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Abstract: Time-of-day interval partition (TIP) at a signalized intersection is of great importance
in traffic control. There are two shortcomings of the traditional clustering algorithms based on
traditional distance definitions (such as Euclidean distance) of traffic flows. First, some continuous
time intervals are usually divided into small segments. Second, 0 o’clock (24 o’clock) is usually
selected as the breakpoint. It follows that the relationship between TIP and traffic signal control is
neglected. To this end, a novel cyclic distance of traffic flows is defined, which can make the end of
the last cycle (24 o’clock of the last day) and the beginning of the current cycle (0 o’clock of the current
day) cluster into one group. Next, a cyclic weighted k-means method is proposed, with centroid
initialization, cluster number selection, and breakpoint adjustment. Lastly, the proposed method is
applied to a real intersection to evaluate the benefits of traffic signal control. The conclusion of the
empirical study confirms the feasibility and effectiveness of the method.

Keywords: cyclic data; cyclic distance; cyclic weighted k-means; time-of-day interval partition

1. Introduction

In an urban road network, the traffic signal control at intersections has a great impact
on traffic flow. A reasonable traffic signal control scheme can improve the efficiency of
traffic flow and relieve traffic congestion. On the contrary, traffic congestion will be worse
if an inappropriate scheme is implemented.

Traffic signal control can be divided into three categories according to the range of
control: isolated intersection control, arterial coordination control [1,2], and area coordi-
nation control [3,4]. Among them, isolated intersection control is the most universally
applied. Most schemes of isolated intersection control are fixed-time control mode. First,
it can make efficient use of historical data in urban transportation networks [5] and behave
well no matter whether under low-medium saturation degree [6] or certain oversaturated
conditions [7–10]. Second, it is a substitute when the malfunction of detectors or data loss
occurs. Furthermore, it can behave as a kind of supplement in those intersections without
traffic flow detectors.

There are two main tasks for fixed-time control mode. One is called the time-of-day
interval partition (TIP) problem that traffic managers usually need to divide the whole
day into different time intervals, e.g., peak hours, off-peak hours, etc. The other is the
determination of signal control scheme for each time interval. An appropriate TIP plan
is the precondition for the optimization of traffic signal control schemes at the isolated
intersection [11]. Moreover, a reasonable traffic signal control scheme is able to improve
the efficiency of traffic flow operations and relieve traffic congestion.

In recent decades, a large proportion of researches takes TIP as a clustering problem,
determining the optimal breakpoints of time intervals [12,13]. Clustering is an unsuper-
vised learning technique which can discover potential structures of data. It is also an
important tool for exploratory data analysis, especially when the volume of data is quite
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large. Clustering algorithms are aimed at automatically classifying data points into groups
based on their similarity and distribution. In the field of machine learning, distance-based
clustering (or similarity-based) is the most popular paradigm for clustering, including
k-means, k-medoids, hierarchical clustering, and spectral clustering [14]. In the field of
statistics, model-based clustering attracts more attention, such as the EM algorithm of a
Gaussian mixture model [15–17]. However, no matter what kinds of methods are used,
a common problem is to determine the number of clusters. Most clustering methods
require a given number of clusters. However, in recent years, clustering methods that do
not require the number of classes in advance have been developed, such as affinity propa-
gation [18], density peaks-based clustering [19], time-variant clustering [20], and robust
continuous clustering [21]. These methods can automatically output the number of clusters
as well as the cluster assignments.

In the existing literature, inspired by [22], k-means clustering is the prevailing method
of TIP, and some refinements, such as pretreatment or transformation of data, are step-
wisely added to the basic k-means clustering framework [23–28]. However, the main
problem of k-means is that the sampling units with similar traffic flows are more easily
assigned into one cluster, ignoring the continuity of time. It means some noncontinuous
sampling units could be assigned into one cluster. For example, two sampling units
7:00–7:05 and 17:00–17:50 should not be clustered together even though their traffic flows
are similar. In other words, the partition results of traffic volumes are not continuous in time,
so manual adjustment is necessary. If the traffic flow changes dramatically, the partition
results may be unsatisfactory due to the subjective and lagging adjustment. From this point
of view, TIP should take both the continuity of time and the similarity of traffic flows into
account to meet the complex traffic situations.

