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Abstract: Aiming at the multi-depot heterogeneous vehicle routing problem under the time-dependent
road network and soft time window, considering vehicle fixed cost, time window penalty cost and
vehicle transportation cost, an optimization model of time-dependent multi-depot heterogeneous
vehicle routing problem is established with the objective of minimizing distribution cost. According
to the characteristics of the problem, a hybrid genetic algorithm with variable neighborhood search
considering the temporal–spatial distance is designed. Customers are clustered according to the
temporal–spatial distance to generate initial solutions, which improves the quality of the algorithm.
The depth search capability of the variable neighborhood search algorithm is applied to the local
search strategy of the genetic algorithm to enhance the local search capability of the algorithm. An
adaptive neighborhood search number strategy and a new acceptance mechanism of simulated
annealing are proposed to balance the breadth and depth required for population evolution. The
validity of the model and algorithm is verified by several sets of examples of different scales. The
research results not only deepen and expand the relevant research on vehicle routing problem, but
also provide theoretical basis for logistics enterprises to optimize distribution scheme.

Keywords: vehicle routing problem; temporal–spatial distance; time-dependent road network;
hybrid genetic algorithm with variable neighborhood search

1. Introduction

Time-dependent multi-depot heterogeneous vehicle routing problem is in the con-
dition of road traffic changing and multiple depots joint distribution, at the same time,
considering the customer’s service time, spatial location, heterogeneous vehicles, fuel
consumption and other factors. In reality, tableware suppliers according to customers’
demand sent a variety of vehicles to deliver. Express delivery industry salesman arranges
vehicles reasonably according to regional express quantity. At the same time, the speed of
vehicles is affected by the real-time traffic conditions of the route. The speed of distribution
vehicles is slow in peak hours, but fast in off-peak hours. This paper covers two hot
issues in current vehicle routing problem (VRP) research: time-dependent VRP (TDVRP)
and multi-depot VRP (MDVRP). Firstly, TDVRP is proposed by Beasley [1]. Its research
focused on vehicle travel time affected by vehicle departure time; the follow-up researches
of TDVRP mostly adopted the time-dependent function based on travel speed proposed
by Ichoua et al. [2], the vehicle traveling speed is expressed as a piecewise function [3,4].
The Federal Highway Administration [5] mentioned that the speed of a vehicle changes
gently, rather than having a step change at a certain point. Moreover, the multi-depot joint
distribution mode can optimize the distribution scheme through global information, it can
effectively solve the problem of high transportation cost and low service level gradually
appearing in the independent distribution mode of single distribution depot [6], so the
MDVRP has received more and more attention.
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This paper researches a time-dependent multi-depot heterogeneous vehicle routing
problem considering temporal–spatial distance (TDMDHVRPTSD). The main research con-
tents of this paper are as follows: (1) Optimize the vehicle route of multi-depot distribution
network by comprehensively considering the restriction of the distribution network on ve-
hicle driving speed in the distribution region, the impact of vehicle fixed cost, time window,
customer and vehicle resource sharing on distribution cost. (2) The road network types in
distribution areas are divided, and the optimization model was established with the goal
of minimizing the total cost considering the continuous change of different road speeds
and different change functions of different roads. (3) The hybrid genetic algorithm with
variable neighborhood search is designed to optimize the vehicle route, which provides a
theoretical basis for enterprises to obtain a reasonable distribution scheme.

When generating customer lists, most solving algorithms only consider the spatial
distance between customers but do not consider the time distance. When the spatial
distance between two customers is small but the time distance is large, the waiting time of
the vehicle at the customer is long. Therefore, this paper considers the influence of time and
space on routing optimization comprehensively, the concept of temporal–spatial distance
is introduced, avoiding the situation that the customer’s space distance is small and time
distance is large or the customer’s space distance is large and time distance is small.

The remainder of the paper is organized as follows: Section 2 reviews the related
literature. Section 3 presents a description of the problem and proposed a mixed-integer
programming formulation. Section 4 gives the details of the hybrid genetic algorithm
with variable neighborhood search. Computational results on the example are reported in
Section 5. Conclusions and future research directions are suggested in Section 6.

