<@ sustainability

Article

Managing Water and Salt for Sustainable Agriculture in the
Indus Basin of Pakistan

Asad Sarwar Qureshi 1-*

check for

updates
Citation: Qureshi, A.S.; Perry, C.
Managing Water and Salt for
Sustainable Agriculture in the Indus
Basin of Pakistan. Sustainability 2021,
13,5303. https://doi.org/10.3390/
su13095303

Academic Editor: Jan Hopmans

Received: 20 March 2021
Accepted: 6 May 2021
Published: 10 May 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

and Chris Perry 2

International Center for Biosaline Agriculture (ICBA), P.O. Box, Dubai 14660, United Arab Emirates
Independent Researcher, London NW8 8QX, UK; chrisjperry@mac.com
*  Correspondence: a.qureshi@biosaline.org.ae

2

Abstract: The Indus basin of Pakistan occupies about 16 million ha (Mha) of land. The Indus River
and its tributaries are the primary sources of surface water. An estimated 122 km? of surface water
is diverted annually through an extensive canal system to irrigate this land. These surface water
supplies are insufficient to meet the crop water requirements for the intensive cropping system
practiced in the Indus basin. The shortfall in surface water is met by exploiting groundwater.
Currently, about 62 km? of groundwater is pumped annually by 1.36 million private and public tube
wells. About 1.0 million tubewells are working only in the Punjab province. Small private tubewells
account for about 80% of the pumped volume. Inadequate water allocation along the irrigation canals
allows excessive water use by head-end farmers, resulting in waterlogging. In contrast, the less
productive use of erratic supplies by tail-end farmers often results in soil salinity. The major issues
faced by irrigated agriculture in Pakistan are low crop yields and water use efficiency, increasing soil
salinization, water quality deterioration, and inefficient drainage effluent disposal. Currently, 4.5 Mha
(about 30% of the total irrigated area) suffers from adverse salinity levels. Critical governance issues
include inequitable water distribution, minimizing the extent to which salt is mobilized, controlling
excessive groundwater pumping, and immediate repair and maintenance of the infrastructure. This
paper suggests several options to improve governance, water and salt management to support
sustainable irrigated agriculture in Pakistan. In saline groundwater areas, the rotational priorities
should be reorganized to match the delivery schedules as closely as possible to crop demand, while
emphasizing the reliability of irrigation schedules. Wherever possible, public tubewells should pump
fresh groundwater into distributaries to increase water availability at the tail ends. Any substantial
reform to make water delivery more flexible and responsive would require an amendment to the
existing law and reconfiguration of the entire infrastructure, including thousands of kilometers
of channels and almost 60,000 outlets to farmer groups. Within the existing political economy of
Pakistan, changing the current water allocation and distribution laws without modernizing the
infrastructure would be complicated. A realistic reform program should prioritize interventions
that do not require amendment of the Acts or reconstruction of the entire system and are relatively
inexpensive. If successful, such interventions may provide the basis for further, more substantial
reforms. The present rotational water supply system should continue, with investments focusing
on lining channels to ensure equitable water distribution and reduce waterlogging at the head ends.
Besides that, the reuse of drainage water should be encouraged to minimize disposal volumes. The
timely availability of farm inputs can improve individual farmers’ productivity. Farmers will need to
have access to new information on improved irrigation management and soil reclamation approaches.
Simultaneously, the government should focus more on the management of drainage and salinity.

Keywords: Indus basin; salinity management; water scarcity; food security; crop productivity; gov-
ernance

1. Introduction

Agriculture is the backbone of the rural economy of Pakistan and a significant contrib-
utor to food security. It provides 21% of the gross domestic product (GDP) and accounts
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for more than 60% of foreign exchange earnings [1]. It occupies 45% of the total workforce,
and about 80% of the population is involved directly or indirectly in agriculture for their
livelihoods [2]. The surface water resources of Pakistan mainly come from the Indus
River and its tributaries. After the Indus Basin Treaty of 1960 between India and Pakistan,
Pakistan was accorded exclusive use of three western rivers (Indus, Jhelum, and Chenab),
and India was entitled to three eastern rivers (Ravi, Sutlej, and Beas) (Figure 1). Pakistan’s
reduced access to the western rivers was compensated by constructing Mangla Dam and
“link” canals that transferred water stored in the dam to the areas previously dependent on
inflow from the western rivers. Inflows are mainly derived from snow and glacier melt,
and rainfall in the catchment areas. Most rivers are ephemeral streams outside the Indus
basin, which only flow during the rainy season and do not contribute significantly to the
country’s surface water resources.

Figure 1. Map of Pakistan showing the Indus basin and the main rivers, dams, and lakes.

The Indus River has a total length of 2900 km and a drainage area of almost a million
square kilometers. The Indus basin supports the world’s largest contiguous irrigation
system, comprising 4 storage reservoirs (Warsak, Chasma, Mangla, and Tarbela), sixteen
barrages, 12 inter-river link canals, 2 siphons, and 44 canal commands (23 in Punjab, 14 in
Sindh, 5 in Khyber Pakhtunkhwa (KPK), and 2 in Baluchistan). The system is served by
59,000 km of irrigation canals and 107,000 km of watercourses [3].

