

THE VOS

USER GUIDE

The VOS User Guide

 1

Content

1. Introduction 3

2. Information about Technology and Programming 3

2.1 Application Development Frameworks 3

2.2 Model View Controller (MVC) 3

2.3 Front-End Programming 4

2.4 Back-End Programming 5

2.5 Availability 6

3. Installation 6

3.1 Prerequisites 6

3.2 Local hosting and development 7

3.3 Running the application on a server 8

3.3.1 Front-End 8

3.3.2 Back-End 10

3.3.3 Email server, user confirmation 11

3. Configuration Options 11

3.1 Base Items 11

3.1.1 Base Attributes 14

3.1.2 Tags 15

3.1.3 Niceness 15

3.2 Base Labels 15

3.3 Custom taxes 16

3.4 Custom score 16

3.5 Custom filtering 17

3.6 Sorting 19

3.7 Swap Options 19

3.7.1 Enabling the Display 20

3.7.2 Enabling Opt-In strategies 20

4. Treatment administration 20

4.2 Creating new Treatments 21

4.3 Modifying existing treatments 21

4.4 Testing Treatments in a Sandbox Environment 21

4.5 Data Model 21

4.7 Treatment and base information administration using scripts 23

5. Trial configuration and execution 24

The VOS User Guide

 2

5.1 Trial route 24

5.2 Manually start and generate subject 24

5.3 Automatically generate subject and start 24

5.3 Automatically start and reuse a subject 25

5.4 Custom questionnaire 25

5.5 Trial Data 25

6. Developer Notes 27

6.1 Front-End 27

6.2 Back-end 28

6.2.1 Basic configuration 28

6.2.2 Authenticating Users 28

6.2.3 Image handling 29

Appendix 30

Appendix A - Deployment script for server hosting 30

Appendix B - Script for retrieving and converting trial data 32

The VOS User Guide

 3

1. Introduction

What is the VOS, and why use it? The VOS is an open-source, modular, and highly customizable virtual
online supermarket application. The application allows researchers to easily design, implement, and
conduct experiments in a realistic online shopping environment. The application contains two core
elements: the Shop View and the Admin View.

The Shop View depicts the interface experiment subjects see and make decisions in. It was designed to
emulate the store design and functions (e.g., navigation tools) of a realistic online supermarket. In the tool’s
base version, the front-end design is very neutral to prevent any existing customer relationship bias towards
the store’s design elements.

The Admin View is a visual administration interface (VAI) that enables researchers to control and modify
research conditions and configure and implement different experimental treatments. It provides the means
for managing the product database and various modification options that allow researchers to determine
which information or functions the Shop View presents. In the following, we refer to these pre-defined
modification options as Use Cases because researchers can use and modify them to create their own
experimental treatments. For instance, without any mandatory knowledge in programming, Use Cases
enable researchers to adjust food prices, implement different labeling strategies, or change the arrangement
of food items. Hence, these options can serve as a starting point for research projects on the most common
grocery interventions. All Use Cases included in the tools’ base version will be introduced in Chapter 2. This
chapter also includes more detailed guidance on the practical use. Nevertheless, researchers familiar with
programming are not limited to basic features. Instead, they can extend or change any aspect of the tool’s
visual or functional implementation by altering the program’s code.

The VOS is built upon widely known and well-supported frameworks. JavaScript, as the overall
implementation language, makes developing and customizing this tool easy. In the following sections, more
information about the technology and programming of the VOS application is provided (Chapter 1). There,
you will also find all the installation, setup, and usage instructions needed to run, develop, and deploy VOS
successfully. 1

2. Information about Technology and Programming

2.1 Application Development Frameworks

Our application is built upon two development frameworks to decrease development time, reduce
maintenance cost, and quality assurance reasons. First, for the back-end, Node.js is used to build a web-
based service, to provide an Application Programming Interface (API) for handling requests, and to run
Create Read Update Delete (CRUD) operations on the database. Second, the storefront Angular version 8
is used for implementing the web front-end. Both frameworks are based on JavaScript. The accessible and
popular of all building blocks ensure longevity and support for the application as a whole. Moreover, there
is a greater active developer base than for other less-used frameworks, which improves the possibilities for
further development. However, as mentioned above, the knowledge of JavaScript and these frameworks
are only necessary if researchers want to create advanced use cases for the context of online-shopping
research. Instead, the creation of multiple experiments and treatment variations does not require any
extended programming knowledge.

2.2 Model View Controller (MVC)

The implementation style of our application follows the Model View Controller (MVC) concept. Working
with MVC in web application development is different from conventional application development. The
architecture has to be partitioned between the client and the server-side. A web applications view is always
handled by the client-side, but the model and controller can be partitioned in various ways between the

1 Please note: The script snippets and explanations are only applicable to Linux based systems (Ubuntu 19.10). For
Windows or macOS set up descriptions, see the applicable online resources. The server-specific instructions are based
on a Ubuntu 18.04.3 LTS server installation managed over SSH.

https://nodejs.org/en/
https://angular.io/

The VOS User Guide

 4

client and server. Hence, a compelling architecture would be relying exclusively on the server to refresh
the client’s screen. In this case, the model and the view-generating logic for the view on the client’s browser
would reside entirely on the server. Moreover, the controller would partially reside on the client (detecting
user interaction) but mostly reside on the server (code that updates the state of the model’s business objects
based on HTTP request). This describes a thin-client approach with the advantages of decreasing the client
machine's performance demand and providing greater security, performance, and data consistency for the
application. Web application frameworks that reflect this paradigm are Django and ASP.NET.

The other extreme is maintaining the bulk of the application on the client-side (fat-client approach). This
means that the model mostly resides on the client-side, but the database remains on the server-side. In
particular, the view is exclusively implemented on the client-side, and the controller mostly resides there.
This provides a more seamless and interactive experience through fewer load times, minimizing the need
to make server calls. Frameworks that support this style of partitioning are AngularJS, EmberJS, and
JavaScriptMVC.

2.3 Front-End Programming

The views are built directly with HTML5 in conjunction with style sheets written in SCSS (Sassy CSS) to
provide a visually appealing and user-friendly experience. This combination is supported by most browsers
natively, which means a wide range of devices can be supported. In this way, a responsive front-end web
design is provided, which is consistent between devices and browsers. Also, this combination allows for the
separation of presentation and content, the reduction of repetitive code, flexibility, control of the
presentation, and sharing of formats between views. The web-view also utilizes Bootstrap and Angular
Material, which are CSS libraries that offer standardized web-content styling and component options.
Therefore, developers benefit from the ease of use and accessibility of these frameworks for building visually
engaging views while also centrally determining custom styles and layouts.

The front-end codebase is designed and implemented to deliver an accessible experience both to users and
developers. Features and design elements are designed to encapsulate specific functionality or business
logic. Hence, the code is partitioned into feature modules, which house the logic for model, view, and
controller, represented by the components contained. Utilizing this implementation logic makes it easy to
tear apart distinct design elements, use case implementations, and feature sets for subsequent expansion
and development. The application’s distinct design elements are thus contained in one sub-folder easily
recognizable (see Figure 1).

Figure 1. Example of component structure with design element "food card" on the left
and associated folder structure representing the code on the right.

Changing the appearance or behavior of such a design feature would mean locating the associated
component and altering the source files. These component definitions are divided into (i) the template
(*.html file) which handles the display elements, (ii) the (*.sccs file) which defines the styles for this
component, and (iii) the (*.ts file), which handles the data CRUD, data binding, and event handling of the
specific component. In addition to this, the implementation of our application follows a strict separation of
control. Functionality like data handling, CRUD operations, event recording is centralized and separated
from component view logic. Injectable services offer reusable access to functions, which are generally

https://docs.djangoproject.com/en/2.1/
https://dotnet.microsoft.com/apps/aspnet
https://angularjs.org/
https://emberjs.com/
http://www.javascriptmvc.com/
https://sass-lang.com/
https://getbootstrap.com/
https://material.angular.io/
https://material.angular.io/

The VOS User Guide

 5

consumed by multiple components. Furthermore, the services are descriptively modeled to offer all
functionality connected with a specific data model. For example, CRUD operations connected to the
shopping cart component are combined into a shopping-cart.services.ts file. If any view component needs
access to the specific functions and data of that topic, it has to inject the shared instance of the service into
its constructor, thereby gaining access. This offers organized, reusable, and easy access to all operations
needed throughout view components. Even if any implementation details change, these changes need only
be applied in one file.