Some researchers have noted that the order of the partition result matters. Many se-
quential clustering methods, such as times series partitioning [29], genetic algorithm [30–32],
Kohonen neural network [33], artificial immune clustering [34], etc., are applied in TIP,
and have been successfully employed in the daily scheme of traffic systems. One drawback
in these studies is that 0 o’clock (24 o’clock) must be set as a breakpoint of daily data in
clustering algorithms, which is unreasonable in practice. Moreover, the distance measure-
ments used in these algorithms, such as Euclidean distance [26,27,29,33,34] in each cycle
(each day), are also inappropriate to some degree. According to the definition of Euclidean
distance, the distance between 0 and 24 o’clock is the largest among all time points. In fact,
0 and 24 o’clock are identical, and the distance between them should be 0. As a result,
these methods cannot connect the end point of the previous cycle and the start point of the
current cycle in their clustering results. For example, 23:55 and 0:05 could not be assigned
into the same cluster. This does not meet the principles of traffic flow. Since there are few
vehicles at 23:55 and 0:05, they both belong to low-peak hour. For this purpose, the cyclic
property of flow data should be considered when using clustering algorithms in TIP.

In fact, none of the foregoing methods can be directly applied to the clustering of cyclic
data due to the following two reasons. (1) In different cycles, the division of intervals should
be the same; (2) Usually, the critical point of two adjacent cycles should be clustered into
one interval unless the critical point is a jump point. According to these two requirements,
a novel clustering algorithm based on cyclic distance is proposed, called the cyclic weighted
k-means method.

In practical applications, it is difficult to obtain the exact moment of vehicles passing
through an intersection. Instead, one can only roughly count the traffic flow in each sam-
pling unit. Therefore, the middle point of each sampling unit is taken as the representative
time point, while the traffic flow in the sampling unit is regarded as the frequency of traffic
transit (i.e., the weight of the traffic transit moment). Then, the TIP problem could be
effectively solved based on such data.

In this study, a type of flow data is defined as cyclic data, which is collected from N
cycles in succession with T sampling units in each cycle. Next, a cyclic weighted k-means
clustering method is proposed for this type of data. This method provides a new idea for
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directly programming timeline of time intervals with multiple cycles of data via defining
a cyclic distance between any two time points. In this method, the traffic flow is used as
weights for time points. Similar to k-means clustering, the proposed method is sensitive
to the initial values. To this end, an initialization method of centroids was developed,
considering the practical traffic background.

In addition, for the sake of evaluation, some existing criteria can be used [35], but the
relationship between TIP and traffic signal control is hard to express. In the traffic engi-
neering field, the purpose of TIP is to serve the traffic signal control. More specifically,
TIP influences vehicle delays, cycle length, split and offset [7,10,36], queue length [37],
saturation degree [1], intersection capacity, etc. Furthermore, TIP also influences urban
transportation network design [38], vehicle routing [39,40], bus scheduling [41,42], freight-
transportation systems [43] in the practical applications. Thus, TIP is the prerequisite
for traffic signal control, which directly improves the effect of traffic control and affects
implicitly urban transportation planning. Accordingly, a cost function is adopted according
to specific urban traffic problems, and one evaluation criterion is calculated on the partition
results of the proposed clustering method [30].

The rest of this article is organized as follows. Section 2 describes the problem of
this study. Next, Section 3 introduces the cyclic distance and the cyclic weighted k-means
method with some details. In addition, the outstanding performance of the proposed
method is numerically confirmed on an empirical dataset of traffic flows in Section 4.
Lastly, some concluding remarks are given in Section 5.

2. Problem Description

The TIP problem of traffic signal control is to optimally determine the breakpoint
along the timeline of one day, then an optimal signal timing plan for each time interval
will be set according to the results of TIP. Traditional methods to solve this problem are to
sample the traffic flow of one or more lanes in a w minute (usually 5 min) sampling unit at
a traffic intersection. Then, we get the traffic flows (i.e., the numbers of vehicles passing a
lane at a traffic intersection) of T sampling units per day (usually T = 288) and use some
kinds of clustering algorithms to divide time intervals. However, the result of TIP based
on only one-day traffic flow data are not robust. In order to make up for this, the traffic
flow data are collected for several days in order to improve the stability of TIP. In the rest
of the article, one day is called one cycle because the change in daily traffic flows with time
is similar.

