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Abstract: Bicycle sharing systems (BSSs) have been implemented in cities worldwide in an attempt
to promote cycling. Despite exhibiting characteristics considered to be barriers to cycling, such
as hot summers, hilliness and car-oriented infrastructure, Southern European island cities and
tourist destinations Limassol (Cyprus), Las Palmas de Gran Canaria (Canary Islands, Spain) and the
Valletta conurbation (Malta) are all experiencing the implementation of BSSs and policies to promote
cycling. In this study, a year of trip data and secondary datasets are used to analyze dock-based BSS
usage in the three case-study cities. How land use, socio-economic, network and temporal factors
influence BSS use at station locations, both as an origin and as a destination, was examined using
bivariate correlation analysis and through the development of linear mixed models for each case
study. Bivariate correlations showed significant positive associations with the number of cafes and
restaurants, vicinity to the beach or promenade and the percentage of foreign population at the BSS
station locations in all cities. A positive relation with cycling infrastructure was evident in Limassol
and Las Palmas de Gran Canaria, but not in Malta, as no cycling infrastructure is present in the
island’s conurbation, where the BSS is primarily operational. Elevation had a negative association
with BSS use in all three cities. In Limassol and Malta, where seasonality in weather patterns is
strongest, a negative effect of rainfall and a positive effect of higher temperature were observed.
Although there was a positive association between BSS use and the number of visiting tourists in
Limassol and Malta, this is predominantly explained through the multi-collinearity with weather
factors rather than by intensive use of the BSS by tourists. The linear mixed models showed more
fine-grained results and explained differences in BSS use at stations, including differences for station
use as an origin and as a destination. The insights from the correlation analysis and linear mixed
models can be used to inform policies promoting cycling and BSS use and support sustainable
mobility policies in the case-study cities and cities with similar characteristics.

Keywords: bicycle sharing systems (BSSs); cycling; linear mixed models; Southern Europe; island
cities

1. Introduction

Bicycle sharing systems (BSSs) are shared bicycle fleets allowing short-term public
use [1]. Since the late 1990s, when only a handful of bicycle sharing systems existed, the
number of BSSs around the world has increased rapidly, growing to almost 3000 active
systems by 2020 [2]. Many cities around the world have introduced BSSs as part of a
wider sustainable transport strategy and cycling promotion. The three Southern European
island cities of Limassol (Cyprus), Las Palmas de Gran Canaria (Canary Islands, Spain)
and the Valletta conurbation (Malta) exhibit characteristics considered to be barriers to
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cycling, such as hot summers and high humidity, hilliness and a car-oriented culture and
infrastructure [3]. Furthermore, cities in Southern Europe, especially those on islands and
the coast, need to provide for the seasonal influx of tourists, especially during the summer
months, in addition to daily residents” movements for work, education and leisure [4].
Although cycling’s modal share is low thus far in these cities (<1%), bicycle sharing systems
and policies promoting cycling have started to emerge here too, and the three cities can be
classified as ‘starter’ cycling cities [3].

Most BSS research has focused on large cities across the globe (e.g., [5] for a review),
but few studies have looked at the dynamics of these schemes in smaller towns and cities [6].
Rixey [7] suggested extending the regression analysis of variables influencing BSS use to
include a more diverse range of systems in terms of size and context. The aim of this study
is to analyze BSS use in a particular context, that of Southern European island cities, as
only limited research has focused on the analysis of BSS use using trip data in small- and
medium-sized cities in Southern Europe [8,9], where first steps are now being taken to
promote cycling as a mode of transport, e.g., [3,10]. Specifically, in this paper attention is
paid to the inclusion of temporal variables in a linear mixed model, to assess the influence
of weather variables and tourist numbers on BSS use, as these are expected to show an
influence on the usage of the BSS in these cities” contexts [11]. Furthermore, the use of
stations as an origin or as a destination is taken into account in the linear mixed models,
to understand which spatial and temporal factors particularly influence BSS station use
as an origin or destination in Limassol, Las Palmas de Gran Canaria and Malta. This
analysis provides insights into factors that encourage or inhibit BSS use and can aid the
formulation of policy recommendations to optimize system use and guide future extension
of the systems to further promote cycling in these ‘starter” cycling cities for both residents
and visitors.

In the second section of this paper, an overview of the literature on this topic is
provided. In Section 3, the case studies are introduced. Section 4 discusses the methodology
and datasets used. In Section 5, the analysis of the datasets, through bivariate correlation
analysis and the constructed linear mixed models, is presented. The results are discussed
in Section 6. Section 7 concludes the paper.

2. Literature Review

The first experiments with shared public bicycles were the free white bicycles in
Amsterdam in the 1960s, and later in the 1990s using coin-based payment systems, for
example in Copenhagen [12]. However, bicycle sharing systems only really became a com-
monplace mobility service in the twenty-first century, with payment linked to users’ credit
cards and access to rentals through digital terminals or mobile apps. These are considered
third-generation bicycle sharing systems [5]. Further innovations, sometimes attributed to
a fourth generation of BSSs, include new technological features such as dockless BSSs with
GPS-tracked smartbikes, transit card integration and electric bicycles [13]. Third-generation
BSSs, the focus of the analysis in this paper, produce different forms of data [14,15]: trip or
flow data, containing time varying origin—destination matrices; and point or stock data,
with information about the station locations and statuses.

Evidence from a number of cities-Melbourne, Brisbane, Washington DC, Minnesota
and London-shows that the average BSS trip duration is between 16 and 22 min [16,17].
The pricing structure of most BSSs, often with a flat fee interval (FFI) of 30 min, encourages
short journeys [18]. Average trips per day or trips per day per bicycle (TDB), to account
for the system size and number of available bicycles, is used as a metric to compare the
performance and usage of bicycle sharing systems across cities [3,5]. Round trip journeys,
beginning and ending at the same station, are generally associated with leisure and week-
end trips [17]. Casual users tend to make longer trips than subscription members [19], with
the latter more likely to use the BSS for daily trips related to commuting [5].