2.4 Back-End Programming

The back-end is a Representational State Transfer (REST) API. This exposes the data, functions, and
facilitates the interaction between the database and the front-end application. Moreover, it exposes the
endpoints that respond to client requests in a predictable manner. The web services are stateless, as they
do not maintain the state of each client application accessing the web-service, rather offering predefined
sets of stateless operations. This allows it to remain independent of the front-end application, meaning that
these web services may serve different client applications and interact without using the front-end
application. This independence offers the advantage that researchers are not limited to using the visual
treatment edit interface to interact with and change treatment aspects or items. Scripts can be written that
automate treatment creation, modification, and data analysis tasks (for example, see appendix C).

As mentioned above, the back-end is based on the application development frameworks Node.js, an event-
driven JavaScript runtime environment that works outside of the browser. This allows for continuous
utilization of JavaScript in both application areas and reduces entry barrier for developers, as only
knowledge of one programming language is required.

However, Using JavaScript for the REST API does not incur performance decreases, as could be generally
expected. Node.js is built on the libraries V8 and libuv, and these are responsible for partly converting the
JavaScript code to C++ code and thereby combining the ease of use attributed to JavaScript and the high
performance attributed to C++. In addition to this, it is highly scalable without threading, instead of
utilizing a simplified model of event-driven programming with callbacks to signal the completion of a task.
However, this single-threaded approach means that the application cannot scale vertically, which means
that simply adding computing power to a given system will not directly translate to an increase in
application performance. Despite this, it is still capable of scaling by running a number of concurrent
instances of the same application within one cluster manager (cluster mode). This distributes the workload
among the available application instances. A production-ready and open-source load balancing software
for Node.js applications is already available free of charge; see, for example, PM2.

Moreover, the repository structure of the back-end application is modeled to promote easy access and
clarity. Thereby, the sub-folder structure represents the data structure utilized throughout the project. For
instance, a shop-item and all its associated CRUD operations are contained in one sub-folder (see Figure
2): Models (*.model.js files) enforce the document structure, routes (*.route.js files) define the request
endpoints, and with that access to all the operations that can be performed on the data objects. Additionally,
functions collect reusable logic used throughout the route definitions. Middleware functions
(*.middleware.js files) provide necessary state information to the otherwise stateless endpoints. This makes
the project accessible for further development because the application structure can be deduced from the
repository structure. Effects from changing aspects of the data structure are contained in this sub-folder
and do not affect the overall application. This makes it easy to add or change and customize the functions,
data models, and route specifications implemented in the base application.

https://nodejs.org/en/
https://nodejs.org/en/
https://pm2.keymetrics.io/

The VOS User Guide

 6

Figure 1. Sample repository structure as used in the back-end.

2.5 Availability

The code is developed using Git, a source-code versioning system. This encourages good backup and
versioning practices and allows developers to synchronize files across computers, develop collaboratively,
manage separate branches, and merge synchronization conflicts. The project is open for other researchers
to join, collaborate, or just download the source code on GitHub.

3. Installation

3.1 Prerequisites

The application’s front-end and its back-end are based on npm and node. Therefore, first install node, which
should automatically install npm as well. If the version commands do not return the version number of
either npm or node, it did not install correctly. Hence, for installation, these links might be useful:

 Install Node and NPM on Windows

 Install Node and NPM on Linux

 Install Node and NPM on Mac

For testing the validity of the installation, check each version’s command (see listing 1).

sudo apt install nodejs

check installed versions

node -v

npm -v

Listing 1. Test installation through checking the version.

For running the back-end application, you also need a running instance of MongoDB as the database server.
For installation instructions, see your operating system-specific instructions provided here. By default,
MongoDB listens on localhost:27017. This port is also configured by default for the back-end application.
MongoDB needs to be running before you start the back-end application. If MongoDB does not start
automatically, you can start it by typing the following command (see listing 2).

https://git-scm.com/about
https://github.com/Kuiter/vegs-repo
https://www.npmjs.com/products
https://nodejs.org/en/
https://www.npmjs.com/products
https://www.npmjs.com/products
https://nodejs.org/en/
https://treehouse.github.io/installation-guides/windows/node-windows.html
https://linuxize.com/post/how-to-install-node-js-on-ubuntu-18.04/
https://www.webucator.com/how-to/how-install-nodejs-on-mac.cfm
https://www.mongodb.com/cloud/atlas/lp/try2-de?utm_source=google&utm_campaign=gs_emea_germany_search_brand_atlas_desktop&utm_term=mongodb&utm_medium=cpc_paid_search&utm_ad=e&utm_ad_campaign_id=1718986504&gclid=EAIaIQobChMI1puU96y87gIVPxwGAB0-8Q16EAAYASAAEgL-PvD_BwE
https://docs.mongodb.com/manual/installation/
https://www.mongodb.com/cloud/atlas/lp/try2-de?utm_source=google&utm_campaign=gs_emea_germany_search_brand_atlas_desktop&utm_term=mongodb&utm_medium=cpc_paid_search&utm_ad=e&utm_ad_campaign_id=1718986504&gclid=EAIaIQobChMI1puU96y87gIVPxwGAB0-8Q16EAAYASAAEgL-PvD_BwE

The VOS User Guide

 7

sudo service mongod start

Listing 2. Start MongoDB instance.

The code-base is versioned and managed using the freely available versioning tool Git. For installation
instructions, follow your operating system specific installation steps found here. You can either follow the
link and download the repository as a zip file or clone the repository with the following script line (see listing
3).

git clone https://github.com/Kuiter/vegs-repo

Listing 3. Clone repository from Github.

With this, you cloned or downloaded the front-end and back-end applications. The dependencies for both
applications are managed using npm. To install the necessary dependencies, change the directory into the
root folders for both applications, and run the following command (see listing 4.1).

npm install

Listing 4.1. Set up a script for npm projects.

This will install all necessary dependencies to run the applications. After this, you might want to update the
dependencies and audit-fix any critical security issues by running the following commands (see listing 4.2).
With this, the dependencies are updated, and any security issues are fixed when they have known fixes.

npm update

npm audit fix

Listing 4.2. Set up a script for npm projects.

To be able to develop and compile the front-end application, the Angular CLI must be installed globally.
Use the following command to do so (see listing 5).

Install angular -cli globally

npm install -g @angular / cli

Listing 5. Installation of angular-cli.

3.2 Local hosting and development

To locally host the front-end and back-end applications, input the following commands inside each project
folder’s root folder (see listing 6).

front-end, during development mode, restarts when changes are made to

code-base

npm run start

#back-end, in development mode, restarts when changes are made to code-base

npm run start-watch

Listing 6. Hosting the front-end and back-end applications.

Both applications are hosted in "development mode," after changing source files, the applications are
recompiled, and the server is automatically restarted. The above commands act as aliases for the following

https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://cli.angular.io/

The VOS User Guide

 8

commands (see listing 7). They are specified in the respective package. json file in the root folder of each
application. This makes starting the applications in development mode easy.

front-end

"scripts": {

 ...

 "start": "ng serve --proxy-config proxy.conf.json",

 }

back-end

"scripts": {

 ...

 "start-watch": "nodemon src/index.js",

 }

Listing 7. Configurations of scripts array in package.json.

After starting the development server, the front-end is hosted on localhost:4200, and the back-end listens
on localhost:3000.

3.3 Running the application on a server

For deploying the applications to a server, many different approaches can be taken. In the following sections,
configuration steps required for deploying both the front- and back-end applications on one server are
explained. The server is running on Ubuntu 18.04.3 LTS. The hardware configuration of the server is
variable and is dependent on your project’s scope.

Before deploying the application onto your server, make sure you have all software detailed in section
Installation installed on your server (except the angular-cli, only needed for development).

3.3.1 Front-End

Before you can deploy the application to a server, you have to compile the front-end project’s source code.
Run the following command in the root folder of the application (see Listing 8).

ng build --prod = true

Listing 8. Build production app from source files.

This compiles the typescript source files and generates the resulting application files in /dist folder in the
root directory. For copying the files onto the server, you can use the following command (see Listing 9).

scp -r <path_to_root_dir >/ dist / storefront / <user >@< server_IP >:~/

deployment

Listing 9. Upload files of front-end to server.

This copies the files generated in the dist folder onto the server into your home directory into the sub-folder
/deployment. This sub-folder is specifically created for automatic deployment purposes and necessary if
you want to also use the deployment script provided in the appendix (see Appendix A). You can also just
secure copy the files directly into the /var/www directory but do not forget to restart NGINX if you do it
like this.

