cosmetics products. It is very valuable
to make a profit out of the biomass of microalgae. Although treatment using microalgae
is very beneficial, it will pose a negative impact if it is not handled well. Thus, correct
operating procedure must be followed when utilizing microalgae for treatment of POME.
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