In this study, the traffic flow data were collected in a signalized traffic intersection for
N consecutive days (also called N cycles), taking w minutes as a sampling unit. Let X =
(x1, . . . , xN) IeRT×N be a N-cycle traffic flow matrix where T is the number of sampling
units in one cycle, xn = (x1n, . . . , xTn)

′ is the traffic flow vector on the n-th (1 ≤ n ≤ N)
cycle with T units, xtn is the traffic flow of the t-th (1 ≤ t ≤ T) sampling unit on the n-th
cycle. Note that the summation of the t-th row of X (i.e., ∑N

n=1 xtn) is the total traffic flow of
the t-th sampling unit over N cycles, and the summation of n-th column of X (i.e., ∑T

t=1 xtn)
is the total traffic flow of the n-th day. Further, let B = (B1, . . . , BT)

′ be a timescale vector
where Bt = (t− 1) w/1440 is the start point of the t-th sampling unit in one cycle because
there are 1440 min per day. Obviously, the timescale vector B is an ordered measure of
cyclic data X, satisfying 0 = B1 < B2 < . . . < BT < 1.

According to the above definitions, the TIP problem can be described as finding K
breakpoints 0 ≤ A1 < . . . < AK < 1 based on cyclic data X and timescale B. Then,
one cycle can be divided into K time intervals D1, D2, . . . , DK where Dk = [Ak, Ak+1) for
1 ≤ k ≤ K− 1 and DK = [0, A1] ∪ [AK, 1). Note that the time interval DK crosses 0 o’clock.
Driven by this formulation of the TIP problem, the cyclic weighted k-means algorithm will
be derived, and the optimal breakpoints A1, . . . , AK will be obtained based on cyclic data
X and timescale B in the following section.
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3. Methodology
3.1. Cyclic Distance

The definition of distance will greatly affect the results of distance-based clustering
algorithms (such as k-means). For the TIP problem, 0 and 24 o’clock refer to the same time,
which means that the distance between them should be 0. In order to make the end of
the last cycle (i.e., 24 o’clock of the last day) and the beginning of the current cycle (i.e.,
0 o’clock of the current day) cluster into one group, a cyclic distance is defined between
any two different timescales Bi and Bj as

d
(

Bi, Bj
)
=
[
min(

∣∣Bi − Bj|, 1−|Bi − Bj
∣∣)]2 (1)

The cyclic distance describes the cyclic characteristic of data on the interval [0, 1),
which treats 0 and 1 as the same point. If the Euclidean distance of timescales Bi and Bj
is not greater than 0.5 in one cycle (i.e., one day), then their cyclic distance is the squared
Euclidean distance. Otherwise, if the Euclidean distance of timescales Bi and Bj is greater
than 0.5 in one cycle, then the cyclic distance of them can be viewed as the squared
Euclidean distance in two adjacent cycles. In other words, if one point is close to 0 and
another point is close to 1, then they should be close in the sense of cyclic distance.

3.2. Cyclic Weighted k-means Method

The classical k-means clustering algorithm can be redefined according to the defi-
nition of cyclic distance. In this subsection, the cyclic weighted k-means algorithm will
be derived based on cyclic traffic flow data X and timescale B. The objective is to seg-
ment B1, . . . , BT into K (i.e., the cluster number) time intervals D1, . . . , DK by breakpoints
A1, . . . , AK. The objective function of the cyclic weighted k-means algorithmcan be repre-
sented as

J(K) =
K

∑
k=1

∑
Bt∈Dk

ytd(Bt, µk) (2)

In Equation (2), yt = ∑N
n=1 xtn is the total traffic flow of the t-th sampling unit over

N cycles, centroid µk is the weighted mean of timescales in the k-th time interval Dk with
traffic flows as the weights, which can be calculated by

µ̃k = ∑
Bt∈Dk

ytBt/ ∑
Bt∈Dk

yt (3)

µk = µ̃k − I(µ̃k ≥ 1) + I(µ̃k < 0) (4)

where I(·) is the indicator function that is equal to 1 if the condition in the parentheses is
satisfied and equal to 0 otherwise. Equation (4) can ensure that the centroid µk lies in the
interval [0, 1], and avoid falling on the right side of 1 or the left side of 0.