The front-end application will be served from a nginx HTTP server. To provide applications to be hosted,
you need to configure a server block inside the ngingx configuration files located under /etc/nginx/sites-
available. You can look at the server configuration that are provided in the following Listing 10.

https://www.nginx.com/

The VOS User Guide

 9

server {

listen 443 ssl ;

listen [::]:443 ssl;

client _max_ body _ size 50M;

include snippets /self - signed . conf ;

include snippets /ssl - params . conf ;

server _ name vegs . codemuenster .eu;

root /var/www/ storefront ;

index index . html index .htm index .nginx - debian . html ;

location / {

try _ files $uri $uri/ / index . html =404;

}

location /api/ {

proxy _ pass http :// localhost :4000;

rewrite /api /(.*) /$1 break ;

proxy _ http _ version 1.1;

proxy _set _ header Upgrade $ http _ upgrade ;

proxy _set _ header Connection ’upgrade ’;

proxy _set _ header Host $ host ;

proxy _ cache _ bypass $ http _ upgrade ;

}

ssl _ certificate /etc/ letsencrypt / live / vegs . codemuenster .eu/

fullchain

.pem; # managed by Certbot

ssl _ certificate _key /etc / letsencrypt / live / vegs . codemuenster .eu/

privkey .pem; # managed by Certbot

Listing 10. Nginx server definition.

To configure the server’s default configuration file, run the following command (see Listing 11). It is
recommended to copy the application files into the /var/www directory, which is referenced in the server
configuration as "root."

configure server block

sudo nano /etc / nginx /sites - available / default

configure server block as seen in nginx server definition

copy the application files to the root location

sudo mv ~/ deploy /< app_name > /var/www

reload nginx

Listing 11. Nginx configures sites available.

The location block configures a URL rewrite for passing HTTP requests to the back-end application, in the
example hosted on localhost:4000. The SSL encryption is handled by certbot, a free tool from Let’s Encrypt.
To automatically set ssl_certificates up, you can run the following command (see Listing 12). This is
optional as you can also host the application HTTP only or configure your own certificate schema.

install certbot

sudo add -apt - repository ppa: certbot / certbot

sudo apt -get install certbot python - certbot - nginx

configure ssl certificates

sudo certbot --nginx

Listing 12. Certbot installation and nginx configuration.

You need to have a domain name for the certbot configuration to work. After configuring all of this, restart
the nginx service, and check if no errors occur while starting the service (see Listing 13).

The VOS User Guide

 10

restart service nginx

sudo systemctl restart nginx . service

check status

sudo systemctl status nginx . service

Listing 13. Restart nginx and check status.

3.3.2 Back-End

The back-end application needs a running instance of MongoDB on the server. If you want to outsource the
MongoDB, you need to reconfigure the back-end configuration files. In this example, I created folders
underneath /opt. The directory structure is as follows /opt/node/<app_name>. The back-end application
is directly implemented using JavaScript, so it does not need to be compiled. I use the following command
to copy the files to the server (see Listing 14).

copy back - end files to the server

rsync -av -e ssh -- exclude ’ node_modules ’ <path_to_root_folder >/ <user

>@

< server_IP >:~/ deployment /< app_name >/

Listing 14. Upload back-end files to the server.

This copies all the application files, excluding the node_modules folder, to the deployment sub-folder in
your server user’s home directory. From here, you need to copy the files to the desired location, in my case
/opt/node. After this, you need to install the node_modules so the application’s required dependencies (see
Listing 15).

copy the files to the desired location

sudo mv ~/ deployment /< app_name > /opt / node

install node modules

cd / opt/ node /< app_name >

npm install

optional

npm update

npm audit fix

optional : test if there are any errors

npm run start

Listing 15. Configuration file for systemctl.

Again, at this point, you might want to update and audit fix the dependencies of the project. For testing, you
might want to run the command line application to see if any errors arise. It is suggested for easier
management to create and register a service for starting the application with systemd. One option is to add
a *.service file to systemctl. Create a configuration file by following the steps detailed in listing 16 and listing
17.

creating the service file

2 sudo nano /lib / systemd / system /< app_name >. service

Listing 16. Configuration file for systemctl.

The VOS User Guide

 11

enable the service

systemctl enable <app_name >

reload the system daemon

sudo systemctl daemon - reload

for debugging errors while starting the service

sudo journalctl -u <app_name >

Listing 17. Bash commands for enabling and reloading the systemctl services.

3.3.3 Email server, user confirmation

Optionally you can require users to confirm ownership over their email addresses. To enable this, set the
flag confirmed on a new user creation operation to false (see Listing 18). This represents the confirmation
of ownership over the email address and is only set to true if the user confirms a confirmation mail.
Additionally, for this, you need to configure an email server to be able to send verification emails. The
configuration file can be found in <root_folder>/src/app/mailer.js. The email confirmation is handled by
sending a JSON Web Token (JWT) and a confirmation link to the user’s email address. After the user clicks
the link provided, the back-end confirms the validity, and sets the user object’s confirmed flag to true. If the
confirmed flag is true, the new user can log-in, or they are prohibited from logging-in if this flag is false.

// auth controller , function register_new_user

var user = new User ({

username : req. body . username ,

email : req. body .email ,

password : hashedPassword ,

// for email confirmation

confirmed : true // set to false

});

Listing 18. User data when created.

3. Configuration Options

3.1 Base Items

To configure a treatment specification, navigate to <base_URL>/admin. Here you can see your base
configuration options. Fundamentally, there are two kinds of configurations you can make. You can add
base configuration, and these are named this way as they are treatment independent. You can configure
them once and reuse them throughout your treatment specifications. For instance, at the top of the screen
in the section "Base configuration" (see Figure 1), you can configure the base items you want to use
throughout your various treatment configurations.

The VOS User Guide

 12

Figure 1. Admin view - Base use case configuration and treatment addition.

For adding base items, use the link "Create base item" and fill out all the information you want to add to the
item.2 You can add an image or alter information about the item after you created the base items. Click on
the "Manage base items" link and search for the item you want to reconfigure. Via the dropdown, you can
choose to edit, delete, or add an image age or change the image associated with the selected item (see Figure
2).3

Figure 2. Admin view - Configure base items.

2 Please note: Base items can only immediately reference swap options when the externalID references them.
Referencing them with their database ID at this stage is impossible because the items are deep copied into the treatment
specifications and have a new _id attribute after allocating them to a treatment. The new _id reference will be
considered when the reference array is checked. An image can only be added to an item after the base data was created.
The data model supports only one image per item (as does the front-end application display method).

3 Please note: If you reconfigure a base item, all the items you already allocated to a treatment will not be changed. This
ensures the preservation of the original treatment configuration made by you.

The VOS User Guide

 13

The item model features all the necessary information for displaying a food item in a real-world shopping
environment. It features the price, VAT, content type, and amount, the nutritional information, the display
name, brand name, and additional description information, ingredients, and allergens (see Figure 3 and
Figure 4).

Figure 3. Shop view - Example mapping of item model data to the food-card component.

Figure 4. Shop view - Example mapping of item model data to the food-details
component.

The currency takes the official country currency codes specified by ISO 4217. The additional information on
the item model provides the use case-specific information needed to provide the specific functionality, e.g.,
score, taxes, swaps, and labels (see Listing 19).

The VOS User Guide

 14

vat : { type : Number },

amount : { type : Number },

content : {

contentType : String , // fluid or solid

amountInKG : { type : Number },

displayAmount : { type : String }

},

// In front -end thumbnails will be handeled by ‘th_+ imageID ‘

image : {

th: String ,

full : String

},

ingrediants : { type : String },

allergenes : { type : String },

baseAttributes : [String],

taxes : [{

taxID : String ,

header : String ,

description : String ,

shortDescription : String ,

amount : Number

}],

score : {

scoreID : String ,

header : String ,

description : String ,

maxValue : Number ,

minValue : Number ,

amount : { type : Number },

},

subsidies : {

subsedieID : String ,

amount : Number

},

// ItemIds

swaps : [String],

label : [String],

// for base Filter funtionality ?

tags : [String],

niceness : { type : Number , default : 1 }

}, { timestamps : true });

Listing 19. Item model schema.