2. Literature Review

As mentioned previously, a number of scholars have studied the TDVRP. For TDVRP,
Sabar et al. [7] established a mathematical model aiming at minimizing total distribution
cost with different traffic conditions in different time periods, and proposed an adaptive
evolutionary algorithm using variable parameters to solve it effectively. Liao et al. [8]
considered that the travel time of vehicles in the network may change, and proposed a
two-stage method in which the frequency sweep method was used to allocate vehicles
in the first stage and tabu search algorithm was used to improve the route according
to real-time information in the second stage. Zhang et al. [9] considered the different
travel times of different sections of the distribution network in different time periods, and
established a vehicle routing optimization model considering road dynamic congestion
with the objective of minimizing the distribution cost and designed an improved genetic
algorithm to solve it. Haghani et al. [10] considered the change of travel time between two
nodes and the demand of new customers, and studied two cases of whether to consider
new demand points. He established a route optimization model aiming at minimizing
delivery time, and designed a genetic algorithm to solve it. Duan et al. [11] considered the
time-varying and stochastic traffic conditions of the road network at the same time. He
established a stochastic time-varying vehicle routing optimization model considering hard
time windows based on the principle of minimum and maximum, and solve it by a non-
dominated sorting ant colony algorithm. Cai et al. [12] considered the time-varying road
network environment and the correlation between fuel consumption and load capacity,
and established an optimization model of vehicle routing problem under the time-varying
road network. He adopted an adaptive ant colony algorithm to solve it. Ge et al. [13]
researched the route optimization problem of real-time traffic information, established
a mathematical model of open pollution route problem with load and working time
constraints, and designed an improved adaptive genetic algorithm to solve it. Wu et al. [14]
considered the time-varying characteristics of road network traffic in the actual distribution
process, established an optimization model of perishable food integrated production and
distribution problem with the lowest total cost, and designed a hybrid genetic algorithm to
solve it. Taniguchi et al. [15] researched the advanced intelligent transportation system used
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in urban distribution, and established a vehicle routing problem solving model considering
real-time changes in vehicle travel time, and dynamically updated vehicle travel time using
traffic simulation data. Mancini et al. [16] took repetitive congestion into consideration,
and proposed to use multiple functional relations to express the speed change of roads in
one day, and took Torino as an example for analysis. Liu et al. [17] considered the impact of
vehicle speed on carbon emissions, and proposed a cross-time domain calculation method
and a method to avoid traffic congestion during rush hours, and designed an improved
ant colony algorithm to solve the model.

For MDVRP, Karakatič et al. [18] summarized various genetic algorithms that are
designed for solving MDVRP, and evaluated the efficiency of different existing genetic
algorithms, and compared the solutions based on genetic algorithms with other existing
algorithms. Bezerra et al. [19] proposed a general variable neighborhood search algorithm
to solve the MDVRP model aiming at minimizing the total cost. Oliveira et al. [20] es-
tablished an optimization model with the goal of minimizing the total distribution cost,
and proposed a decomposition method for MDVRP, transforming the problem into a
single depot VRP, and designed a cooperative coevolutionary algorithm to solve it. Ray
et al. [21] established a new optimization model for the MDVRP including depot selection
and shared commodity delivery, and proposed an efficient heuristic algorithm to solve it.
Afshar-Nadjafi et al. [22] considered the influence of departure time on travel time between
nodes, and established a mixed integer programming model with the goal of minimizing
total costs, and designed a heuristic algorithm to solve it. Soto et al. [23] established an
optimization model aiming at minimizing travel distance for the multi-depot open vehicle
routing problem, and proposed a general multiple neighborhood search hybridized with
a tabu search strategy to solve the problem. Liu et al. [24] established a mixed integer
programming model aiming at minimizing the cost for the MDVRP with time windows
based on vehicle leasing and sharing, transforming the problem into a single depot vehicle
routing problem by introducing a virtual distribution depot, and proposed a hybrid genetic
algorithm. Li et al. [25] considered the constraints of time window, vehicle capacity, and
travel time establishing an integer programming model with the minimum total travel
cost, and proposed a hybrid genetic algorithm with adaptive local search to solve it. Fan
et al. [6] proposed a half-open MDVRP based on joint distribution mode of fresh food,
considering the timeliness requirements of fresh products transportation, and constructed
an optimization model aiming at minimizing the total distribution cost, and designed an
ant colony algorithm to solve the optimization model. Aiming at solving the MDVRP
with vehicle capacity and route length constraints, Contardo et al. [26] established an
optimization model with the objective of minimizing the total travel time and proposed a
new exact algorithm to solve it. Salhi et al. [27] established an optimization model aiming
at minimizing the total cost and designed a variable neighborhood search implementation
to solve the MDVRP with heterogeneous vehicle fleet.