The cyclic weighted k-means algorithm solves the minimum of objective function (2)
by iterative steps. It can find the K centroids minimizing the cyclic distances within clusters
(also called intra-class distance); that is, the summation of the cyclic distance from each
data point to its own centroid. Then, the breakpoints of time intervals are determined.
Since the objective function (2) is non-convex, the solution obtained by the iterative steps is
often locally optimal.

The cyclic weighted k-means algorithm is given in Algorithm 1.
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Algorithm 1. The cyclic weighted k-means algorithm

Require: iterations I = 100, number of sampling units T, cluster number K.
Ensure: Determine the centroids µi

1, . . . , µi
K and breakpoints A1, . . . , AK in i-th iteration.

1: Initialize the iterative number i = 0 and centroids µi
k (see Algorithm 2).

2: for i← 1 to I do
3: for t← 1 to T do

4:
Class label of t-th timescale Bt in i-th iteration ci

t = argmink

{
d
(

Bt, µi
k

)}
where

ci
t ∈ {1, . . . , K}, i.e., assign a centroid to timescale Bt in i-th iteration.

5: End for
6: for k← 1 to K do
7: Update the centroids: µi+1

k = ∑ci
t=k yt[Bt + I(|Bt − µi

k| > 0.5)
(
−1)I(µi

k<0.5)
]
/ ∑ci

t=k yt.

8: End for
9: If ∑K

k=1

∣∣∣µi+1
k − µi

k

∣∣∣ 6= 0 then

10: Output centroids µi
1, . . . , µi

K and class labels ci
1, . . . , ci

T .
11: Obtain K subscripts t1, t2, . . . , tK which satisfy ci

t 6= ci
t−1 (let ci

0 = ci
T , 1 ≤ t ≤ T).

12: Obtain the corresponding K breakpoints Bt1 , Bt2 , . . . , BtK .
13: Ranking from small to large, the final breakpoints A1, . . . , AK are obtained.
14: Break
15: End if
16: End for

Remark 1. In line 4, we can see that the algorithm determines the centroids of Bts according to the
distance in time domain. Obviously, the timescales divided by the algorithm must be continuous.

Remark 2. In line 7, the weighted mean of all Bts in k-th cluster is calculated with traffic flow as
the weights to update the centroids. Note that, the second item in square bracket is to ensure that
the updated centroids lie on the interval [0, 1].

Remark 3. If the medoids instead of centroids are updated in Step 3, it is converted into the
cyclic weighted k-medoids algorithm. As one can see, the minimum of objective function J̃(S) =
∑T

t=1 ∑ct∈S ytd(Bt, Bct) can be obtained approximately by iteration, and the class labels of data
points are accordingly obtained where S ⊂ {1, . . . , T} is the set of class labels. The cardinality
of S (i.e., K = |S|) is the number of clusters. ct is the class label of the t-th timescale; that is, Bt
belongs to the cluster with medoid Bct . Note that, the cyclic weighted k-medoids algorithm will not
be introduced here because it is similar to the cyclic weighted k-means algorithm in thinking.

3.3. Initialization of Centroids

The result of TIP will affect the traffic control scheme. Theoretically speaking, the time
interval of traffic signal control can be very short. However, in practice, the setting of traffic
lights cannot be switched too frequently. Thus, the initial values of centroids should be
selected appropriately. In other words, the initial values of centroids should not be too
crowded in Algorithm 1. Otherwise, it could cause some time intervals to be too short to
operate in reality. On the other side, setting appropriate initial values of centroids will
further improve the efficiency of the clustering algorithm. In this subsection, a novel
initialization method of centroids for cyclic weighted k-means algorithm will be developed.