3.1.1 Base Attributes

The "baseAttribute" is an array in which you can specify arbitrary attributes for each item. Based on these
subjects can limit the selection of items based on the specified attributes. For instance, base attributes like
"Organic," "Lactose-free," and "Free-range" could be added. These names are then also displayed in the
item limiting function in the shop view.4

4 Please note: Different spellings of the same attribute will result in an additional limiting option.

The VOS User Guide

 15

3.1.2 Tags

The tag array configures the base filter of the application (see the base filter section). The tag array is
considered from the first to the second item in the array. The first item represents a parent node in the base
filter, with the second element being considered its first child node.

Please note: the order in which these tags are appended in this array is important for generating the
parent, child node filter tree.

3.1.3 Niceness

An additional sorting mechanism that carries between filter options is the configuration option "niceness"
on the item level. This is an attribute of each item, which is a number between zero and one. Items are
sorted based on their niceness, beginning with the least nice items. This ordering mechanism allows certain
items always to be displayed first or closer to the viewpoint of the subjects.

3.2 Base Labels

For creating label strategies ,you can select the label card in the base configuration section of the admin
view, and this will navigate to <base_URL>/admin/labelCreate. Here you can create a new label definition
by clicking the "New Label" button on the bottom left of the label create the view. This view also enables
you to edit, delete, or add an image to an already created label (see Figure 5).

Figure 5. Label create view - Configure label definitions.

The following listing shows the data model of a label object (see Listing 20). The header represents the label
name that is being displayed. The description is a text that a subject can view during a trial. The associated
image is directly stored inside the label model definition.5

let LabelSchema = new Schema ({

owner : String ,

header : String ,

description : String ,

img : {

imageID : String ,

data : Buffer ,

contentType : String

}

}, { timestamps : true });

Listing 20. Label data model.

5 Please note: Label images that are not resized to be a square and where the image background is not transparent may
look out of place in the current shop implementation. To support this, you might want to reconfigure the label image
display mechanism. For this, see the developer notes on the "food-card."

The VOS User Guide

 16

3.3 Custom taxes

For creating custom tax definitions, you can select the tax card in the base configuration section of the
admin view, and this will navigate to <base_URL>/admin/taxCreate. The following listing details the taxes
data model (see Listing 21).

let TaxSchema = new Schema ({

owner : String ,

description : String ,

shortDescription : String ,

header : String

});

Listing 21. Tax data model.

The short description will be displayed on the food card and on the food details view (see Figure 6).

Figure 6. Shop view - (A) tax display in food details component, (B) tax information
dialog, for showing the description of the additional tax.

3.4 Custom score

To create custom score definitions, you can select the score card in the base configuration section of the
admin view, which will navigate to <base_URL>/admin/labelCreate. The following listing details the taxes
data model (see Listing 22).

const ScoreSchema = new Schema ({

owner : String ,

header : String ,

description : String ,

maxValue : Number ,

minValue : Number ,

});

The VOS User Guide

 17

Listing 22. Score data model.

The scores can be created freely. The base definition contains a min- and max value number. The header
and description data will be displayed in the food details view. In addition, a score bar is displayed on the
food-card and food-details view (see Figure 7). An item’s actual score has to be configured on an item where
the tax is allocated.

Figure 7. Shop view - (A) Score display on food-card component, (B) score display in

food-details component

3.5 Custom filtering

The application offers two kinds of filter types. These filters are displayed on the left-hand side of the shop
view. The base filter types, which are generated and displayed automatically, are based on tags and base
attributes; both of these are configured at the individual item level (see Listing 19). Based on the tags array
on all items allocated to a treatment, a tag filter tree is generated that takes into account the first two entries
of the tag array. Based on this, a filter tree with one parent category and one child category is created and
displayed. The code can be found in the file .../trial/trial-services/product.service.ts.

The second base filter type is based on the base attributes configured on each individual item. This is used
to limit the selection to, for example, only items with the trait "organic." This filter type is also generated in
the file .../trial/trial-services/product.service.ts. A depiction of both filters can be seen in Figure 8. The base
attribute filter can be multi-selected, whereas the tag filter is single select only.

The VOS User Guide

 18

Figure 8. Shop view - (A) Base tag filter, (B) base attribute filter

For creating custom filter definitions, you can select the filter card in the base configuration section of the
admin view, and this will navigate to <base_URL>/admin/filterCreate. Custom filters differ from the base
filter variants in that they can be created by hand. You may create any custom filter tree of your choosing.
After creating a custom filter tree definition, you need to add this filter tree definition to the treatment of
your choice. After this, you can add items from your treatment definition to your custom filter tree’s leaf
nodes. This way, there are no limits to the customizability and depth of your filter tree definition. Figure 9
and Figure 10 illustrate the stages you have to perform to add a custom filter to your treatment definition.6

Figure 9. Admin view - 1. Create new filter, 2. create parent node, 3. create child node, 4.
delete referenced node.

6 Please note: The order in which you add the items to the leaf nodes and the order you add filter trees to your treatment
definitions will determine the order items and the filter are being displayed. This is partially true as the product’s
niceness value or any other ordering mechanism will rearrange the items as they are displayed when filtered. This is a
side-effect of the fact that this information is pushed onto an array on the item/treatment level.

The VOS User Guide

 19

Figure 10. Admin view – (A) 1. Add an existing filter to the treatment, 2. add treatment
items to the node leaf of the custom filter tree. (B) Custom filter displayed on the left of

the item grid.

3.6 Sorting

The base application offers a basic sorting mechanism. Subjects may sort the items based on price
descending and ascending. The sorting options are displayed as a dropdown on the top right of the trial
shop view. Implementing and using other sorting mechanisms would have to be coded directly into the
front-end application.

3.7 Swap Options

The VOS supports the offering of swap options7 for food items at different intervention points: (i) when
adding items into the shopping cart and (ii) when finishing the treatment by checking out. Additionally, you
can show an opt-in popup, which can also be configured in two ways. Either the opt-in popup appears before
each event that precedes a swap dialog or once per subject (either at the start or end of the treatment, based

on when the swap options should be displayed.

For using this tool, you first have to have a treatment with allocated items. Swap options are configured for
each individual item, not for categories or other information. Swaps references are saved to the item object

7 Swap options are an intervention that offers consumers the opportunity to replace a selected food item,
for instance, with a healthier or more sustainable one.

The VOS User Guide

 20

inside the "swaps" array. This array holds references to "item._id" attributes of items that should be shown
when offering swaps.8

For configuring swap options on a treatment, you need to navigate to the edit screen of the desired
treatment (/admin -> treatment dropdown "edit"). Select the item you want to add swap options to and
click edit on the dropdown menu. On the item edit card, click the button "Add swap," this will open a dialog
for adding items to the swap array. Select the items you want to add and press the save button. After this,
save the whole treatment definition by clicking the "Save" button on the bottom of the screen.9

3.7.1 Enabling the Display

For enabling the display of swap options during treatment, you then have to set a flag on the treatment
object. These flags can be set on the treatment edit screen. To enable the display, tick the "Show swaps"
option. This will enable the base swap configuration, which shows swaps to the participants when they add
an item to their shopping cart. If you want to utilize the second intervention point strategy, you have to tick
the box labeled "Show swaps at the end of treatment." With this, the second intervention strategy is used.
Here all swap dialogues are iterated when the subjects attempt to finish the treatment by hitting the
checkout button.

3.7.2 Enabling Opt-In strategies

The Opt-In strategies are also controlled by flags set on the treatment definition, directly beneath the swap
display options. Here you may only choose one of the two strategies. The strategy "Opt-In once at the start"
will have different behaviors when choosing the base mode of displaying swaps versus the show swaps at
the end mode. The first prompts the subject before the treatment begins. Here, they opt-in or out of the
swap display in general. The second mode prompts the subject when clicking the checkout button, and
before the swap dialogues are iterated, here again, they are prompted once to opt-in or out of swap display.10

4. Treatment administration

Before you can use the tool as a treatment administrator, you must register as a user. This is necessary to
be able to match the data created to the user that created it. Navigate to the <base_URL>/auth/register
screen, and input your email and desired password. Based on the configurations made in the back-end, an
email confirmation is required. If this has all successfully finished, navigate to the <base_URL>/auth/login
screen and log in using the newly generated user. If there are any errors, observe the back-end logs or see
the returned HTTP response errors. Only logged-in users can access routes beginning with /admin.