3. Problem and Mathematical Model
3.1. Problem Description

The TDMDHVRP-TSD studied in this paper can be described as: suppose that
there is a complete directed graph G = (V, E), there are different types of roads, and
the driving speed of each type of road v = {v1, v2, · · · , vl} is continuously changing;
V = D ∪ C is the all nodes set, D = {1, 2, · · · , m} is the distribution depot set, C =
{m + 1, m + 2, · · · , m + n} is the customer points set, and the working time window of
each distribution depot is [Ts, Tf ]; E = {(i, j)|i, j ∈ V } is edge set, lij is the distance between
nodes i and j; the distribution depot has R vehicle types, r(r ∈ R) is the vehicle type, Kr is
the r type of vehicles set, Kr is the r type of k vehicle, its capacity is Qr, vehicle fixed cost is
cr1, unit distance transportation cost is cr2; the demand of customer i is di, Tikr is the time
when the vehicle kr arrives at the node i, tikr is the service time of the vehicle kr at the node
i; [ETi, LTi] is the customer’s service time window, ETi is the earliest acceptable service time
for customer i, LTi is the latest acceptable service time for customer i, the vehicle arrives
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earlier than ETi or later than LTi will incur penalty cost, unit time waiting cost is c3, unit
time delay cost is c4. The decision variable xijkr represents the vehicle kr arrives from point
i to point j; the decision variable yij indicates the customer j is served by the distribution
depot i.

3.2. Determination of Time-Dependent Function of Vehicle Speed

Most of the existing researches on TDVRP use piecewise function to express the
vehicle speed, and the speed is abrupt at a certain point in a time. However, in reality, the
vehicle speed varies continuously, such as the trigonometric relation v(t) = ϕ sin(γt) + δ
between the vehicle speed (v) and the time (t) proposed in [28] (which ϕ, γ, δ are related
to the road conditions). In this paper, the continuous variation of the road speed in a day
is approximately expressed by a plurality of trigonometric relations. The trigonometric
expression between speed (v) and the time (t) can be expressed as follows:

v =



a0 sin[b0(t− c0)] + d0, t ∈ [0, T1]
...

aβ sin
[
bβ

(
t− cβ

)]
+ dβ, t ∈

[
Tβ, 24

]
...

an sin[bn(t− cn)] + dn, t ∈ [Tn, 24]

(1)

The parameters aβ, bβ, cβ, dβ, β ∈ {1, 2, . . . , n} are related to road conditions.
According to the data in [29], the change trend of vehicle speed throughout the day

can be obtained, as shown in Figure 1.

Figure 1. Vehicle speed time dependent function.

According to the change trend of vehicle speed, the whole day is divided into multiple
time periods, and the functional relationship between vehicle speed (v) and the time (t) is
different in each time period. Assuming that the time Ti when the vehicle leaves node i is
within

[
Tβ, Tβ+1

]
, there are two possibilities for the vehicle to travel from node i to node j,

i.e., cross the time period and not cross. If lij ≤
∫ Tβ+1

Ti
v(t)dt, the vehicle arrives at the node

j within
[
Ti, Tβ+1

]
without across the time period, the traveling time tij can be obtained by

calculating the upper limit of integration according to the speed function relation of the

time period; if lij >
∫ Tβ+1

Ti
v(t)dt, the vehicle needs to across time periods, assuming that

the vehicle travels from node i to node j, the travel time is tij =
(
Tβ+M−1 − Ti

)
+ tβ+M

ij and

across M periods, the distance traveled in each period is lβ
ij, lβ+1

ij , · · · , lβ+M
ij , and the time
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tβ+M
ij traveled in period M can be obtained by calculating the upper limit of integration

according to the speed function relation of the time period.

3.3. Build Mathematical Model

Based on the above, the TDMDHVRP-TSD model established in this paper is as fol-
lows:

min Z = ∑
i∈V

∑
j∈V

∑
kr∈Kr

∑
r∈R

cr1xijkr ∑
i∈D

∑
j∈C

∑
kr∈Kr

∑
r∈R

cr2xijkr + c3 ∑
r∈R

∑
kr∈Kr

∑
i∈V

∑
j∈C

max
{
(ETj − Tjkr ), 0

}
xijkr

+c4 ∑
r∈R

∑
kr∈Kr

∑
i∈V

∑
j∈C

max
{
(Tjkr − LTj), 0

}
xijkr

(2)

∑
j∈V

∑
r∈R

∑
kr∈Kr

xijkr = 1, ∀i ∈ V (3)

∑
j∈V

∑
kr∈Kr

∑
r∈R

xijkr = ∑
j∈V

∑
kr∈Kr

∑
r∈R

xijkr = ∑
i∈V

xjikr , ∀i ∈ V (4)

∑
i∈V

∑
j∈C

djxijkr ≤ Qr, ∀kr ∈ Kr, r ∈ R (5)

∑
kr∈Kr

∑
j∈V

xijkr ≤ Kr, ∀i ∈ V, r ∈ R (6)

Tjkr = (Tikr + tikr + tij)xijkr , ∀kr ∈ Kr, r ∈ R, i ∈ C, j ∈ V (7)

∑
i∈D

∑
j∈D

xijkr = 0, ∀kr ∈ Kr, r ∈ R (8)