Based on previous research into the influence of spatial and temporal factors on BSS
use, the following are some key findings. Areas with higher population density, indicating
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residential areas, are generally considered to be trip origins, whereas areas with higher job
density, retail density, tourist attractions and parks and leisure locations generally function
as trip attractors [20]. Evidence from Barcelona and Seville, Spain [11], and Rethymno
(Crete), Greece [21], show that high BSS use is found in areas with a high land use mix, with
many points-of-interest (POls), including commercial and recreational activities, as well as
places of historic interest. BSS use is generally positively correlated with nearby bicycle
lanes and paths [17,22,23]. BSS use is generally positively associated with nearby public
transport, functioning as a complementary form of mobility [24,25], but there are also cities
where a substitution effect was found, where the BSS is competing with other forms of
public transport [26]. The spatial coverage or extent of the BSS also influences the usage, as
bicycle sharing systems are often geographically limited, focused on the city center and
destinations such as university campuses and business districts [27,28]. The characteristics
of the network, for example the distance between stations and the center of the system
(the mean position based on the location of all BSS stations), the distance to other stations
and the number of stations within a certain radius, can influence system use, with findings
showing higher BSS use at stations closer to the central business district (CBD) and those in
proximity to other BSS stations [7,23,29]. Socio-demographic and economic characteristics
of the neighborhoods at the station location, such as age and level of education, can also
influence the usage of the BSS [7,29]. Although in principle, warm and sunny weather
has a positive effect on levels of cycling and BSS use, studies showed that temperatures
above 30 °C can act as a deterrent and result in a decrease in BSS use [30,31]. Although the
influence of POIs and tourism destinations within a buffer zone around BSS stations have
been assessed in certain contexts, e.g., in case studies of Barcelona and Seville [11] and
Santander (Spain) [8], the influence of tourism numbers on BSS use has not been evaluated
in such analyses thus far.

This study builds on previous research looking at spatial and temporal factors in-
fluencing BSS use. Earlier work based on the same datasets includes an analysis of the
influence of spatial factors on BSS use in Las Palmas de Gran Canaria [10] and a descriptive
analysis of the influence of spatial factors on the top five most intensely used stations in
the BSS, as well as temporal variation in BSS use across the year in Limassol, Las Palmas
de Gran Canaria and Malta [32]. The latter paper describes the spatial datasets used in
the analysis in full detail. The results showed that the presence of cycling infrastructure,
particularly next to the beach or on promenades in these coastal cities, where elevation is
low, showed a positive relationship with BSS use. A higher count of POls, such as cafés
and restaurants, also showed positive associations with BSS use, whereas the presence of
university buildings did not influence BSS use, indicating the university community is not
a dominant user group in these cities. The presence of public transport hubs (bus stations,
ferry landing sites) showed a positive relationship in Las Palmas de Gran Canaria and
Malta, but not in Limassol, where the modal share of public transport is very low [32]. In
this paper, the influence of spatial and temporal factors, specifically looking at station use
as an origin or destination, is investigated in the specific context of Southern European
island cities with high summer temperatures and large numbers of visiting tourists.

3. The Case Studies

This section introduces the three BSSs investigated in this study, located in Limas-
sol (Cyprus), Las Palmas de Gran Canaria (Canary Islands, Spain) and Malta. Table 1
summarizes some key characteristics of the BSSs, such as the number of stations and
bicycles, operating hours and the fee structure, including the flat fee interval (FFI). The
land use characteristics and location of BSS stations are presented per city, for Limassol
in Figure 1, Las Palmas de Gran Canaria in Figure 2 and Malta in Figure 3. Information
on the characteristics of the BSS and operational aspects were obtained through personal
communications with the BSS operators and from their respective websites. All three BSSs
are dock-based systems with regular bicycles. Although the effect of station capacity on
the usage of the BSS (i.e., the availability of bicycles and of free docking spaces) has been
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highlighted as having a substantial influence on BSS use, e.g., [33], this was not considered
in this analysis as it was not deemed to be as relevant in the case studies presented here. In
two out of the three cities (Limassol and Malta), BSS users are permitted to lock bicycles
near the BSS station when the docks are full. Daily redistribution of bicycles in all three
cities and lower intensity of use than in other BSSs experiencing capacity issues result in
very limited issues with completely full or empty stations.

Table 1. Key characteristics of the bicycle sharing systems (BSSs) in Limassol (LIM), Las Palmas de Gran Canaria (LPA) and

Malta (MAL).
LIM LPA MAL
BSS (since year) Nextbike Cyprus (2012) Sitycleta (2018) Nextbike Malta (2016)
Number of bicycles in 2019 170 375 400
Number of stations in 2019 23 37 60
Opening hours 24/7 07:00-23:00 24/7
Pay-as-you-go fee (flat fee interval (FFI)) €2 (60 min) €1.50 (30 min) €1.50 (30 min)
Yearly subscription fee €120/year €40/year €80/year
(FFI) (120 min/day) (30 min/trip) (30 min/trip)

Limassol is the second-largest city in Cyprus, located on the island’s southern coast,
with 100,000 inhabitants in the Limassol municipality, and around 200,000 inhabitants living
in the greater urban conglomeration [34]. Limassol is home to the largest port in Cyprus,
it is one of the main industrial hubs, and it is also a well-known tourist destination. The
campus of the Cyprus University of Technology is located in the city center. The majority
of hotels are located towards the eastern end of the city, near Amathus. In 2018, the modal
share by private car was 91.8%, by bus 1.8%, on foot 5.7% and by bicycle 0.7% [35]. Private
operator Nextbike Cyprus introduced the BSS in Limassol in 2012, with 170 bicycles and
23 active stations in 2019, which are primarily concentrated in the city center and along the
coastal promenade.

Las Palmas de Gran Canaria is the largest city and capital of Gran Canaria. The city
is home to 379,925 inhabitants [36]. The city has two main city centers: firstly, the area
around San Telmo and its bus station and secondly, the area around the Santa Catalina
park and bus station. The main port area is located in the northeast of the city. The city has
low elevation differences along the coast, but elevation differences of up to 300 m further
inland, in the residential neighborhoods in and around Ciudad Alta. The University of
Las Palmas de Gran Canaria (ULPGC) is located around 10 km south of the city, in the
hills of Tafira. The main touristic area in the city is located close to the northern city center,
around Santa Catalina and the Las Canteras beaches. In 2012, the modal share by private
car was 63%, by bus 13%, on foot 15% and by bicycle 0.5% [37]. SAGULPA, the municipal
company responsible for parking management, introduced the BSS Sitycleta in April 2018,
with around 375 bicycles and 37 stations, all located within the lower part of the city.

The Valletta conurbation in Malta refers to the urban area around the capital city
Valletta, encompassing the Northern and Southern Harbor districts, which together are
home to a population of 205,768 inhabitants [38]. The area includes the main tourist and
entertainment hub at St Julian’s; residential, commercial and employment centers in Msida,
Gzira and Sliema; and the University of Malta in Msida. In 2010, the modal share by private
car was 75%, by bus 11%, on foot 7.5% and by bicycle 0.3% [39]. In Malta, private operator
Nextbike Malta introduced a bicycle sharing system in late 2016, with 60 stations and over
400 bicycles in 2019. The majority of the stations are located around the central urban area
north of the capital Valletta, but there are other stations around the island, including a
cluster in St Paul’s Bay and around the airport.
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Figure 1. BSS stations, cycling paths, points-of-interest (POIs) and elevation in Limassol (drawn by author; adapted
from [40]).