For creating and modifying your treatments, navigate to the URL <base_URL>/admin. At the bottom is a
table with all your created treatments and creating a new treatment. If you edit an existing or create a new
treatment, you will be redirected to the treatment edit screen. The treatment edit screen is divided into
several sections, basic information, items, filters, display options, and game options. At the top is the basic
information, which lets you configure the name and description. Next is the items section; here, you can
add, remove, and edit items. In the filter section, you can add, remove, and edit the custom filters you added
as a custom filter (see section 3.5). In the display options section, you can configure what parts of the shop,
or if extra information should be displayed, see the short information descriptions for a short functional
description. The game options section contains options for configuring the shopping experience, like a
maximum budget for each shopper and if this budget is restrictive.

8 Please note: Important: You cannot upload base items with swap options directly referenced because you need the
"item._id" reference for adding a valid reference into the swaps array.

9 Please note: Saving a treatment may take a few seconds depending on the number of items allocated.

10 Please note: If you edit any aspect of the treatment definition, you have to hit save at the bottom of the treatment
edit screen; failing to do this will result in losing all the updates when leaving the treatment edit screen.

The VOS User Guide

 21

4.2 Creating new Treatments

For creating a new treatment, navigate to the main admin view <base_URL>/admin and click the button
at the bottom that says "New Treatment." This will redirect you to the treatment edit screen. Before you
may edit treatment-specific data, input the basic treatment data "Name" and "Description" situated at the
top of the screen. Save the data by pressing the button "Save" directly beneath the form. This creates a new
treatment with only a name and a description.

4.3 Modifying existing treatments

For modifying an existing treatment, navigate to the desired treatment and expand the dropdown options
menu. Once here, click on "Edit." This will redirect you to the treatment edit view. Click "Delete" if you want
to delete the specific treatment definition.11

4.4 Testing Treatments in a Sandbox Environment

You can view a demo of the changes you have made to the treatment by clicking on the play button on the
right-hand side of the "all treatments table." Or navigate to the URL:
<base_URL>/t/<treatmentID>/s/0/shop/products. Notice the ../s/0 in the URL. This configures the
"subjectID" to be 0, meaning that no activity will be tracked while navigating the shop. This enables you to
navigate and test the treatments and experience them as a subject would see them.

4.5 Data Model

The data model of a treatment represents the base configurations, which affect the base components that
can be customized about a treatment (see Listing 23 & Listing 24). The item array contains full copies of
every base item which has been allocated to the specific treatment. This means that you can freely change
any aspect of an item allocated to a treatment without affecting the base items. The "showOptions" attribute
contains configuration flags that configure switch on or off certain shop design elements. The subject
options represent the object for configuring game options.

let TreatmentSchema = new Schema ({

owner : String ,

name : String ,

description : String ,

active : { type : Boolean , default : false },

items : [Item],

// featuredItems : [String],

filters : [Tree],

showOptions : {

1numOfItems : { type : Number , default : 10 },

showSum : { type : Boolean , default : false },

showSumScore : { type : Boolean , default : false },

showBudget : { type : Boolean , default : false },

showScore : { type : Boolean , default : false }, // see section 3.1.4

showTax : { type : Boolean , default : false }, // see section 3.1.3

showPopOverCart : { type : Boolean , default : false }

},

// specific score configurations

swapConfig : {

// if swaps are shown at all

showSwaps : { type : Boolean , default : false },

// if swaps are shown immediatly or at the end

showSwapEnd : { type : Boolean , default : false },

// if there should be a consent popup once at the start of the

configured swap type (either swaps at the end or immediately at the

11 Please note: Clicking the “Delete” button will immediately delete the treatment without asking for consent.

The VOS User Guide

 22

start

showOptInStart : { type : Boolean , default : false },

// if consent should be given before each swap option popup

showOptInEachTime : { type : Boolean , default : false }

},

subjectOptions : {

money : Number ,

restricted : Boolean

},

questionnaire : { type : Boolean , default : false }

}, { timestamps : true });

Listing 23. Treatment data model.

import json

import requests

URLs

baseURL = ’<BASE_URL /api >’

addItem = ’/ item ’ # enpoint for creating items

addImage = ’/ add/ image ’ # enpoint for saving image to item

Get and modify treatment

Information for api access and URLs

cookies = {" express : sess . sig": "<YOUR_SESS : SIG_STRING >", " express :

sess ":

" YOUR_SESSION_STRING "}

httpHeader = {

’Content - Type ’: ’application / json ’

}

data = []

with open (’item_data . json ’, ’r’) as f:

for row in json . load (f):

data . append (row)

for row , ind in zip(data , range (len (data))):

print (f’item num: {ind}, of { len(data)}’)

try :

open (f’{row [" imagePath "]} ’, ’rb ’)

except :

print (’no picture ’)

continue

try :

resp = requests . post (

f’{ baseURL }{ addItem }’,

headers = httpHeader ,

cookies = cookies ,

json =row

)

except requests . exceptions . RequestException as e:

print (e)

break

if successfully created

add image to the item

files = {’image ’: open (f’{row [" imagePath "]} ’, ’rb ’)}

try :

respImage = requests . post (

The VOS User Guide

 23

f’{ baseURL }{ addImage }’,

files =files ,

cookies = cookies ,

data ={ ’itemID ’:f’{ resp . json () [" _id "]} ’}

)

except requests . exceptions . RequestException as e:

print

Listing 24. Base item upload script.

4.7 Treatment and base information administration using scripts

If a high number of configurations need to be made, you can think about automating this by writing scripts
that automate the task.

Here, an example script is given, which details the way users may upload base items at scale. The item data
is stored as a JSON-file, which holds several valid item instances. Only authenticated users can upload items,
so be sure to provide the session and session-signature strings. These can be extracted from the cookies tab
of the domain under which the website is hosted. These need to be added to the request headers for
authentication. The script listing uses Python 3.0. The items of item_data.json have the following format
(see Listing 25).

{

" netPrice ": Number ,

" currency ": String ,

"vat": Number ,

" content ": {

" contentType ": String ,

" amountInKG ": Number ,

" displayAmount ": String

},

" tags ": [String],

" name ": String ,

" brand ": String ,

" description ": [

1{

" header ": String ,

" text ": String

}

],

" nutritionalTable ": {

"kj": Number ,

" kcal ": Number ,

" totalFat ": Number ,

" saturatedFat ": Number ,

" totalCarbohydrate ": Number ,

" sugar ": Number ,

" protein ": Number ,

" salt ": Number

https://www.python.org/download/releases/3.0/

The VOS User Guide

 24

},

" imagePath ": "<path_to_image >"

}

Listing 25. Item data model in json file.

The script loads all items from item_data.json file and stores them in a list. It iterates over the data list and
checks if an image is available; if not, it continues without uploading the item. After this, using
requests.post, the item data is uploaded. If the item is successfully uploaded, the script then proceeds to
upload the image to the created item. If all of this works, it will proceed with the next item.

5. Trial configuration and execution

To be able to start a trial, a treatment definition has to be present. The treatment definition by default has
the "active" attribute set to false. To be able to generate subjects and start recording data, set this attribute
to true. This can be done on the admin landing page, navigate down to the treatment table, open the
dropdown menu for the treatment you wish to enable, and press the menu item "Enable." After pressing
this, it should now present you with the option to disable it by displaying a "Disable" button. When a
treatment is disabled, links referencing this treatment will be redirected to an info page, which says that the
given treatment is inactive or otherwise not present. You can, at any point, disable and re-enable it.

Trials can be conducted in several different ways, either in a controlled environment, e.g., classroom
settings, or over the internet. Both are supported and do not entail feature reductions from choosing one
over the other. An advantage of the controlled environment would be that you could host the application
on the local area network, which might translate to less latency and better network connectivity. The
decision will ultimately depend on your resources and the scope of the experiment.12

5.1 Trial route

In order to be able to reload the trial route during experiment execution, the URL path represents the
central information necessary to rebuild and fetch the necessary data (see Listing 26). The treatmentID is
the reference ID (_id) of the treatment that should be conducted. The subject ID references the subject that
should be used. This combination is used to reference and save the data created by the subject during the
treatment execution.

// route used for trial execution

2 <base_URL >/t/< treatmentID >/s/< subjectID >/...

Listing 26. Trial route composition.

5.2 Manually start and generate subject

For manually configuring a treatment, you can navigate to <base_URL>/t. This will show a form where you
first need to select a valid treatmentID and then proceed to choose a specific subject or automatically
generate a subject for the treatment execution. After choosing a valid combination, you will be redirected
to the treatment start page, from which subjects may start the trial.