∑
i∈S

∑
j∈S

xijkr ≤ |S| − 1, ∀kr ∈ Kr, r ∈ R, |S| = ∑
i∈D

∑
j∈C

xijkr (9)

Ts + ∑
i∈V

∑
j∈V

tijxijkr + ∑
j∈C

tjkr ≤ Tf , ∀kr ∈ Kr, r ∈ R (10)

∑
i∈D

yij = 1, ∀j ∈ C (11)

xijkr ∈ {0, 1}, ∀i, j ∈ V, kr ∈ Kr, r ∈ R (12)

yij ∈ {0, 1}, ∀i ∈ D, j ∈ C (13)

Constraint (2) represents the objective function, which is to minimize the sum of
vehicle fixed cost, vehicle transportation cost and time window penalty cost. Constraint
(3) represents that the customer is only served by a vehicle sent by a distribution depot
once, and it is constrained by the balance of entry and exit. Constraint (4) indicates that the
number of vehicles starting from any distribution depot is equal to the number of vehicles
returning to the distribution depot; Constraint (5) represents the capacity constraint of
the vehicle; Constraint (6) indicates that the number of vehicles used by the distribution
depot does not exceed the limit of the number of vehicles; Constraint (7) represents the
time when the vehicle arrives i from the customer j; Constraint (8) indicates that there
is no access between different distribution depots; Constraint (9) is to eliminate subloop
constraints; Constraint (10) ensures that the return time of any vehicle to the distribution
depot does not exceed the closing time of the distribution depot; Constraint (11) indicates
that each customer can only be served by one distribution depot; Constraints (12) and (13)
are attributes of decision variables.

4. Solution Methods

VRP is a classical NP-hard problem. The heuristic algorithm has obvious advantages
in solving such a problem. Genetic algorithm has the characteristics of robustness, high
parallelism and strong searching ability, but its convergence speed is slow and it is easy to
fall into local optimization, which cannot guarantee the overall optimization. The variable
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neighborhood search algorithm uses multiple different neighborhood structures for system-
atic search and has strong local search capability. Therefore, this paper combines genetic
algorithm and variable neighborhood search algorithm, and on this basis, firstly clusters
customers according to the temporal–spatial distance between depots and customers, thus
generating a better initial population, and secondly designs a hybrid genetic algorithm with
variable neighborhood search considering the temporal–spatial distance (HGAVNS). The
variable neighborhood search algorithm is applied to the local search strategy of the genetic
algorithm to enhance the optimization ability of the algorithm. The algorithm designed
in this paper combines the advantages of genetic algorithm and variable neighborhood
search algorithm, and introduces the concept of temporal–spatial distance according to
the customer’s time window requirements. The proposed algorithm accords with the
characteristics of the problem and is very suitable for solving the problem. The algorithm
flow is shown in Figure 2.

Figure 2. HGAVNS flowchart.

4.1. Customer Clustering and Initial Population Generation

Customers with similar temporal–spatial distance are clustered to generate clustering
clusters. Customers within the same cluster have close temporal–spatial distance, while
customers between different clusters have far temporal–spatial distance. The clustering
method is shown in constraint (14), which aims to minimize the sum of the temporal–
spatial distance from other customers in each cluster to the center of the cluster, where u is
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the number of clusters and lST
ij is the temporal–spatial distance between customer i and

customer j, and the calculation method reference [30].

MinG =
u

∑
i=1

∑
j assigned to i

lST
ij , ∀i, j ∈ C (14)

Finally, the customers in the cluster are sorted according to their distance from the
depot, and the appropriate vehicle types are flexibly selected for route division. The
route can be vividly depicted in the three-dimensional map, as shown in Figure 3. The
ordinate represents time, the planar two-dimensional coordinate represents spatial position,
0 represents depot, A, B, C, D, E represent customers, and the cylinder represents time
window. The temporal–spatial route 1 is 03 → A1 → A2 → B1 → B2 → 04 , the temporal–
spatial route 2 is 02 → C1 → C2 → D1 → D2 → E1 → E2 → 05 , the time when the vehicle
arrives at the customer A and E is earlier than the earliest expected time, resulting in a
certain waiting cost, while the time when the vehicle arrives at the customer D is later than
the latest expected time, resulting in a corresponding delay cost.

Figure 3. Temporal–spatial route diagram.