Figure 2. BSS stations, cycling paths, POIs and elevation in Las Palmas de Gran Canaria (drawn by
author; adapted from [10]).
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Figure 3. BSS stations, cycling paths, POIs and elevation in Malta (drawn by author).

4. Methodology and Datasets

Using a one-year dataset of BSS trip data (April 2018-March 2019), including the
location of the stations, time and date of bicycle rentals and returns and anonymous
user IDs, the datasets were prepared for analysis. Trips under 2 min and over 500 min
were removed, as they likely represented a mistake or malfunctioning of the bicycle or
registration system [8,16]. The datasets consisted of 17,532 trips in the Limassol dataset,
162,871 trips in the Las Palmas de Gran Canaria dataset and 37,306 trips in the Malta
dataset.

Two dependent variables were considered in the analysis: the total monthly counts of
trip origins (COUNTO) and trip destinations (COUNTD), respectively, at a station location,
to see if there is any difference in the factors influencing the frequency of use of a station
as a trip origin and as a trip destination. Relevant land use, socio-economic and network
variables were identified through the literature review to include as independent variables.
Data were collected from secondary sources for the three case-study cities. Data on the
location of points-of-interest (POls), such as bus stations (LU_BUS), shops (LU_SHOP),
hotels (LU_TOUR), cafés/restaurants (LU_CAFE) and university buildings (LU_UNI),
were extracted from the OpenStreetMap (OSM) dataset [41]. The value included for these
variables was based on the counting of these POlIs (e.g., the number of hotels, cafés, etc.)
within a 300-m Euclidian distance buffer around the station location, the most commonly
used measure for a walkable distance to BSS stations, e.g., [42]. The distance from a station
to the nearest bus station (LU_DISTBUS) and the nearest university building (LU_DISTUNI)
was also included. The road network and the location of cycling infrastructure was also
obtained from the OSM dataset, as well as from secondary sources for each city: from the
Sustainable Urban Mobility Plan of Limassol [35], from the Bicycle Master Plan for Las
Palmas de Gran Canaria [43] and from the Malta Transport Master Plan 2025 [39] for Malta.
The road network was used to compute the number of nodes within the 300 m buffer
around stations (LU_NODES) and the cycling infrastructure was used to calculate the
length of the cycling path/lane within the 300-m buffer (LU_LEN_CYC) and the distance
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from the stations to the nearest cycling path/lane (LU_DIST_CYC). Data on residential,
commercial/industrial and park land use, as well as the location of the coastline, were
derived from the Urban Atlas (UA) 2012 dataset of the EU’s Copernicus Land Monitoring
Service [44]. The percentage of these different types of land use present within the 300-m
buffer were computed as percentages (LU_RES, LU_COM and LU_PARK, respectively).
The location of the coastline was used to compute whether a promenade or beach was
present within the 300-m buffer around a station as a dummy variable (LU_BEACH) and
to compute the distance from a station to the nearest coastline (LU_DISTSEA). Information
on elevation at the station locations (ELEV) was obtained from the digital terrain models
(DTMs) of Cyprus [45], the Canary Islands [46] and Malta [47]. Socio-economic data,
the population density (POP_DENS), percentages of aging population (AGING_POP),
foreign population (FORGN_POP), population with a tertiary degree (PERC_EDU3) and
the gender quotient (GEND_RATIO) were extracted from the 2011 Population Census of
Cyprus, with data on the neighborhood level for Limassol [48], for Las Palmas de Gran
Canaria from statistical data on census tract and the neighborhood level [49-51], and for
the Valletta conurbation in Malta from the 2011 Population Census of Malta and the 2014
Demographic Review at the local council level [38,52]. To account for the influence of
the shape and size of the BSS network, the distance of the stations to the center of the
BSS was calculated (DIST_MEAN) and the number of BSS stations within a 600-m radius
(COUNT_STAT) and 1200-m radius (COUNT_STA?2) around the stations was computed to
capture the centrality and connectivity of a station within the network. A detailed overview
of the spatial dataset was presented in a table with definitions and values for each variable
per city in Maas et al. [32].

Data on tourist arrivals and weather factors were included as temporal variables.
The temporal variables were collected on a monthly basis (visitor numbers), or averaged
(temperature) or aggregated (rainfall) over the period of a month. Tourism data were
collected from the Cyprus national statistical service [53] for Limassol, from the statistical
institute for the Canary Islands [54] for Las Palmas de Gran Canaria and from the National
Statistics Office [55] of Malta. Since there were no data available specifically for the
number of tourists staying in or visiting Limassol, monthly figures of tourist arrivals in the
Republic of Cyprus (TOT_TOUR) were used as a proxy for the number of tourists visiting
Limassol. Total tourist numbers equated to just under 4 million for all of the Republic
of Cyprus in 2018, with around 13% of those visiting Limassol. In Las Palmas de Gran
Canaria, around 125,000 tourists stayed in the city. In Malta, in 2018, 2.7 million tourists
arrived, with the vast majority of visitors staying in or visiting the Valletta conurbation.
Weather variables were extracted from reports of the relevant meteorological institutes to
collect values of average monthly maximum temperature (AVG_MAXC) and total monthly
precipitation (TOT_RAIN). Weather variables for Limassol were extracted from reports of
the Department of Meteorology for the weather station at Limassol New Port [56], from
the Meteorological office at the Las Palmas de Gran Canaria airport [57] and from the Met
Office for Malta [58]. Average yearly rainfall in Limassol is around 500 mm, in Las Palmas
de Gran Canaria around 150 mm, and in Malta around 550 mm. The values for the cities are
presented in Figure 4a (Limassol), Figure 4b (Las Palmas de Gran Canaria) and Figure 4c
(Malta), with the average maximum temperature (AVG_MAXC) presented in °C (left y axis)
and rainfall (TOT_RAIN) and tourist numbers (TOT_TOUR) expressed as a percentage of
the yearly total value (right y axis). It can be observed that Limassol and Malta show a
similar profile, with the highest temperatures, lowest rainfall and highest tourist numbers
in the summer months. The strongest contrast between the summer and winter seasons is
found in Limassol. In Las Palmas de Gran Canaria, temperature variation is less extreme
throughout the year, and tourist numbers are slightly higher in the winter rather than in
the summer period, due to the mild winter temperatures in the Canary Islands when it is
colder in the rest of Europe. Rainfall is also concentrated in the autumn and winter period.
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Figure 4. Temporal variables in (a) Limassol, (b) Las Palmas de Gran Canaria and (c) Malta.