5.3 Automatically generate subject and start

The manual process can be skipped by providing a link with additional query parameters. The query
parameter is named "genSubject" by providing this with the parameter "yes" (see Listing 27). This will skip

12 Please note: Concerning this application, it is important to keep in mind that different physical devices
and, e.g., browser-software used, may influence the user experience provided by the tool. Especially the
viewport may influence the user experience. Variable device width may influence the number of items a
subject can initially see on screen. Furthermore, it has implications on the ease of use because generally,
the less screen is available, the more effort it is to navigate the shopping environment.

The VOS User Guide

 25

all configuration steps and redirect the participants to the products page. This is the recommended way if

you do not want to reuse a subject for a different treatment.

// route used for automatic trial execution

<base_URL >/t/< treatmentID >? genSubject =yes

Listing 27. Automatically start and generate a subject.

5.3 Automatically start and reuse a subject

For this, you need to combine the necessary information described in the trial route section (see Listing 26).
If a subjectID is given, and the subject has not yet finished the referenced treatment, the link will
automatically redirect the subject to the referenced treatment’s products page.

5.4 Custom questionnaire

Users of this application may configure custom questionnaires that can be performed either before, after,
or at both points of an experiment. This feature is not developed beyond a rudimentary implementation
stage. For instance, a custom questionnaire may not be created through visual aids at the treatment
administration screen. In its current implementation, questionnaires can be hard-coded into the
application. This option requires programming knowledge as the templates, styling, and data-bindings
would need to be implemented by hand.

5.5 Trial Data

The subject- and treatment ID are referenced at the top, so the generated data can easily be assigned to the
treatment and subject. Started and Ended are timestamps that represent the time the subject has begun
and completed the trial. Started is set when the trial data reference is first saved to the database. The end is
set if the subject ends the trial by pressing the checkout button. Along with the end timestamp, the finished
flag is also set to true. This prohibits the accidental addition or modification of data after the trial has been
ended. The routing array saves all route changes. By providing the origin and destination routes, the
navigation path of the subject can be easily tracked. The final cart and transactions arrays represent the
final shopping cart and all changes to the shopping cart, which was made by the subject (see Listing 28).
The pagination array saves all page changes the subject makes, which items are visible on the page, the
number of all items, the current page, the page size, and a timestamp when the pagination event occurred.
The use of case-specific data collection is described in section 6.

let TrialSchema = new Schema ({

treatmentID : String ,

subjectID : String ,

started : String ,

ended : String ,

owner : String ,

finished : { type : Boolean , default : false },

data : {// routes visited and navigated

routing : [

{

origin : String ,destination : String ,

time : String

}

],

pagination : [

{

currentPage : Number ,

pageSize : Number ,

itemsOnPage : Array ,

The VOS User Guide

 26

numInTotal : Number ,

time : String

}

],

// final cart

finalCart : [

{

itemID : String ,

amount : Number

}

],

// addition and substraction from shopping cart

transaction : [

{

time : String ,

itemID : String ,

identifier : String ,

delta : Number

}

],

// swap information

swaps : [

{

started : String ,

ended : String ,

originalItem : String ,

originalAmount : Number ,

resultItem : String ,

resultAmount : String ,

swapOptions : [String],

success : Boolean

}

],

swapOpts : [

{

sourceItem : String ,

rememberMyAnswer : Boolean ,

result : Boolean

}

],

// information if description of label or score is viewd by subject

infoViewed : [

{

started : String ,

ended : String ,

infoID : String

}

],

// filter actions the subject makes

itemsFiltered : [

{

time : String ,

filter : Object

}

]

}, { timestamps : true });

The VOS User Guide

 27

Listing 28. Trial model schema.

The trial data can be retrieved from the back-end from the get-request endpoint <backend_
URL>/download/data/<treatment_ID>. This will produce a list of all trial records generated in association
with a treatmentID. The records are sens in JSON-format. The following listing details a script that loads
all trial records of the treatment and converts the records from JSON- to csv- or excel-format (see Appendix
B).

6. Developer Notes

In this section, general implementation concepts, structure, and development concepts will be discussed.
The application divides into two separate applications: the Front- and the Back-end. The front-end is a
single-page application that provides a graphical user interface for all users. The back-end application is
structured as a Representational State Transfer (REST) Application Programming Interface (API). This
offers the means to perform Create Read Update Delete (CRUD) operations on the underlying data. The
technology stack can be observed in figure 11. This popular stack is also known as the mean stack.

Figure 11. Technology stack of the application.

6.1 Front-End

The front-end repository divides into three main feature modules. The trial module holds all the code
necessary for all trial functionality of the tool. For instance, the shopping view, services, and functions
performing and recording an experiment’s results are contained in the trial module. The admin module
then holds all the logic for treatment configuration and base functionality to provide visual administration
aids for users. The shared module contains code and components that are used throughout different
modules. Understanding this structure is key. This structure makes it easy for developers to locate and
change specific aspects of the front-end application. All code associated with a given aspect can be easily
found and isolated by traversing the directory structure. Changes to the trial experience, for instance, the
shop view, can be made in the trial module. These changes do not carry over and affect code in other
modules (see figure 12).

The VOS User Guide

 28

Figure 12. Modules and components of the app module.
The code is documented with doc-strings in the source code. In addition to this, Compodoc is added to the
code base. This tool provides a comprehensive and visually appealing documentation representation. See
listing 29 for the command with which to run and serve the documentation. This command starts an HTTP-
Server by default listening on localhost:8080. Navigate there to see the full documentation.

from the root folder of the front -end project

compodoc -p src/ tsconfig .app . json -s

Listing 29. Prepare and serve Compodoc.

Additions to specific parts of the functionality of the tool should be made in their respective feature modules.
If the modifications include data to be saved and loaded to and from the back-end think about, at which
point an existing data model could be extended. You can also implement the functionalities in a new sub-
folder following the structure described in the next section. If any of these aspects need to be edited by GUI
components, then these must be added in the admin module.

6.2 Back-end

The back-end application is based on a Node.js application. The server application itself is based on the
framework Express, and data storage is handled by MongoDB, which is a NoSQL data store. This
implementation style gives flexibility and provides the means to develop, test, and deploy new functionality
rapidly. The NoSQL data model usage means that there is no mismatch between the form of the data used
in the front and back-end applications. This makes developing this tool even easier. The codebase of the
back-end application is structured following the data models utilized. All CRUD operations, model, and
general functions are contained in the associated folders. In-depth descriptions about the functions and
end-points are also provided through docstrings directly in the source code.

6.2.1 Basic configuration

For the basic configuration of the back-end application, you can use environment variables or command-
line arguments. The configuration options can be observed in the file: <root_-folder>/src/config.js.
Additionally, you can configure these basic variables by using a .env file. For further information, see convict
and dotenv. If you have different instances of these basic configurations for different environments, you
can also configure these in the <root_folder>/src/config/<environment>.json files.

6.2.2 Authenticating Users

For user authentication, the application uses a custom username and password strategy using the passport
middleware. Passport is Express-compatible authentication middleware for Node.js applications. When a
user successfully authenticates, the back-end sets a session and session signature in the browser’s cookies.
They are secure and HTTP only. Passport also handles the serialization and deserialization of user-specific
data. The passport middleware deserializes the session cookie to retrieve the user identifier on request end-
points where user-specific data is needed. Based on this identifier, all necessary information can be

https://compodoc.app/
https://nodejs.org/en/
https://expressjs.com/de/
https://www.mongodb.com/cloud/atlas/lp/try2-de?utm_source=google&utm_campaign=gs_emea_germany_search_brand_atlas_desktop&utm_term=mongodb&utm_medium=cpc_paid_search&utm_ad=e&utm_ad_campaign_id=1718986504&gclid=EAIaIQobChMIjvqNxoa97gIVEs13Ch1KtQohEAAYASAAEgJyN_D_BwE

The VOS User Guide

 29

gathered. The user information is accessible on the request object (req.user). This is the standard behavior

of the passport middleware.