4.2. Encoding and Decoding

In this paper, the form of integer coding is adopted. For example, if there are 9
customers and 1 depot, the numbers 1–9 represent customers, and the customers are
randomly arranged, the number 0 represents depot. When decoding, customers are divided
into vehicles according to the initial arrangement sequence according to the time when the
vehicles return to the depot and the load constraints. When the next customer is inspected
and found that the current vehicle cannot meet the requirements, the customer can flexibly
select other vehicle to serve the customer. It inserts 0 before the first customer, that is to
say, the vehicle comes from the depot. This paper will illustrate with a simple example.
As shown in Figure 4, assuming that the full order of customers is 1, 5, 8, 3, 4, 6, 9, 2, 7, the
first vehicle is sent to serve customer 1. If the constraint is not met when customer 4 is
served, then the first route is 1− 5− 8− 3 and vehicle type 1 is selected. By analogy, the
second route is 4− 6 vehicle type 2 is selected; the third route is 9− 2− 7, and vehicle type
1 is selected.
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Figure 4. Coding and decoding schematic diagram.

4.3. Fitness Evaluation

The fitness function of chromosomes can be constructed according to Equation (2) in
the model. The fitness function of chromosome K can be expressed as follows:

fK =
1

zK
(15)

The objective function of this paper is to minimize the total cost, and the objective of
optimization is to select chromosomes with larger fitness function values. Where zK is the
objective function value of the chromosome K.

4.4. Selection

The selection operation adopts a combination of roulette and elite reservation. By
roulette, the probability of each chromosome being selected is proportional to the fitness
function value, i.e., the higher the fitness function value, the higher probability of the
chromosome being selected and, on the contrary, the lower the probability of being selected.
After the selection operation is completed, the elite retention strategy is adopted to retain
the optimal chromosome of each generation, i.e., the individual with the highest fitness
value of the previous generation replaces the individual with the lowest fitness value of
the offspring. The strategy of combining roulette and elite reservation is adopted to ensure
that the population size remains unchanged and the algorithm converges quickly.

4.5. Evolution

The evolutionary operation in this paper selects sequential crossover operator. As
shown in Figure 5, when the parent Pop1 is crossed sequentially, the parent Pop2 is
randomly selected from the population. Firstly, the nodes i11 i12 i21„and i22 are randomly
generated. The part between the random nodes i11 and i12 of the parent Pop1 is taken as
the first segment of the child newPop1. The subsequent nodes of the child newPop1 are
related to the parent Pop2, the customer nodes between the random points

Figure 5. Schematic diagram of sequential crossover operator.

i11 and i12 of the parent Pop2 are firstly eliminated. In the elimination process, the
position order of the customer nodes in the parent Pop2 is not changed, and the eliminated
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customer nodes are arranged as the second segment of the child newPop1 to form a new
child newPop1, and the same is true for the child newPop2.

The pseudo code of the crossover operator is as follows:

Parameters
• Pop1, Pop2: parental chromosome 1 and 2;
• i11, i12, i21, i22: random nodes;
• newPop1, newPop2: new child 1 and 2;
1 begin
2 select two parental chromosomes Pop1 and Pop2;
3 randomly generate 2 nodes on Pop1, e.g., i11 and i12;
4 randomly generate 2 nodes on Pop2, e.g., i21 and i22;
5 take the part between i11 and i12 of the Pop1 as the first part of newPop1;
6 eliminate points in parent Pop2 that existing between point i11 i11 and i12;
7 take the eliminated point arrangement as the second part of newPop1;
8 generate newPop1;
9 take the part between i21 and i22 of the Pop2 as the first part of newPop2;
10 eliminate points in parent Pop1 that existing between point i21 and i22;
11 take the eliminated point arrangement as the second part of newPop2;
12 generate newPop2
13 end

4.6. Local Search Strategy

(1) Neighborhood structure
Firstly, neighborhood structure sets Nk = {N1, N2, · · ·Nl} are constructed, the indi-

vidual x in the population starts to disturb from the first domain structure N1, and if no
improved solution is found within the preset neighborhood search times Sn, the next neigh-
borhood structure is executed; otherwise, if an improved solution x′ is obtained in a certain
neighborhood structure, then x = x′ is made, and the iteration is restarted by returning
to the first neighborhood structure, until the iteration is cycled to the last neighborhood
structure, and when the improved solution is not found, the search is terminated; when
the number of variable neighborhood search cycles reaches the preset MaxSn, the search
is terminated and the algorithm enters the next stage. In this paper, five neighborhood
structures are used to enhance the local search capability of the algorithm:

(1) Insert: Randomly select two customer points i and j, insert i after customer j. As
shown in Figure 6a, customer 3 and customer 6 are randomly selected and customer
3 is inserted behind customer 6.

(2) Exchange: Randomly select two customer nodes i and j to exchange the positions
of the two customer nodes. As shown in Figure 6b, the positions of customer 3 and
customer 6 are exchanged.

(3) 2-insert: In the original scheme, two consecutive customer nodes are randomly
selected and inserted after the randomly selected customer point j. As shown in
Figure 6c, customers 3 and 4 are inserted behind customer 6.