Let ymax be the local maximum of sequence y1, . . . , yT , and the corresponding timescale
be Bmax. For a fixed K, there exists some function δ(K) > 0, then the cyclic δ(K) neighbor-
hood of Bmax is defined as

U(Bmax, δ(K)) =
{

Bt

∣∣∣∣√d(Bt, Bmax) < δ(K)
}

(5)

δ(K) = α/K(0 < α ≤ 1/2) (6)
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where function δ(K) represents the radius of this neighborhood, which is inversely pro-
portional to K. In Equation (6), α is a hyperparameter used to control the radius of
neighborhood. We can see that when the number of clusters K is smaller, the radius of
neighborhood δ(K) should be larger. Next, based on the concept of cyclic neighborhood,
the following algorithm is established to initialize the centroids under a given K.

Algorithm 2. Initialization of the centroids under given K

Require: Number of sampling units T, cluster number K, traffic flow series {yt}T
t=1.

Ensure: Obtain the initialized centroids µ0
k .

1: Initialize the set of centroids G to empty set, i.e., G = ∅.
2: Find the maximum y(1) from y1, . . . , yT , whose corresponding timescale is B(1).
3: Add B(1) into G, i.e., G = G ∪

{
B(1)

}
.

4: for k← 1 to K− 1 do

5:
Find (k + 1)-th timescale B(k+1) outside cyclic neighborhood δ(K) of all elements in G,

satisfying B(k+1) = argmaxBt /∈Lk
yt, 1 ≤ t ≤ T where Lk =

k
∪

j=1
U
(

B(j), δ(K)
)

.

6: Add B(k+1) into G, i.e., G = G ∪
{

B(k+1)

}
.

7: End for
8: Sort the K elements of set G in ascending order and obtain the initialized centroids µ0

k .

Remark 4. The neighborhood radius δ(K) ≤ 1/(2K), which ensures that the maximum value in
each repeat of line 5 always exists. Therefore, the initialization algorithm of centroids is feasible.

3.4. Determination of K

Sections 3.2 and 3.3 both depend on the given K. From objective function (2), it is
shown that for any given K, the value of loss function can be calculated, which represents
the intra-class error. The “elbow point” of loss function J(K) is usually used as the optimal
number of clusters in literature. The traditional methods treat the maximum point of
the second-order difference of J(K) (i.e., J(K− 1)− 2J(K) + J(K + 1), which describes the
absolute variation of first-order difference as the “elbow point”. The minimum point of the
ratio of first-order difference (which describes the relative variation of first-order difference)
is considered as the “elbow point”; that is,

K∗ = argmin
Kmin≤K≤Kmax

J(K + 1)− J(K)
J(K)− J(K− 1)

(7)

where Kmin and Kmax are the minimum and maximum of K according to expertise. Equation (7)
shows that the optimal number of clusters K∗ can minimize the relative descent rate of
intra-class distance J(K). Generally speaking, the timescales of one day should be divided
into at least four intervals: morning, noon, afternoon, and evening periods; that is, Kmin ≥ 4.
Additionally, it should never exceed 12 intervals in reality; that is, Kmax ≤ 12.

3.5. Adjustment of Breakpoints

For the purpose of TIP for traffic signal control, the breakpoints A1, . . . , AK from
clustering results could not be optimal. To fix this, the breakpoints between clusters are
updated repeatedly, until convergence, according to the following formulas.

A1 ← A1 +
1
T

I[
(

y(1) − y[AK ]

)(
y(1) − y(K)

)
< 0]− 1

T
I[
(

y(K) − y[AK ]

)(
y(K) − y(1)

)
< 0] (8)

Ak ← Ak +
1
T

I
[(

y(k) − y[Ak−1]

)(
y(k) − y(k−1)

)
< 0

]
− 1

T
I[
(

y(k−1) − y[Ak−1]

)(
y(k−1) − y(k)

)
< 0] (9)
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for 2 ≤ k ≤ K where y(k) = [∑T
j=1 I

(
ci

j = k
)
]
−1

∑T
j=1 I

(
ci

j = k
)

yj represents the average

traffic flow of the k-th cluster, y[Ak ]
= yj

(
j : Ak = Bj

)
represents the traffic flow at break-

point Ak.
More specifically, if the traffic flow at breakpoint Ak is less than the average traffic flow

of its left cluster y(k−1) and also less than the average traffic flow of its right cluster y(k),
and y(k−1) < y(k), then Ak should belong to the left cluster. Then, the breakpoint between
these two adjacent clusters should move toward right. On the contrary, if the traffic flow at
breakpoint Ak is greater than y(k−1) and y(k), and y(k−1) < y(k), then Ak+1 should belong
to the right cluster, and the breakpoint should move toward left.