6.2.3 Image handling

When uploading an image to an item, two separate images are created—one thumbnail image with 175x175
dimensions and the original image. The images are not saved to a disk, and both images are saved to the
MongoDB database. This is done to prevent any complications during the deployment step. This means
there is no direct image download link. Images need to be queried by providing their database ID. Images
that are uploaded in the context of label definitions are nested inside the label data model. This also means
that images associated with labels are also not saved to a disk but into the database. To retrieve the picture,
you have to load the whole label definition.

https://www.mongodb.com/cloud/atlas/lp/try2-de?utm_source=google&utm_campaign=gs_emea_germany_search_brand_atlas_desktop&utm_term=mongodb&utm_medium=cpc_paid_search&utm_ad=e&utm_ad_campaign_id=1718986504&gclid=EAIaIQobChMIjvqNxoa97gIVEs13Ch1KtQohEAAYASAAEgJyN_D_BwE

The VOS User Guide

 30

Appendix

Appendix A - Deployment script for server hosting

#!/ usr/bin /sh

if [$# -eq 0]

then

echo " Missing options !"

echo "(run $0 -h for help)"

echo ""

exit 0

fi

while getopts " hBFA " OPTION ; do

case $OPTION in

b)

ECHO =" true "

;;

h)

echo " Usage :"

echo " deploy .sh -B "

echo " deploy .sh -F "

echo " deploy .sh -A "

echo ""

echo "\t-B\tto deploy both Frontend and API"

echo "\t-F\tto deploy only Frontend "

echo "\t-A\tto deploy only API"

exit 0

;;

B)

sudo systemctl stop nginx

sudo systemctl stop api_store

For replaving the frontend

sudo rm -rf /var/ www/ storefront

sudo mv / home / sebastian / deployment / storefront /var/www/

sudo chown sebastian : sebastian -R /var/ www/ storefront

sudo systemctl start nginx

same for api

rm -rf /opt/ node / api_store

mv / home / sebastian / deployment / api_store /opt/ node /

sudo chown sebastian : sebastian -R /opt/ node / api_store

echo " NODE_ENV = prod " > /opt/ node / api_store /. env

echo " IP_ADDRESS =134.76.18.221 " >> /opt/ node / api_store /. env

cd /opt/ node / api_store && /usr/bin /npm install

sudo systemctl start api_store

exit 0

;;

A)

sudo systemctl stop api_store

rm -rf /opt/ node / api_store

mv / home / sebastian / deployment / api_store /opt/

node /

sudo chown sebastian : sebastian -R /opt/ node /

api_store

echo " NODE_ENV = prod " > /opt/ node / api_store /. Env

echo " IP_ADDRESS =134.76.18.221 " >> /opt/ node /

The VOS User Guide

 31

api_store /. env

cd /opt/ node / api_store && /usr/bin /npm install

sudo systemctl start api_store

exit 0

;;

F)

sudo systemctl stop nginx

For replaving the frontend

sudo rm -rf /var/ www/ storefront

sudo mv / home / sebastian / deployment / storefront /

var /www/

sudo chown sebastian : sebastian -R /var/ www/

storefront

sudo systemctl start nginx

exit 0

;;

esac

done

The VOS User Guide

 32

Appendix B - Script for retrieving and converting trial data

import json

import requests

import pandas as pd

from benedict import benedict

URLs

baseURL = ’https :// vegs . codemuenster .eu/api ’

treatmentID = ’<treatment_ID >’

trialDataRoute = f’/ download / data /{ treatmentID }’

treatmentData = f’/t/{ treatmentID }’

base_path = r’<root_dir_path >’

json_file = r’all_items . json ’ # file where all treatment items are kept

Information for api access and URLs

cookies = {" express : sess . sig": "<YOUR_SESS : SIG_STRING >", " express :

sess ":

" YOUR_SESSION_STRING "}

httpHeader = {

’Content - Type ’: ’application / json ’

}

function that checks if userAgent header is of mobile or desktop

browser

def checkIfMobile (user_agent):

reg_b = re. compile (r"(android |bb \\d+| meego).+ mobile | avantgo | bada

\\/|

blackberry | blazer | compal | elaine | fennec | hiptop | iemobile |ip(hone

|od)|

iris | kindle |lge | maemo | midp |mmp| mobile .+ firefox | netfront | opera

m(ob|

in)i| palm (os)?| phone |p(ixi|re) \\/| plucker | pocket |psp| series

(4|6) 0|

symbian | treo |up \\.(browser | link)| vodafone |wap | windows ce|xda|

xiino ",

re.I|re.M)

reg_v = re. compile (r" 1207|6310|6590|3 gso |4 thp |50[1 -6] i |770 s |802

s|a

wa| abac |ac(er|oo|s\\ -)|ai(ko|rn)|al(av|ca|co)| amoi |an(ex|ny|yw)| aptu |

ar(ch|go)|as(te|us)| attw |au(di |\\ -m|r |s)| avan |be(ck|ll|nq)|bi(lb|rd

)|bl(ac|az)|br(e|v)w| bumb |bw \\ -(n|u)| c55 \\/| capi | ccwa |cdm \\ -|

cell |

chtm | cldc |cmd \\ -| co(mp|nd)| craw |da(it|ll|ng)| dbte |dc \\-s| devi |

dica |

dmob |do(c|p)o|ds (12|\\ - d)|el (49| ai)|em(l2|ul)|er(ic|k0)| esl8 |ez

([4 -7]0| os|wa|ze)| fetc |fly (\\ -|_)|g1 u| g560 | gene |gf \\ -5|g\\-

mo|go (\\.

w|od)|gr(ad|un)| haie | hcit |hd \\ -(m|p|t)| hei \\ -| hi(pt|ta)|hp(

i|ip)|hs

\\-c|ht(c(\\ -| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i \\ -(20| go|ma)| i230 |iac(

|\\ -|\\/) | ibro | idea | ig01 | ikom | im1k | inno | ipaq | iris

|ja(t|v)a| jbro | jemu |

jigs | kddi | keji |kgt(|\\/) | klon |kpt |kwc \\ -| kyo(c|k)|le(no|xi)|lg(

g

|\\/(k|l|u) |50|54|\\ -[a-w])| libw | lynx |m1 \\-w| m3ga |m50 \\/|

ma(te|ui|xo)

The VOS User Guide

 33

|mc (01|21| ca)|m\\- cr|me(rc|ri)|mi(o8|oa|ts)| mmef |mo (01|02| bi|de|do|t

(\\ -| |o|v)|zz)|mt (50| p1|v)| mwbp | mywa |n10 [0 -2]| n20 [2 -3]| n30

(0|2) | n50

(0|2|5) |n7 (0(0|1) |10) |ne ((c|m)\\ -| on|tf|wf|wg|wt)| nok (6|i)| nzph |

o2im |

op(ti|wv)| oran | owg1 | p800 | pan(a|d|t)| pdxg |pg (13|\\ -([1 -8]| c))|

phil |

pire |pl(ay|uc)|pn \\ -2| po(ck|rt|se)| prox | psio |pt \\-g|qa \\-a|qc

(07|12|21|32|60|\\ -[2 -7]| i\\ -)| qtek | r380 | r600 | raks | rim9

|ro(ve|zo)|s55

\\/| sa(ge|ma|mm|ms|ny|va)|sc (01| h\\ -| oo|p\\ -)| sdk \\/| se(c (\\ -

|0|1)

|47| mc|nd|ri)|sgh \\ -| shar | sie (\\ -|m)|sk \\ -0| sl (45|

id)|sm(al|ar|b3|it|

t5)|so(ft|ny)|sp (01| h\\ -|v\\ -|v)|sy (01| mb)|t2 (18|50) |t6 (00|10|18)

|ta

(gt|lk)|tcl \\ -| tdg \\ -| tel(i|m)|tim \\ -|t\\- mo|to(pl|sh)|ts (70| m\\

-| m3|

m5)|tx \\ -9| up (\\. b|g1|si)| utst | v400 | v750 | veri |vi(rg|te)|vk

(40|5[0 -3]|\\ - v)| vm40 | voda | vulc |vx (52|53|60|61|70|80|81|83|85|98)

|w3c

(\\ -|)| webc | whit |wi(g |nc|nw)| wmlb | wonu | x700 | yas \\ -| your |

zeto |zte \\-

", re.I|re.M)

b = reg_b . search (user_agent)

v = reg_v . search (user_agent [0:4])

if b or v:

return True

else :

return False

def seperateBasedOnMobile (dataFrame):return {’mobile ’: dataFrame .loc[

dataFrame [’mobile ’] == 1], ’

notMobile ’: dataFrame .loc[dataFrame [’mobile ’] != 1]}

def getWriter (file_name):

return pd. ExcelWriter (f’{ base_path }{ file_name }. xlsx ’, engine =’

xlsxwriter ’)

get Trial data

resp = requests .get(

f’{ baseURL }{ trialDataRoute }’,

headers = httpHeader ,

cookies = cookies ,

)

prepare dicts for additional data eg. match item attributes to final

cart ...