(4) 2-opt: Randomly select two customer nodes i and j, and exchange the order between
customer nodes. As shown in Figure 6d, the position of customer 3 is kept unchanged,
and customers 4, 5, 7 and 6 are in reverse order.

(5) or-opt: In the original scheme, two consecutive customer nodes are randomly selected
and inserted into the back of randomly selected customer point j in reverse order. As
shown in Figure 6e, customers 3 and 4 are inserted behind customer 6 in reverse order.
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Figure 6. Neighborhood structures.

(2) Adaptive mechanism and new solution acceptance
In this paper, an adaptive neighborhood search times strategy and a new solution

acceptance mechanism are designed to enhance the breadth and depth of the algorithm so
that the variable neighborhood search algorithm can jump out of the local optimization.

Neighborhood search times have great influence on the search ability of the algorithm,
which directly leads to the performance of the algorithm. In the iterative process of
the algorithm, the disturbance intensity required by the population is different. At the
beginning of the iteration, the number of neighborhood searches should be small, to make
the population converge quickly. However, with the continuous iteration of the population,
the number of neighborhood searches is increased to enhance the search capability of the
algorithm. The strategy of adaptive neighborhood search times in this paper is as follows:

(1) Setting the initial neighborhood search number Sn = 1 and the number of times the
optimal solution is continuously unchanged con num;

(2) If the optimal solution of the population after this iteration is not improved, let
con num = con num + 1, Sn = Sn + 1; If the perturbed solution is improved, let
con num = 0, Sn = 1;

(3) When the number of times con num that the optimal solution has not changed
continuously reaches the preset value stop num, the algorithm terminates and outputs
the optimal solution.

In order to further improve the perturbation of the population and expand the search
space, this paper uses the acceptance rule of the solution in simulated annealing algorithm
to accept the poor solution with a certain probability, thus effectively avoiding the algorithm
from falling into local optimization prematurely, improving the optimization ability of the
algorithm, and realizing the diversity of the population at the same time. The calculation
method of the new solution acceptance probability is shown in Equation (16).

p =


1, f (x) ≤ f (x′)

exp
(

f (x)− f (x′)
gen

)
, f (x)> f (x′)

(16)

The pseudo code of the HGAVNS is as follows:
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Algorithm (HGAVNS)

Parameters
• popsize: population size;
• MAXGEN: maximum number of iterations;
• Nk = {N1, N2, . . . , Nl}: neighborhood structure, Nl is the l neighborhood structure;
• Sn: adaptive neighborhood search times;
• maxSn: maximum number of neighborhood cycles;
1. Initialize P(t);
2. gen= 0;
3. while gen ≤ MAXGEN
4. evaluate P(t);
5. select P(t + 1) from P(t); % elitist preservation+ roulette wheel selection
6. evolution in P(t + 1); % order crossover
7. for i = 1 : popsize
8. for j = 1 : maxSn

9.
Individual Pi(t + 1) disturbed from the first neighborhood structure N1,

iter ← 1 ;
10. if p ≥ p0 % p0 is the acceptance probability of the new solution
11. Pi(t + 1)←Pi′(t + 1);
12. break
13. else iter ← iter + 1 ;
14. end
15. until (iter = Sn);

16.
Individual Pi(t + 1) continues to be disturbed by the next neighborhood

structure Nl , iter ← 1 ;
17. repeat
18. until (iter = Sn);
19. end
20. end
21. gen = gen + 1;
22. end
23. Best solution

5. Numerical Experiments
5.1. Algorithm Test

In order to verify the effectiveness of the algorithm, this paper tests the algorithm
by selecting instances with different customer sizes. This algorithm is programmed with
MATLAB R2018b, the operating system is windows 10, the computer memory is 8G, the
CPU is Intel i7-7700M, and the main frequency is 3.60 GHz. After repeated tests, the
parameters of this algorithm are set as follows: population size Pop size = 30 ∼ 150,
maximum iteration number MAXGEN = 800, initial variable neighborhood search time
Sn = 1, maximum neighborhood cycle times MaxSn = 1000, stop num = 20 ∼ 50. The
setting value of the parameter is related to the customer scale n in the corresponding
instances, when n ≤ 50, Pop size = 30, stop num = 20 when 50 <n ≤ 100, Pop size = 100,
stop num = 30. When n >100, Pop size= 150, stop num= 50.