To incorporate the effect of any system expansion, the BSS operators were asked to
indicate if and where stations were added during the one-year period covered by the
datasets. In Limassol, there was no change in the number or location of the stations. In Las
Palmas de Gran Canaria, one station was added in May 2018, one in September 2018, one
in October 2018 and one in February 2019. In Malta, two stations were added in October
2018. Monthly values for the temporal variables for these new stations were added to the
dataset from the month of their installation onwards.

Bivariate correlation, using the Pearson correlation coefficient r, was used to under-
stand the strength and direction of the linear relationship between the independent spatial
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and temporal variables and the dependent variables COUNTO and COUNTD. As the
datasets included repeated observations per station (monthly counts of station use as origin
and destination; monthly COUNTO and COUNTD), the independence assumption of
generalized linear models was not met. Therefore, linear mixed models were employed to
estimate the effects of the independent variables on the BSS use and to explain variations
in BSS use over time, while accounting for multiple observations per station.

5. Results

The use of BSS stations as origins and destinations, aggregated over the period of a
year, in the three case study cities are shown in Figure 5a for Limassol, Figure 5b for Las
Palmas de Gran Canaria and Figure 5c for Malta (A video with monthly use of the BSS
stations as origins and destinations, over the period of a year (April 2018-March 2019) can
be viewed here: https://youtu.be/_C-kEFphbBU, 15 November 2019, see supplementary
material). In Limassol, BSS use was visibly concentrated along the promenade, between
a string of six stations stretching from the Old Port near the city center and Limassol
Marina towards the eastern part of the city. In Las Palmas de Gran Canaria, BSS use was
more evenly spread, although two clusters around the two main city centers are evident,
with lower BSS use at stations on the periphery of the system. In Malta, BSS use was
concentrated in the Northern Harbor area, north of Valletta, especially at the stations
located along the coastline, with very limited use of the isolated stations elsewhere on the
island. The spatial pattern of BSS use in Malta showed the strongest visible difference
between station use as origin and destination, with more stations with dominant use as an
origin located further inland, at a higher elevation, and more stations used as a destination
located in the low-lying parts of the urban area, near the coastline.

Descriptive statistics, to characterize the BSS use in the cities, are presented in Table 2.
From the number of trips per day per bicycle (TDB), it is evident that the BSS in Las
Palmas de Gran Canaria saw a higher magnitude of use than the BSS in Limassol and
Malta. Although a TDB of at least 1.0 (representing 1 trip per day per bicycle) has been
mentioned as an important psychological minimum of TDB [59], lower BSS usage rates
have been observed in many BSSs, even where schemes have quite a lot of subscribed
members [60,61]. This can also be observed from the results presented in Table 2, where
there is around a factor of 10 difference in the number of trips in Limassol and Las Palmas
de Gran Canaria, whereas there is only a factor of three difference in the number of active
users. The shorter median trip durations in Las Palmas de Gran Canaria and Malta indicate
that the predominant use was for transport. The high share of round trips and weekend
use, as well as the longer median trip duration, indicate that Limassol’s BSS was dominated
by leisure use [32].
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(b)

Figure 5. Aggregated yearly BSS use at stations as origins and as destinations in (a) Limassol, (b) Las
Palmas de Gran Canaria and(c) Malta.
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Table 2. Descriptive statistics of BSS use in the case-study cities.

LIM LPA MAL
(n Trips =17,532)  (n Trips = 162,871)  (n Trips = 37,306)
Mean trips per day per bicycle 0.28 1.22 0.26
Maximum trips per day per bicycle 0.76 1.94 0.51
Medjian trip duration in minutes 39.00 13.00 14.00
(SD) (66.97) (29.08) (61.11)
Percentage weekend use 33% 20% 24%
Percentage round trips 42% 5% 13%
Unique users per year 3070 9006 4082

Note: SD = standard deviation.

Bivariate correlation analysis was used to determine the relationship strength and
direction between each dependent variable and independent variable (see Table 3). Land
use, socio-economic, network and temporal variables were included. The correlation analy-
sis, using the Pearson correlation coefficient r, showed that a number of the independent
variables were significantly correlated with BSS use at the 5% or 1% level. Most variables
showed the expected relationship, based on results from BSS use in other cities as identi-
fied in the literature review, but some variables showed opposite effects for the different
case-study cities (e.g.,, PERC_EDUS3, the percentage of population with a tertiary education,
and TOT_RAIN, the total rainfall).

Table 3. Bivariate correlation results: Pearson correlation coefficients (1) and significance (p-value).

LIM LPA MAL
(n Observations = 276) (n Observations = 422) (n Observations = 715)
Variables COUNTO COUNTD COUNTO COUNTD COUNTO COUNTD
LU_RES —0.040 - —0.055 - 0.123 ** 0.034 - 0.426 e 0.355 i
LU_COM —0.058 - —0.043 - —0.198 o —-0.117 ** —0.232 e —0.188 b
LU_PARK 0.513 o 0.508 o —0.008 - 0.016 - —0.009 - 0.002 -
LU_TOUR —0.044 - —0.054 - 0.393 i 0.388 b 0.179 e 0.195 b
LU_CAFE 0.315 o 0.315 wx 0.507 o 0.496 xxx 0.228 o 0.294 *x
LU_SHOP —0.216 i —0.239 o 0.270 wE 0.322 b 0.340 e 0.368 b
LU_UNI —0.163 o —-0.172 wx 0.067 - 0.065 - —0.154 o —0.145 *x
LU_BEACH 0.605 wx 0.608 ok 0.324 o 0.394 ok 0.305 e 0.433 i
LU_BUS —0.196 b —0.203 o 0.173 wHx 0.273 b 0.082 ** 0.123 b
LU_LEN_CYC 0.469 o 0.480 e 0.524 wx 0.523 b —0.184 o —0.144 wx
LU_DISTSEA —0.492 il —0.483 o —0.168 i —0.281 b —0.329 e —0.392 b
LU_DISTBUS —0.089 - —0.081 - —0.345 o —0.389 b —0.156 o —0.143 *xx
LU_DISTUNI —0.136 ** —0.127 ** —0.035 - 0.007 - —0.294 e —0.220 b
LU_NODES —0.116 - —-0.112 - 0.195 o 0.205 xx 0.312 o 0.183 *xx
ELEV —0.512 il —0.509 HE —0.296 bl —0.409 o —0.281 b —-0417 b
POP_DENS 0.165 i 0.130 ** 0.246 o 0.208 b 0.446 o 0.419 b
PERC_EDU3 —0.165 o —0.154 ** 0.129 o 0.106 ** 0.218 e 0.171 i
GEND_RATIO 0.072 - 0.093 - —0.275 i —0.286 b 0.006 - 0.058 -
AGING_POP -0.157 o —0.165 e 0.111 ** 0.215 b 0.194 o 0.178 o
FORGN_POP 0.547 b 0.547 e 0.366 o 0.375 b 0.340 e 0.365 b
DIST_MEAN -0.297 o —0.279 wx —0.145 o —0.055 - —0.301 o —0.220 *xx
COUNT_STAT —0.096 - —0.100 - 0.214 il 0.139 b 0.228 b 0.233 b
COUNT_STA2 0.153 ** 0.131 ** 0.225 o 0.139 xx 0.288 o 0.269 wx
TOT_TOUR 0.167 wx 0.170 o 0.086 - 0.077 - 0.292 e 0.228 b
AVG_MAXC 0.158 b 0.161 wx 0.003 - 0.003 - 0.293 o 0.229 b
TOT_RAIN -0.193 wx -0.197 o 0.126 o 0.113 ** —0.268 o —0.210 o
Notes: — = correlation not significant; correlation significant at p-value: ** <0.05; *** <0.01. Abbreviations: COUNTO, total monthly count of