only get item data if not present

itemCatalog = {}

try :

with open (f’{ base_path }{ json_file }’, ’r’) as infile :

itemCatalog = json . load (infile)

except : pass

if not itemCatalog :

print (" Item data is being fetched ")

The VOS User Guide

 34

respShopItems = requests .get (

f’{ baseURL }{ treatmentData }’,

headers = httpHeader ,

cookies = cookies

)

for item in respShopItems . json ()[’items ’]:

print (item [’ _id ’])

itemCatalog [item [’_id ’]] = item

with open (f’{ base_path }{ json_file }’, ’w’) as f:

json . dump (itemCatalog , f)

"""

Extract general Data about subjects from trial data

"""

generalData = pd. DataFrame ()

routingData = pd. DataFrame ()

paginationData = pd. DataFrame ()

finalCart = pd. DataFrame ()

transactionData = pd. DataFrame ()

swapData = pd. DataFrame ()

swapOptData = pd. DataFrame ()

infoViewed = pd. DataFrame ()

itemsFilteredData = pd. DataFrame ()

questionnaireItems = pd. DataFrame ()

attributes = {

" subject ": ’subjectID ’,

" device ":’ userAgentHeader ’,

" deviceWidth ":’deviceWidth ’,

" deviceHeight ":’ deviceHeight ’,

’age ’: ’ questionnaire | personalInfo |age ’,

’gender ’:’ questionnaire | personalInfo | gender ’,

’location ’:’ questionnaire | personalInfo | location ’,

’occupation ’:’ questionnaire | personalInfo | occupation ’,

’education ’:’ questionnaire | personalInfo | education ’,

’housing ’:’ questionnaire | personalInfo | housing ’,

’ foodPurchaseResp ’:’ questionnaire | personalInfo | foodPurchaseResp ’

,

’ shoppingFrequency ’:’ questionnaire | personalInfo |

shoppingFrequency ’,

’income ’:’ questionnaire | personalInfo | income ’,

’ expenditures ’:’ questionnaire | personalInfo | expenditures ’,

’ maritalStatus ’:’ questionnaire | personalInfo | maritalStatus ’,

’email ’: ’ questionnaire | personalInfo | email ’,

’finished ’: ’ questionnaire | personalInfo | finished ’,

’started ’: ’started ’,

’ended ’:’ended ’

}

for subject , ind in zip(resp . json () , range (len(resp . json ()))):

if not subject [’ finished ’]: continuesubjectID = subject [’subjectID ’]

general data about the trial

The VOS User Guide

 35

if not subject [’ questionnaire ’][’ personalInfo ’]: continue

print (ind)

data = benedict (subject , keypath_separator =’|’)

temp = {}

for key , value in attributes . items ():

Ecept any error and place value of None in df

try :

if data [value] == ’none ’:temp [key] = pd.np.nan

else :

temp [key] = data [value]

except Exception as error :

print (error)

temp [key] = None

temp [’mobile ’] = checkIfMobile (temp [’device ’])

generalData = generalData . append (temp , ignore_index = True)

for routing data

for routing in subject [’data ’][’routing ’]:

routing [’subject ’] = subjectID

routing [’mobile ’] = temp [’mobile ’]routingData = routingData . append (

routing , ignore_index = True)

for pagination data

for pagination in subject [’data ’][’pagination ’]:

pagination [’subject ’] = subjectID

pagination [’mobile ’] = temp [’mobile ’]

paginationData = paginationData . append (pagination , ignore_index =

True)

for final cart

for finalC in subject [’data ’][’finalCart ’]:

cartItem = dict (finalC)

cartItem [’subject ’] = subjectID

cartItem [’mobile ’] = temp [’mobile ’]

add item data with mapping

cartItem . update (itemCatalog [cartItem [’itemID ’]])

del cartItem [’_id ’]

del cartItem [’oldID ’]

unest nutritional table

try :

del cartItem [’ nutritionalTable ’]

print (itemCatalog [cartItem [’itemID ’]][’ nutritionalTable ’])

cartItem . update (itemCatalog [cartItem [’itemID ’]][’

nutritionalTable ’])

except Exception as error :

print (error)

unnest content description

try :

del cartItem [’content ’]

cartItem . update (itemCatalog [cartItem [’itemID ’]][’content ’])

except Exception as error :

print (error)

unnest baseAttributes

if len(itemCatalog [cartItem [’itemID ’]][’ baseAttributes ’]) > 0:

for attr in itemCatalog [cartItem [’itemID ’]][’ baseAttributes ’

]:

cartItem [attr] = 1

The VOS User Guide

 36

finalCart = finalCart . append (cartItem , ignore_index = True)

for transactions

for trans in subject [’data ’][’transaction ’]:

trans [’subject ’] = subjectID

trans [’mobile ’] = temp [’mobile ’]

add item data with mapping

transactionData = transactionData . append (trans , ignore_index =

True)

for swap data

for swap in subject [’data ’][’swaps ’]:

swap [’subject ’] = subjectIDswapData = swapData . append (swap ,

ignore_index = True)

for swap opts selected

for swapOpt in subject [’data ’][’swapOpts ’]:

swapOpt [’subject ’] = subjectID

swapOpt [’mobile ’] = temp [’mobile ’]

swapData = swapData . append (swapOpt , ignore_index = True)

for info viewed

for info in subject [’data ’][’infoViewed ’]:

info [’subject ’] = subjectID

info [’mobile ’] = temp [’mobile ’]

infoViewed = infoViewed . append (info , ignore_index = True)

filter operations

for itemsfiltered in subject [’data ’][’ itemsFiltered ’]:

itemsfiltered [’subject ’] = subjectID

itemsfiltered [’mobile ’] = temp [’mobile ’]

itemsFilteredData = itemsFilteredData . append (itemsfiltered ,

ignore_index = True)

Questionnaire items

quest = {}

quest [’subject ’] = subjectID

quest [’mobile ’] = temp [’mobile ’]

quest [’finished ’] = subject [’finished ’]

try :

quest . update (subject [’ questionnaire ’][’questions1 ’])

quest . update (subject [’ questionnaire ’][’questions2 ’])

except Exception as error :

print (error)

questionnaireItems = questionnaireItems . append (quest , ignore_index =

True)

Basic data

generalData . fillna (value =pd.np.nan , inplace = True)

generalData [’ended ’]. replace (pd.np.nan , ’’, inplace = True)

num_total = len(generalData)

num_mobile = len(generalData .loc[generalData [’mobile ’] == 1])

num_notMobile = num_total - num_mobile

num_finished = len (generalData .loc[generalData [’ended ’] != ’’])

num_finished_mobile = len(generalData .loc [(generalData [’ended ’] != ’’)

&

The VOS User Guide

 37

(generalData [’mobile ’] == 1)])

num_finished_notMobile = num_finished - num_finished_mobile

"""

Write to Excel file , with sheets

"""

Create a Pandas Excel writer using XlsxWriter as the engine .

writer = getWriter (’basic_data ’)

b_data = {

’ number_total ’: num_total ,

’ number_finished ’: num_finished ,

’num_mobile ’: num_mobile ,

’ num_notMobile ’: num_notMobile ,

’ num_finished_mobile ’: num_finished_mobile ,

’ num_finished_notMobile ’: num_finished_notMobile

}

df_1 = pd. DataFrame (b_data , index =[0])

df_1 . to_excel (writer , sheet_name =’Basic_Data ’)

export to excel

generalData . to_excel (writer , sheet_name =’ General_Data ’)

routingData . to_excel (writer , sheet_name =’ Routing_Data ’)

paginationData . to_excel (writer , sheet_name =’ Pagination_Data ’)

finalCart . to_excel (writer , sheet_name =’Final_Cart ’)

transactionData . to_excel (writer , sheet_name =’ Transaction_Data ’)

swapData . to_excel (writer , sheet_name =’Swap_Data ’)

swapOptData . to_excel (writer , sheet_name =’ SwapOpt_Data ’)

infoViewed . to_excel (writer , sheet_name =’Info_Viewed ’)

itemsFilteredData . to_excel (writer , sheet_name =’ Items_Filtered ’)

questionnaireItems . to_excel (writer , sheet_name =’ Questionnaire_Items ’)

Close the Pandas Excel writer and output the Excel file .

writer . save ()