4. Case Study
4.1. Empirical Data

The empirical data were collected at the signalized intersection of Wuyi Road and
Jintai Street in Fuzhou city, China. There are five lanes in each entrance (lanes 1 and 2
dedicated to left turn vehicles, lanes 3 and 4 for through vehicles, and lane 5 shared by
through and right-turning vehicles) and three signal phases at the intersection (phase 1: left
turn on north and south entrances; phase 2: through on north and south entrances; phase 3:
left turn and through on east and west entrances). Figure 1 manifests the aggregated
vehicle flow rate of all five lanes, which is counted every 5 min, from 0:00 on 26 December
2016 to 24:00 on 30 December 2016.

Sustainability 2021, 13, x FOR PEER REVIEW 7 of 13 
 

(௞ିଵ)ݕ̄ and ,(௞)ݕ̄ < -௞ should belong to the left cluster. Then, the breakpoint beܣ then ,(௞)ݕ̄
tween these two adjacent clusters should move toward right. On the contrary, if the traffic 
flow at breakpoint ܣ௞  is greater than ̄ݕ(௞ିଵ)  and ̄ݕ(௞) , and ̄ݕ(௞ିଵ) < (௞)ݕ̄ , then ܣ௞ାଵ 
should belong to the right cluster, and the breakpoint should move toward left. 

4. Case Study 
4.1. Empirical Data 

The empirical data were collected at the signalized intersection of Wuyi Road and 
Jintai Street in Fuzhou city, China. There are five lanes in each entrance (lanes 1 and 2 
dedicated to left turn vehicles, lanes 3 and 4 for through vehicles, and lane 5 shared by 
through and right-turning vehicles) and three signal phases at the intersection (phase 1: 
left turn on north and south entrances; phase 2: through on north and south entrances; 
phase 3: left turn and through on east and west entrances). Figure 1 manifests the aggre-
gated vehicle flow rate of all five lanes, which is counted every 5 min, from 0:00 on 26 
December 2016 to 24:00 on 30 December 2016. 

 
Figure 1. Total vehicle flow rates every 5 min of five days. 

4.2. Results of Clustering 
Above all, the proposed “elbow point” method is applied to determine the number 

of clusters ܭ. In Formula (5) and (6), we set (ܭ)ߜ =  1 ⁄(ܭ3) ௠௜௡ܭ ,  =  4 and ܭ௠௔௫  =  12. 
Figure 2a shows the intra-class distances of different numbers of clusters, and Figure 2b 
shows the relative descent rates of intra-class distance as ܭ increasing. 
 

  

Figure 1. Total vehicle flow rates every 5 min of five days.

4.2. Results of Clustering

Above all, the proposed “elbow point” method is applied to determine the number
of clusters K. In Formulas (5) and (6), we set δ(K) = 1/(3K), Kmin = 4 and Kmax = 12.
Figure 2a shows the intra-class distances of different numbers of clusters, and Figure 2b
shows the relative descent rates of intra-class distance as K increasing.

In Figure 2a, the intra-class distance decreases gradually as K increases and the relative
descent rates of intra-class distance are relatively small when K = 6 or K = 10 in Figure 2b.
In traffic engineering, frequent signal control scheme changes will bring management costs
to the transportation department. A smaller K means less overhead, so 6 is chosen as the
number of clusters.