trip origins; COUNTD, total monthly count of trip destinations; LU, land use; RES, residential; COM, commercial /industrial; PARK, park;
TOUR, number of hotels; CAFE, number of cafés/restaurants; SHOP, number of shops; UNL number of university buildings; BEACH,
presence of a beach of promenade; BUS, number of bus stations; LEN_CYC, length of cycling infrastructure; DISTSEA, distance to the
coastline; DISTBUS, distance to the nearest bus station; DISTUNI, distance to the university; NODES, count of nodes in the road network;
ELEV, elevation; POP_DENS, population density; PERC_EDUS3, percentage of the population with a tertiary education; GEND_RATIO,
gender quotient; AGING_POP, aging population; FORGN_POP, foreign population; DIST_MEAN, distance from the center of the BSS;
COUNT_STAT, count of other BSS stations within a 600-m buffer around the station, COUNT_STAZ2, count of other stations within a 1200-m
buffer around the station; TOT_TOUR, total number of tourists; AVG_MAXC, average monthly maximum temperature; TOT_RAIN, total
monthly precipitation.
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From the bivariate correlation analysis, a number of variables showed significant
effects with the same direction and similar strength across the three cities. The number
of cafés and restaurants (LU_CAFE) within a 300-m buffer around a BSS station showed
a positive and significant correlation in all three cities. The presence of the beach or
promenade (LU_BEACH) within a 300-m buffer around BSS stations was strongly positively
and significantly correlated in all three cities. The distance to the coastline (LU_DISTSEA)
showed a similar result, where the negative association indicates that the further away
from the coastline, the less BSS use there was. Elevation (ELEV) showed a strong negative
association with BSS use, both for origin and destination stations, in all three cities. A
stronger negative association was found with the station use as a destination than as an
origin in Las Palmas de Gran Canaria and Malta, where elevation differences are greater
than in Limassol. Higher population density (POP_DENS) and a higher percentage of
foreign population (FORGN_POP) both showed a positive relationship with BSS use in the
three cities. The network variables showed similar results for the three cities: a negative
relationship with distance (DIST_MEAN); the further away from the center of the BSS, the
less use, particularly for station use as an origin, and a positive relationship with the count
of other BSS stations within a 1200-m (COUNT_STA2) buffer around the station. Other
variables showed mixed results for the cities. The number of shops (LU_SHOP) in the
station buffers showed a positive relation with the use of a BSS station as an origin and
destination in Las Palmas de Gran Canaria and Malta. In Limassol, however, the association
was negative, both for origin and destination use of a station. Cycling infrastructure
(LU_LEN_CYCLE) showed a positive effect in the two cities with cycling paths in the city
center and near the BSS stations in Limassol and Las Palmas de Gran Canaria. In Malta,
however, a negative correlation was observed. This can be explained by the near total
absence of cycling paths in the urban area where the BSS is present, with the only cycling
infrastructure located outside of the urban area, where BSS usage is low compared to the
center of the conurbation. The percentage of the population with a tertiary education
(PERC_EDUB3) and the percentage of the population over 65 years (AGING_POP) showed
a positive relationship in Las Palmas de Gran Canaria and Malta, but a negative association
in Limassol. BSS use in Limassol and Malta had a negative relationship with total rainfall
(TOT_RAIN), highlighting higher use in the extended summer season. In Las Palmas
de Gran Canaria the association with total rainfall was positive. As there is very limited
rainfall in Las Palmas de Gran Canaria, this result shows how in this case it does not act
as a deterrent, and likely represents months in the year with higher volumes of cycling,
because of more cycling for commuting purposes (non-holiday months) and higher visitor
numbers.

Certain correlations only showed significance in one or two of the case-study cities.
A higher percentage of residential land use (LU_RES) showed a positive association in
Malta for station use as an origin and destination, and in Las Palmas de Gran Canaria only
for origin use. A higher percentage of industrial /commercial land use (LU_COM) in the
buffer around the stations showed a negative association with BSS use in Las Palmas de
Gran Canaria and Malta. The percentage of park land use (LU_PARK) showed a positive
association in Limassol. The number of hotels (LU_TOUR) in the buffer showed a positive
and significant relationship in Las Palmas de Gran Canaria and Malta. Distance to the
nearest bus station (LU_DISTBUS) showed a negative relationship with both origin and
destination station use in Las Palmas de Gran Canaria and Malta, indicating that the
nearer to a bus station, the higher the BSS use. This effect was not observed in Limassol,
where the modal share of public transport use is lower. The presence of the university
within a 300-m buffer around a station (LU_UNI) showed a significant negative association
in both Limassol and Malta, indicating that BSS use in the vicinity of the university
campuses was low, contrary to what has been found in other cities, where the university
community represents a key BSS user group [62]. Surprisingly, the distance from the
university (LU_DISTUNI) also showed a negative association with BSS use in Limassol
and Malta, indicating that the further away from the university, BSS use is lower. This can
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be explained by the fact that the university campus in both cities is located in or near the
city center, and the distance variable is reflecting the association with the city center rather
than with the university campus as such. In Las Palmas de Gran Canaria, no significant
relationship was present, as the main university campus is located outside of the city.