5.2. The Performance of Proposed Algorithm

To verify the effectiveness of the algorithm in this paper, the standard MDVRP in-
stances (source: http://neo.lcc.uma.es/vrp/vrp-instances/multiple-depot-vrp-instances/,
accessed on 15 February 2021) is analyzed. Table 1 shows the results of Greedy randomized
adaptive search algorithm (GRASP/VND) [31], general variable neighborhood search
algorithm (GVNS) [19], cooperative evolutionary algorithm (CCA) [20] and HGAVNS
algorithm. The ‘n’ column represents the number of customers; the ‘d’ column repre-
sents the number of depots; the ‘BKS’ column represents the known optimal solution; the
‘Best’ column represents the best solution found by the algorithm; the ‘%Dev’ column

http://neo.lcc.uma.es/vrp/vrp-instances/multiple-depot-vrp-instances/
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represents the deviation between the best solution found by the algorithm and the known
optimal solution.

Table 1. The results are compared with instances.

Instance n d BKS
GRASP/VND GVNS CCA HGAVNS

Best %Dev Best %Dev Best %Dev Best %Dev

p01 50 4 576.87 592.21 2.66 582.34 0.95 576.87 0 576.87 0.00
p02 50 4 473.53 529.64 11.85 473.87 0.07 473.87 0.07 473.53 0.00
p03 75 5 641.19 648.68 1.17 641.19 0 641.19 0 646.33 0.80
p04 100 2 1001.04 1055.26 5.42 1008.66 0.76 1007.40 0.64 1001.54 0.05
p05 100 2 750.03 769.37 2.58 752.97 0.39 750.11 0.01 751.26 0.16
p06 100 3 876.50 924.68 5.50 878.02 0.17 876.50 0 876.70 0.02
p07 100 4 881.97 925.80 4.97 890.46 0.96 888.41 0.73 884.43 0.28
p12 80 2 1318.95 1326.85 0.60 1318.95 0 1318.95 0 1318.95 0
p15 160 4 2505.42 2553.80 1.93 2525.85 0.82 2526.06 0.82 2505.42 0
p18 240 6 3702.85 4209.56 13.68 3796.04 2.52 3771.35 1.85 3780.42 2.09
Ave - - - - 5.04 - 0.66 - 0.41 - 0.34

It can be seen from Table 1 that GRASP/VND algorithm has the worst solving quality
among the 10 groups of instances, with an average deviation of 5.04% and a maximum
deviation of 13.68%. The solution quality of GVNS algorithm is general, with an average
deviation of 0.66% and a maximum deviation of 2.52%. The solution quality of CCA
algorithm is better, with an average deviation of 0.41% and a maximum deviation of 1.85%.
In this paper, the HGAVNS solution quality is the best, the average deviation is 0.34%,
and the maximum deviation is 2.09%. Therefore, it can be concluded that the algorithm
presented in this paper has a good optimization ability for different scale instances, which
verifies the effectiveness and applicability of the algorithm presented in this paper.

5.3. Instance Verification

Since there are no instances of TDMDHVRP-TSD in the existing research, this pa-
per randomly generates TDMDHVRP-TSD instances. The calculation example includes
3 distribution depot and 50 customers. The customer’s delivery and pickup volume are gen-
erated by the demand separation rule proposed by [32]: xi and yi are the coordinate of the
customer,qi is the customer’s original demand, calculate the ratio ri = min{xi/yi; yi/xi}
of each customer and the delivery volume of the customer is obtained by di = qiri. This
paper assumes that the working time window of the distribution center is [06 : 00, 19 : 00],
the waiting cost per unit time for vehicles is 20, the delay cost per unit time is 30, and the
standard time for unloading of per unit goods is 1 min. The cost parameters of different
vehicles used by the distribution center for delivery and pickup are shown in Table 2.

Table 2. Cost parameters for different vehicles.

Vehicle Capacity Fixed Cost Transportation Cost

1 60 200 1.2
2 100 300 1.9
3 120 400 2.25

As shown in Figure 7, the experiment classifies the roads in the distribution network
into three types: main roads, secondary roads and branch roads, in which red lines represent
main roads with a speed of v1, black lines represent secondary roads with a speed of v2,
and lines not shown in the figure represent branch roads with a speed of v3, the all-day
variation of the vehicle speed of the three types of roads is shown in Figure 8.
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Figure 7. Road network map.

Figure 8. Speed time dependent function.

The HGAVNS designed in this paper is used to solve the problem, and the optimal
distribution planning is obtained. The specific distribution planning is shown in Table 3.

Table 3. Optimal delivery scheme.