Next, the proposed cyclic weighted k-means method is applied, and the breakpoints
between time intervals are adjusted according to (8) and (9). Figure 3 demonstrates the
clustering results.
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The curve in Figure 3 shows the average traffic volume per five minutes (i.e., average
traffic flow rate, ATFR; basic unit: pcu/h, passenger car unit per hour) of the intersection
in five days, and the ladder shape curve shows the mean of the ATFR in each cluster.
These clusters are the morning peak hour (6:55–9:30), forenoon hour (9:30–13:35), afternoon
hour (13:35–16:45), evening peak hour (16:45–19:25), night hour (19:25–22:55) and midnight
hour (22:55–6:55).

4.3. Evaluation of Methods

To evaluate different TIP methods, a common evaluation index, the average vehicle
delay (AVD), was adopted in this study. Details of the AVD method are given in [44,45]
and Appendix A.

Two TIP plans are compared, i.e., Plan A (the proposed method) and Plan B (the
TIP plan currently used by the local transportation department according to practical
experience) via AVD. The whole day is divided into four periods by Plan B as follows,
the morning peak hour (7:00–11:00), off-peak hour in the noon (11:00–14:30), the afternoon
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to the evening peak hour (14:30–20:00), off-peak hour in the night (20:00–7:00). Figure 4a
shows the ATFR of these two plans.
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According to Webster’s signal control method [46], we partly calculate AVD for each
time interval of both two plans, then get AVD of the whole day (see Figure 4b). Note that the
ATFR of Plan B in Figure 4a during the second (7:00–11:00) and third (11:00–14:30) periods
is in a line, and it is hard to intuitively distinguish (1243 and 1240 pcu/h, respectively). It is
the same situation for the third (11:00–14:30) and fourth (14:30–20:00) periods of Plan B in
Figure 4b, with AVD 52.2 and 52.1 s.

Figure 4 displays that Plan A is better than Plan B because the AVD of Plan A is always
lower than that of Plan B, except from 20:00 to 22:55. However, the ATFR of this period
still maintains 1176 pcu/h, an average of about 100 pcu per five minutes. Thus, it is not
reasonable for Plan B to regard this period as the night. By further calculation, the AVD
for the whole day of the two plans is 35 and 39 s, respectively. It follows that the AVD of
Plan A decreases by 10.25% than one of Plan B. We can say that the regular pattern of the
traffic flow is accurately captured by Plan A, and the time interval is frequently divided.
This brings more benefit for traffic than Plan B, which is designed mainly from engineering
experience with a lack of theoretical basis and analysis.

5. Conclusions

For cyclic data, such as traffic flows, a clustering method is proposed, called cyclic
weighted k-means, based on cyclic distance. Several conclusions are as follows.

i. The cyclic distance is the key for the cyclic weighted k-means algorithm, which makes
it possible that the end point of the previous cycle and the start point of the current
cycle are connected in the clustering result, and a complete cycle of data has been
considered rather than separation from tail to head.

ii. Some attached algorithms, i.e., centroid initialization, cluster number selection,
and breakpoint adjustment, are helpful for further improvement of the cyclic weighted
k-means algorithm to solve the TIP problem.

iii. The feasibility of the proposed method is confirmed by empirical study. It is noted
that the practical evaluation criteria (such as the average vehicle delay in benefits of
traffic signal control) should serve the practice. From the perspective of application,
the proposed method can also be applied to other scenes. For example, it can be
applied to the inventory adjustment of e-commerce according to the daily sales,
and the seat optimization of a call center according to the volume of calls.
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From the perspective of application, a novel TIP algorithm (i.e., cyclic weighted k-
means) for traffic signal control was developed according to the periodic change of the
traffic flow at the signalized intersection. The purpose of the algorithm is to improve the
benefits of traffic signal control. On the one hand, traffic flow data can only be obtained
by the detectors (such as loop detector or video detector) at intersections. In reality,
missing data or sensor damage often occur. Hence, developing a filling method for missing
traffic flow data is an important task in future work. On the other hand, traffic flows
at intersections show different periodic changes on weekdays, weekends, and holidays,
which requires different TIP schemes. The current traffic signal control system can store
different TIP schemes for different days and set the optimal signal timing plans for each
time interval, which is of great significance to improve the benefits of traffic signal control.
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Appendix A