The count of nodes in the road network (LU_NODES), as an expression of the density
of the land use, showed a positive association in Las Palmas de Gran Canaria and Malta,
but not in Limassol. This further underlines how the predominant use of BSSs in the former
two cities was cycling for transport, in areas with a higher urban density, whereas BSS use
in Limassol was characterized more by leisure use, for exercise and for fun, predominantly
along the coastline. The quotient of male and female residents at the station locations
(GEND_RATIO) showed a significant negative relationship with BSS use in Las Palmas
de Gran Canaria, indicating that areas with a higher percentage of male population had
lower BSS use. No significant association was found in Limassol or Malta. In terms of
temporal variables, the results for Limassol and Malta were similar, but for Las Palmas de
Gran Canaria, with a different tourism pattern and less seasonal weather variation, the
result was different. A positive relationship was found with the total number of tourists
(TOT_TOUR) and the average maximum temperature (AVG_MAXC) for Limassol and
Malta, but not for Las Palmas de Gran Canaria.

Correlation plots were created for the spatial variables and for the temporal vari-
ables to examine the collinearity between independent variables, to avoid including two
or more multi-collinear variables in the different variations of the linear mixed models,
before settling on the best model fit. A threshold of +0.7 was assumed to indicate multi-
collinearity [63]. Multi-collinearity was found between certain variables that both showed
a significant association with BSS use (e.g.,, LU_TOUR and LU_CAFE in Las Palmas de
Gran Canaria, and LU_DISTSEA and FORGN_POP in Limassol). In some cases, multi-
collinear variables took each other’s place in the COUNTO versus COUNTD models (e.g.,
LU_DISTSEA and LU_BEACH in Malta). The temporal variables also showed multi-
collinearity. In the Limassol dataset there was a strong correlation between TOT_RAIN
and both TOT_TOUR and AVG_MAXC, from which only the first variable was retained, as
it showed the strongest relationship. In Las Palmas de Gran Canaria, there was a relatively
strong correlation between TOT_TOUR and TOT_RAIN (just below the threshold of 0.7),
but the former did not show significance in the models when included, and is thus not
present in the final models. There was a strong correlation between the total visiting
tourists (TOT_TOUR) and the average maximum temperature (AVG_MAXC) in the Malta
dataset, and the latter was retained in the models.

Several iterations of the linear mixed models for COUNTO and COUNTD, including
only the station numbers (STATION_NU) as a random effect, or both station number and
month (MONTH) as random effects, were tested in random intercept models, based on
different combinations of the variables that showed the strongest influence and significance
in the bivariate correlation analysis. Effort was made to balance the maximum predictive
power of the model with a parsimonious design, while ensuring that variables followed
the expected direction of influence and were statistically significant at least at or below
the 0.05 level. A better model fit was obtained by only including the stations as a random
effect. The selected random intercept models were compared to a null model to confirm
the significance of the model as a whole (p < 0.05) and a smaller Akaike information
criterion (AIC) value was used to confirm the best model fit. The final linear mixed models,
including the normalized coefficient estimates, standard errors and p-values are presented
in Table 4 for Limassol, Table 5 for Las Palmas de Gran Canaria and Table 6 for Malta.
The variance and standard deviation of the random effects are reasonable values, and
the standard errors of the fixed effects are all relatively small, smaller than the coefficient
estimates, which indicate a good model fit.

The linear mixed models for Limassol (Table 4) showed a strong positive impact of
the presence of the beach or promenade in the 300-m buffer around stations (LU_BEACH)
on BSS use. The length of cycling infrastructure (LU_LEN_CYC) within the station buffer
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also had a positive relation with BSS use. The distance from the center of the BSS showed
a negative association with BSS use, indicating that most trips took place at the stations
closer to the center of the BSS. The count of hotels and hostels within a 300-m buffer
around stations (LU_TOUR) showed a negative relation, suggesting that the system is
not dominated by use taking place in the area with most tourist accommodation. Total
rainfall (TOT_RAIN), the temporal variable that showed the strongest association with
BSS use, showed a negative relationship, with more BSS use in months with less rainfall.
In the COUNTD model, the variable of the count of shops within a 300-m buffer around
the stations is negatively associated with use of the stations as a destination, confirming
that BSS use is not positively associated with shopping or running errands, but is used
for leisure purposes, away from areas with a higher concentration of shops. The density
of the road network (LU_NODES) shows a positive association in the COUNTD model,
indicating that trips end more frequently in areas with higher urban density.

Table 4. Linear mixed models for COUNTO and COUNTD in Limassol.

COUNTO Model COUNTD Model
Random effects Variance Stal.ld?rd Variance Stal.ld?rd
deviation deviation
STATION_NU 0.193 0.439 0.130 0.361
Residual 0.142 0.376 0.145 0.380
. Coefficient  Standard Coefficient  Standard
Fixed effects . p-value . p-value
estimate error estimate error
Intercept 0.000 0.094 1.000 0.000 0.078 1.000
DIST_MEAN —0.440 0.107 0.001 —0.418 0.096 0.000
LU_TOUR —0.274 0.114 0.028 —0.328 0.097 0.004
LU_SHOP - - - —0.211 0.100 0.051
LU_BEACH 0.669 0.135 0.000 0.721 0.126 0.000
LU_LEN_CYC 0.267 0.128 0.053 0.285 0.108 0.018
LU_NODES - - - 0.271 0.101 0.016
TOT_RAIN —0.193 0.023 0.000 —0.197 0.023 0.000
Model p-value Model p-value
compared to null model 0.000 compared to null model 0.000

Note: —: variable not included in this model. (1 observations = 276; n stations = 23).

Table 5. Linear mixed models for COUNTO and COUNTD in Las Palmas de Gran Canaria.

COUNTO Model COUNTD Model
Random effects Variance Stal.ld?rd Variance Stal.ld?rd
deviation deviation
STATION_NU 0.387 0.622 0.498 0.706
Residual 0.114 0.338 0.097 0.311
. Coefficient  Standard Coefficient  Standard
Fixed effects . p-value . p-value
estimate error estimate error
Intercept —0.049 0.104 0.643 —0.052 0.117 0.658
LU_TOUR 0.457 0.112 0.000 - - -
LU_LEN_CYC 0.435 0.105 0.000 0.482 0.117 0.000
LU_DISTBUS - - - —0.303 0.119 0.015
GEND_RATIO —0.487 0.110 0.000 —0.332 0.120 0.009
AVG_MAXC 0.144 0.021 0.000 0.128 0.020 0.000
TOT_RAIN 0.244 0.021 0.000 0.217 0.020 0.000
Model p-value Model p-value
compared to null model 0.000 compared to null model 0.000

Note: —: variable not included in this model. (n observations = 422; n stations = 37).
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Table 6. Linear mixed models for COUNTO and COUNTD in Malta.