Vehicle Capacity Vehicle Route Total Cost

1 100 53-16-29-20-35-3-28-22-52

1599.97
2 100 53-38-2-50-34-9-49-5-53
3 60 51-27-46-11-32-1-8-52
4 100 51-6-18-41-4-47-12-53
5 120 52-26-13-7-25-43-44-24-10-36-48-40-17-33-39-45-23-14-31-42-19-30-21-15-37-53

Table 3 shows that the distribution center sends 5 vehicles to serve the 50 customers,
including 1 vehicle with capacity of 60, 3 vehicles with capacity of 100 and 1 vehicle with
capacity of 120. The total cost of delivery and pickup is 1599.97 after adding the costs.
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In order to verify the validity of the temporal–spatial distance in this paper, this
experiment compares the results of the algorithm whether or not considering the temporal–
spatial distance under the same other conditions. Without considering the temporal–spatial
distance, the optimal solution of the algorithm is shown in Table 4. The distribution center
dispatched a total of six vehicles for delivery, with a cost of 1828.71. Compared with
the optimal scheme above, the total cost increases by 14.30%. Therefore, considering the
temporal–spatial distance in the algorithm, the optimal solution is improved, which further
proves that the algorithm has strong optimization ability.

Table 4. Optimal delivery scheme regardless of temporal–spatial distance.

Vehicle Capacity Vehicle Route Total Cost

1 100 51-47-17-44-49-30-34-21-20-52

1828.71
2 100 51-25-18-41-42-5-12-53
3 60 52-3-35-22-28-8-52
4 100 51-27-23-1-32-46-16-50-11-2-52
5 120 51-6-9-29-14-45-37-48-38-10-40-4-36-13-7-26-39-31-33-19-43-24-15-53

5.4. Comparison with Different Types of Vehicles

In this section, the different types of vehicles are compared. We compare the vehicles
with the payload capacity 60, 100 and 120. Table 5 shows the results that use different types
of vehicles. From Table 5, we can see that the cost that use vehicles with payload capacity
120 is highest, as the fixed cost and operational cost of vehicles with payload capacity 120
is highest. The cost that using vehicles with payload capacity 60 is 1950.23, due to the
limit of payload capacity, the number of vehicles in use has increased. Use heterogeneous
vehicles can reduce the cost. The cost has been reduced by as much as 21.40% and by as
little as 16.04%.

Table 5. Optimal delivery scheme compared with different types of vehicles.

Q Vehicle Route n Total Cost

60

53-5-10-33-37-12-53
53-9-16-32-1-22-11-53

51-13-41-19-42-44-4-46-51
53-50-38-47-18-5153-49-34-2-52

52-3-36-28-31-8-7-27-51
51-6-48-35-20-52

53-21-29-30-17-14-45-26-23-15-24-25-39-43-40-53

8 1950.23

100

53-9-49-37-44-33-39-30-34-2-52
51-27-48-8-31-3-35-36-20-52

51-4-18-19-41-17-12-53
52-28-42-45-1-6-22-10-40-21-29-26-23-15-14-24-7-25-13-43-46-51

4 1905.98

120

53-38-16-35-29-21-34-30-9-50-2-52
52-8-27-32-1-11-49-5-12-53

51-47-42-41-18-46-3-28-20-52
52-36-48-44-45-15-19-7-14-6-17-31-37-33-25-43-13-10-24-26-23-39-4-40-22-52

4 2035.52

Heterogeneous
vehicles

53-16-29-20-35-3-28-22-52
53-38-2-50-34-9-49-5-53
51-27-46-11-32-1-8-52
51-6-18-41-4-47-12-53

51-6-9-29-14-45-37-48-38-10-40-4-36-13-7-26-39-31-33-19-43-24-15-53

5 1599.97
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6. Conclusions

In this paper, the following conclusions can be drawn from the research on the time-
dependent multi-depot heterogeneous vehicle routing problem considering temporal–
spatial distance.

(1) In order to minimize the total cost, an optimization model is established that
comprehensively considers customers’ service time and spatial location, which can more
objectively and accurately reflect the actual operation of the logistics system. The ob-
tained vehicle scheduling optimization scheme can effectively reduce the operation cost of
distribution depots.

(2) The HGAVNS algorithm considering the temporal–spatial distance is designed.
Clustering customers according to the temporal–spatial distance between customers avoids
the situation that the spatial distance of customers is small (large) but the time distance is
large (small), and improves the quality of the initial solution.

(3) Regarding selecting operation, the algorithm adopts the strategy of combining elite
reservation and roulette to ensure the effective convergence of the algorithm. Moreover,
evolutionary operation, adaptive search and new solution acceptance mechanism are used
to improve the local search capability and the solution quality, and the obtained results
have good stability. The effectiveness of the algorithm is verified by testing instances of
different scales and comparing with other literatures.

(4) The TDMDHVRP-TSD model established can solve the multi-depot heterogeneous
vehicle routing problem (MDHVRP) with constantly changing road speed and various
road types in reality. This is a deepening and expansion of the research on MDHVRP.

The research in this paper is more consistent with the distribution problems in reality.
The research results not only enrich and expand the relevant theories of MDHVRP, but also
provide the basis for the optimization decision-making of distribution schemes of logistics
enterprises. In the future, factors such as uncertain demand will be considered for further
in-depth research on this problem.
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