The original traffic data are used to calculate average vehicle delay, which is refined
according to the signal phases and traffic lanes. Let xtnpj be the traffic flow of the t-th
(1 ≤ t ≤ T) interval on the n-th (1 ≤ n ≤ N) day in the p-th (1 ≤ p ≤ P) signal phase in
the j-th (1 ≤ j ≤ J) traffic lane, which is used to calculate the t-th element of the vector
xn = (x1n, . . . , xTn)

′ mentioned in Section 2; that is,

xtn =
P

∑
p=1

J

∑
j=1

xtnpj (A1)

The average vehicle delay algorithm is given as the following.
Step 1: Calculate Mk, which is defined as the number of timescales of k-th time interval

Dk, i.e., the element number of set { t |Bt ∈ Dk}.

Mk =
Ak+1 − Ak

w/1440
(A2)

where w (= 5 min) is the sampling unit.
Step 2: Calculate qk (unit: passenger car unit per hour, pcu/h), the average traffic flow

rate of the k-th time interval

qk =
1

Mk NPJ ∑
t:Bt∈Dk

N

∑
n=1

P

∑
p=1

J

∑
j=1

60xtnpj/w (A3)

where 60/w is a constant of unit conversion.
Step 3: Calculate Yk, the flow ratio at the k-th time interval.

Yk = qk/S (A4)
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where S is the saturation flow rate and [47] can be used to estimate S = 1549 pcu/h in
this study.

Step 4: Calculate qkp (unit: pcu/h), the average traffic flow rate critical traffic lane at
the k-th time interval in the p-th signal phase.

qkp =
1

Mk NP ∑
t:Bt∈Dk

N

∑
n=1

P

∑
p=1

max
j

{
60xtnpj/w

}
(A5)

Step 5: Calculate Lk (unit: hour, h), the total lost time of the k-th time interval

Lk =
P

∑
p=1

Lkp (A6)

where we often set Lkp = 3/3600 as amber time and Lk = 3P/3600.
Step 6: Calculate Ck (unit: h), the optimal cycle length of the k-th time interval [46]

Ck = (1.5Lk + 5)/(1−Yk) (A7)

Note that there are some constraints on cycle length Ck in the intersection. When the
cycle length is small, the green time allocated to each phase would be not enough for
pedestrians crossing the road. When the cycle length is large, the red time for each phase
is long and results in the anxiety of drivers. Thus, Ck needs to satisfy Cmin ≤ Ck ≤ Cmax,
i.e., if Ck ≤ Cmin, then set Ck = Cmin, and if Ck ≥ Cmax, then set Ck = Cmax. In this paper,
we set Cmin = 50 s and Cmax = 140 s, respectively.

Step 7: Calculate gkp (unit: h), the best green time at the k-th time interval in the p-th
signal phase,

gkp = (Ck − Lk)qkp/
P

∑
p=1

qkp (A8)

Step 8: Calculate rkp (unit: h), the best red time at the k-th time interval in the p-th
signal phase

rkp = Ck − gkp − 3/3600 (A9)

where the constant 3/3600 stands for amber time.
Step 9: Calculate dkp (unit: h), the average vehicle delay at the k-th time interval in the

p-th signal phase [48]

dkp =
0.5Ck(1− λkp)

2

1−
[
min(1, zkp

)
λkp]

+ 900H

[(
zkp − 1

)
+

√
(zkp − 1)2 +

8ρzkp

RkpH

]
(A10)

where λkp = gkp/Ck is the green ratio at the k-th time interval in the p-th signal phase;
zkp = qkp/Rkp is the degree of saturation at the k-th time interval in the p-th signal phase;
Rkp = Sλkp is the capacity of the critical traffic lane at the k-th time interval in the p-th
signal phase (unit: pcu/h); H is length of the k-th time interval (unit: h); ρ is a correction
factor with the default value 0.5.

Step 10: Calculate dk (unit: h), the average vehicle delay of the k-th time interval

dk =
P

∑
p=1

dkpqkp

/
qk (A11)

Step 11: Calculate d (unit: h), the average vehicle delay of all K time intervals

d =
K

∑
k=1

dkqk(Ak+1 − Ak)
/ K

∑
k=1

Qk (A12)
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