COUNTO Model COUNTD Model
Random Vari Standard Vari Standard
effects ariance deviation ariance deviation
STATION_NU 0.446 0.668 0.485 0.696
Residual 0.213 0.461 0.176 0.419
Fixed Coefficient  Standard Coefficient  Standard
. p-value . p-value
effects estimate error estimate error
Intercept 0.000 0.088 0.995 0.000 0.091 0.993
LU_COM —0.194 0.088 0.033 - - -
LU_SHOP 0.280 0.090 0.003 0.255 0.095 0.010
LU_DISTSEA —0.201 0.090 0.003 - - -
LU_BEACH - - - 0.380 0.095 0.000
DIST_ MEAN —0.254 0.090 0.006 —0.245 0.092 0.010
AVG_MAXC 0.206 0.023 0.000 0.161 0.021 0.000
TOT_RAIN —0.126 0.023 0.000 —0.098 0.021 0.000
Model p-value 0.000 Model p-value 0.000

compared to null model compared to null model

Note: —: variable not included in this model. (n observations = 715; n stations = 60).

The linear mixed models for Las Palmas de Gran Canaria (Table 5) showed a strong
positive association with the length of cycling paths within a 300-m buffer around the
stations (LU_LEN_CYC). The gender quotient showed a strong negative association in both
the COUNTO and COUNTD models, indicating that a lower percentage of males in the
M/F ratio is associated with higher station use. This is contrary to most findings of BSS in
other cities, e.g., [5]. Whether this is indeed due to more frequent female use or capturing
another dimension of the neighborhood characteristics is not clear. The temporal variables,
the average maximum temperature (AVG_MAXC) and total rainfall (TOT_RAIN), both
showed a positive relationship with BSS use. The presence of tourist accommodation
within the stations” buffers (LU_TOUR) showed a positive association in the COUNTO
model. As LU_TOUR was highly correlated with LU_CAFE, the count of cafes/restaurants
(r = 0.768), this variable is indicative of areas with leisure and entertainment facilities
associated with the use of stations as an origin, especially in the area around Las Canteras
and Santa Catalina, which draws both local residents and tourists to enjoy the beach and
city life [10]. The distance from the nearest bus station (LU_DISTBUS) shows a negative
association in the COUNTD model, where a longer distance to the bus station is associated
with less use of BSS stations, highlighting the positive relationship between BSS use at a
station as a destination and public transport use.

The linear mixed models for Malta (Table 6) show a positive association with the
presence of shops in the 300-m buffer around stations (LU_SHOP) and a negative relation-
ship with the distance from the center of the BSS (DIST_MEAN), highlighting the higher
use of the BSS in the central urban area, close to facilities for shopping and services. The
temporal variables show a positive relationship with the average maximum temperature
(AVG_MAXC) and a negative association with total rainfall (TOT_RAIN), with lower BSS
use in the winter months, with lower temperatures and more rainfall, and higher BSS use
in the extended summer season. A higher percentage of industrial /commercial land use
(LU_COM) shows a negative association with use of BSS stations as an origin. LU_COM has
a high negative correlation with LU_RES (r = —0.654), indicating that use is more influenced
by residential land use (as also seen in the bivariate correlations between COUNTO/D and
LU_RES in Table 3). The effect of the proximity to the coastline or beach/promenade is
present in both models, but captured through two different variables: in the COUNTO
model there is negative association with the distance to the coastline (LU_DISTSEA), with
lower BSS use further away from the coastline, whereas in the COUNTD model this is
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included as a positive association with the presence of the beach/promenade within the
300-m buffer around the stations.

A comparative analysis of the variables included in the different models, shows that
the distance from the center of the BSS, DIST_MEAN, had a negative association with BSS
use in Limassol and Malta. LU_TOUR, the count of hotels, showed a negative association in
Limassol, but a positive one in Las Palmas de Gran Canaria (for stations as an origin). The
negative association in Limassol can be explained by a predominance of BSS use by local
residents, not tourists, as well as the fact that many of the hotels and the main tourist area
are located at the eastern end of the city, away from the city center and the main cycling
path along the promenade. LU_BEACH (presence of coastline in buffer) shows a positive
association in Limassol and Malta (for stations used as a destination). LU_DISTSEA,
distance to coastline, captured that same relationship for stations used as an origin in Malta,
where a greater distance from the coast was associated with less BSS use. LU_LEN_CYC,
the length of cycling paths in the buffer, had a positive relation with BSS use in Limassol
and Las Palmas de Gran Canaria. This relationship was not present in the Malta models
as there was almost no cycling infrastructure in the urban area. LU_SHOP had a positive
relation with BSS use in Malta for station use both as an origin and a destination, where
there was more cycling for transport, but a negative association for stations as a destination
in Limassol, with more cycling for leisure. The density of the road network (LU_NODES)
showed a positive association in Limassol for stations as a destination, indicating that trips
ended more frequently in areas with higher urban density. LU_COM, the percentage of
commercial/industrial land use, had a negative relation with BSS use in Malta for stations
as an origin. The distance from the nearest bus station (LU_DISTBUS) showed a negative
association in Las Palmas de Gran Canaria for stations as a destination, highlighting the
positive relationship between a shorter distance and public transport use for BSS stations
as a destination. The gender quotient (GEND_RATIO) showed a significant negative
relationship with BSS use in Las Palmas de Gran Canaria, with less BSS use in locations
with a higher percentage of male population. TOT_RAIN, the association with rainfall
was negative in Limassol and Malta, but positive in Las Palmas de Gran Canaria, with
lower rainfall and therefore no negative effect. Las Palmas de Gran Canaria and Malta’s
BSS use models showed a positive association with AVG_MAXC, the average maximum
temperature. The temperature variable was not present in the Limassol models as it was
highly inversely correlated with rainfall.

6. Discussion

The most intensely used BSS stations as origins and destinations in the three case
studies were found close to the beach or promenades in these coastal cities, where elevation
is low. The presence of cycling infrastructure, identified as one of the main variables
positively influencing BSS use in the literature, e.g., [17,22,23], contributes to the use of
BSS stations in Limassol and Las Palmas de Gran Canaria, but not in Malta, where there
are no cycling paths in the urban area. The creation of dedicated cycling paths as part of
a connected cycling network between residential, employment and entertainment areas
could further promote cycling and BSS use in the three cities. To overcome elevation
challenges, several strategies can be pursued. The provision of electric bicycles, although
more expensive for the operators, can play a role in encouraging uptake among new target
groups and for trips to destinations located at higher altitudes. When considering and
designing cycling infrastructure and routes, elevation should be taken into account, by
planning routes on more gradual slopes and avoiding having to traverse large elevation
differences where possible, through the use of bridges, elevators or a special bicycle lift
(e.g., the Trampe bicycle lift in Trondheim, Norway). Providing ancillary facilities such as
showers and lockers at key destinations can also aid in mitigating the effect of exertion or
high temperatures as a barrier to cycling [64].

This study focused specifically on constructing models for BSS station use as origins
and destinations. Although in all three cities, the specific origin and destination model
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shared certain variables (e.g., the distance from the center of the BSS in Limassol and Malta,
the presence of cycling infrastructure in Limassol and Las Palmas de Gran Canaria and the
significant weather variables in all cities), we also observed differences between the origin
and destination models, highlighting specific factors acting as draws for station use as an
origin or as a destination. In Limassol, the presence of shops (clothing) showed a negative
association in the destination model, whereas a denser road network showed a positive
association. This shows that although trips may end in an urban environment with greater
density, the purpose of the BSS trip is not associated with shopping or running errands,
but rather with leisure purposes, as also gathered from the descriptive statistics of the BSS
use in Limassol. In Las Palmas de Gran Canaria, a positive association was present in the
model between station use as an origin and the presence of tourist accommodation in the
vicinity. As the BSS is mostly used for transport purposes, and thus not dominated by
tourists, this result can be explained by the fact that the tourist accommodations are located
in an area with many leisure and entertainment venues, which was also evident from the
multi-collinearity between the number of tourist accommodations, and the count of cafes
and restaurants in the buffer around BSS stations. There is a clear potential to promote the
BSS with visiting tourists, as none of the cities showed significant use of shared bicycles by
tourists. Specialized payment options, such as inclusion of shared bicycle rides in a day- or
week-pass or a transport smartcard, could enable easier uptake by visitors to the cities.

The distance to the nearest bus station only showed a negative association in the
destination model in Las Palmas de Gran Canaria, indicating that the further away an area
is from a bus station, the less BSS use is observed for that area as a destination. This result
highlights the complementary relationship between BSS use and public transport in Las
Palmas de Gran Canaria, particularly as a feeder service to reach the public transport hub.
In all three cities, BSS and public transport services can be better integrated, in physical
terms through close proximity, as well as by providing integrated payment options (e.g., in
a transport smartcard or app) and the provision of transfer information [65,66]. In Malta,
the percentage of commercial/industrial land use showed a negative association with
station use as an origin, indicating that trips were more likely to originate from stations in
an environment with less of this type of land use, and inversely with more residential land
use. The distance from the sea (for the origin model) and the presence of the coastline (for
the destination model) were multi-collinear variables that took each other’s place in the
two models, explaining the same effect: a positive association between BSS station use and
proximity to the coastline in Malta.

Although the results of the analysis of the trip data provide detailed insights into
where BSS use is currently taking place, and how this correlates with spatial and temporal
factors, they do not capture differences in travel behavior by individual users and the
barriers they may experience, both for frequent users and for non-frequent or potential
users. To this end, as part of this research, a survey has been conducted with BSS users
in the three case-study cities, to understand their BSS use, and factors that encourage or
discourage the cycling behavior, looking at both frequent and non-frequent users. The
survey results, including the validation and triangulation of these results from multiple
sources of data, will allow for a better understanding of BSS use and cycling behavior in
these ‘starter’ cycling cities, and will be published in future work.

A limitation of this study is the quality and comparability of the spatial and temporal
data from secondary sources included in the models. Some data were only available at a
coarser spatial scale, e.g., at the neighborhood or locality level, rather than the census tract
level. This spatial level may be less suitable to adequately capture spatial characteristics
that contribute to variations in frequency of station use. Although an effort was made
to obtain data at the finest-grain level possible, that was as recent as possible and that
was comparable between the three cities, averaging values over a monthly period means
some detail was lost. With respect to the temporal variables, the potential negative effect
of high summer temperatures, which in summer in Limassol and Malta can reach a daily
average high of 35 °C—40 °C, was not captured in the models. Only the positive effect of
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warmer temperatures was captured in the models, indicating in general that there is more
BSS use in warmer months than in colder months. Further work to better understand the
effect of temporal variables in the Southern European context could look at this in more
detail, using daily values or zooming in on specific days with particularly low or high
temperatures. In future work on this topic, other multi-variate regression techniques could
be explored, as well as multi-level or nested mixed models.

7. Conclusions

BSS usage was analyzed using a year of BSS trip data and secondary datasets, to
understand which factors influence BSS use in the Southern European island cities and
tourist destinations of Limassol, Las Palmas de Gran Canaria and Malta. Although there
were commonalities, the BSS use in the three case study cities was different. In Las Palmas
de Gran Canaria and Malta the use of the BSSs was dominated by cycling for transport,
whereas in Limassol the BSS was used more for leisure. Bivariate correlations showed
significant positive associations with the number of cafes and restaurants, vicinity to
the beach or promenade, higher population density and a higher percentage of foreign
population at the BSS station locations in all cities. Elevation had a negative association
with BSS use in all three cities. Linear mixed models explained differences in BSS use at
stations, in terms of station use as an origin and a destination. Spatial factors such as cycling
paths, vicinity to the coast and center of the BSS showed positive associations with BSS
use. As temporal factors, higher average temperature showed a positive effect, whereas
rainfall had a negative association in Limassol and Malta, but not in Las Palmas de Gran
Canaria, which has lower rainfall and more stable weather conditions throughout the year.
The insights from the correlation analysis and linear mixed models can be used to inform
policies promoting cycling and BSS use and to support sustainable mobility policies in the
case-study cities and cities with similar characteristics. Specific policy recommendations
include the creation of a safe, connected cycling network, as well as ancillary facilities to
aid cycling; addressing issues related to elevation differences, through the provision of
electric bicycles or physical interventions such as lifts; engaging potential new user groups,
such as the university community and visiting tourists through tailored payment options
or offers; and strengthening the complementary relationship with public transport services,
through physical and financial integration of the services.

Supplementary Materials: A video with monthly use of the BSS stations as origins and destinations,
over the period of a year (April 2018-March 2019) is available online at https://youtu.be/_C-
KEFphbBU.
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