Productive irrigated agriculture is constrained by multiple factors, including poor
maintenance of unlined canals, poor on-farm irrigation practices, locally low-quality water
for irrigation, inadequate drainage resulting in waterlogging and soil salinity in irrigated
areas, and inadequate farm support services. Decreasing investments in the water sector,
water scarcity, declining freshwater aquifers, and ecological problems combine to constrain
increased agricultural output. The primary strategy must therefore be to increase the
productivity of renewable water resources.

In the 2030 Agenda for Sustainable Development, the challenge of water scarcity
and water quality deterioration is tackled through one of the Sustainable Development
Goals (SDG-6), which aims to ensure water and sanitation for all. The latest assessments
suggest that countries like Pakistan are not on track to achieve SDG-6 by 2030 [4]. This
paper (1) reviews the current situation of deteriorating soil and water resources in Pakistan,
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(2) reviews water allocation and distribution options, and (3) recommends policy options
for enhanced, sustainable crop production to ensure food security in the Indus basin.

2. Surface Water and Groundwater Resources of the Indus Basin
2.1. Surface Water Resources

The annual surface flows in the Indus basin vary from 120 km? to 230 km?, depending
on the rainfall and snow patterns. There are also significant seasonal variations in the
surface flows. The average inflow during the summer season is 160 km3, whereas the
winter season flow is only 30 km?, which requires storage in the summer to meet water
requirements in the winter. The average annual surface water and groundwater with-
drawals in Pakistan are about 184 km? (122 km? from canal withdrawals and 62 km?® from
groundwater extraction) [3]. However, this represents a significant double counting, as
most of the extracted groundwater consists of leakage from the canal system. Considering
this inter-connectivity between surface water and groundwater, estimation of the actual
water availability requires caution. After adjusting this double counting of 48 km?, the net
surface withdrawal is about 136 km3. About 94% is used for agriculture, 5% is allocated to
domestic use, and the remaining 1% goes to industry [3]. A summary of the Indus basin’s
water budget based on the mean annual river flows and mean annual canal diversions is
given in Table 1.

The Indus Basin Irrigation System (IBIS) irrigates about 16 Mha, contributing more
than 90% of the national grain production. Perennial canal supplies are provided to 8.6 Mha,
while the remaining area is non-perennial (i.e., only irrigated in the summer). Considering
total canal diversions of 122 km?3 and an irrigated area of 16 Mha, the annual surface water
availability is 7625 m3/ha/year. This means an availability of 2.21 mm/day, compared
with the average evapotranspiration demand of about 5 mm/day in wheat—cotton cropping
systems and 6-7 mm/day in the rice and sugarcane cropping areas [5]. This amount is
insufficient to meet the evapotranspiration demand for the year-round intensive cropping
system practiced in the Indus basin, necessitating access to groundwater. The surface water
quality is excellent for irrigation (200-300 ppm at the rim stations). However, it adds about
1.0-1.5 tons of salts per ha per year to the irrigated lands [6].

Rainfall in the basin is neither sufficient nor reliable. About two-thirds of the rain is
received during the summer months of July-September. The mean annual precipitation
ranges from 100 mm in the lower Indus plain to over 750 mm in the upper Indus plain. Due
to the concentration of rainfall in the monsoon season, the direct contribution of rainfall to
the total crop water requirement is only 15% [6].

Table 1. Water budget of the Indus basin irrigation system (all values are in km?).

Parameters Inflow Outflow/Losses Available

Mean annual withdrawals 184

Mean annual canal diversions 122
Losses in the canal system 29

Available supplies at the watercourse head 93
Watercourse losses 27

Available canal supplies at the farm gate 66
Groundwater contribution 62

Available water at the farm gate 128
Field channel losses 13

Available water at field level 115
Field application losses 29

Available water for consumptive crop use 86
Rainfall contribution 16

Total available water for consumptive crop use 102

Data source: [5,7].
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2.2. Groundwater Resources

The Indus basin irrigation system is underlain by an extensive unconfined aquifer
covering the whole 16 Mha of surface area, of which 6 Mha are fresh, and the remaining
10 Mha are saline [5]. Most of the groundwater is recharged from the seepage from canals
and watercourses, inequitably distributed between the head and tail areas. In most fresh
groundwater areas, water tables are falling due to excessive pumping to supplement
surface supplies. Seepage from canals (~25%) and watercourses (~30%) [7] and percolation
from farmers’ fields are thus only “losses” when they reach an unusable saline aquifer,
with the eventual outcome of waterlogging and salinity.

In sum, a little more than half of the water diverted into canals reaches the farm
gate [2]. The annual groundwater extraction is estimated at 62 km?, of which 48 km? is
sourced from surface water seepage from irrigation channels and farmers’ fields. At the
same time, the remaining 12 km? is unsustainable aquifer depletion in fresh groundwater
areas [3,8].

Defining groundwater depletion in large, heterogeneous areas such as Pakistan is
complex, and the estimates differ. Yoshihide and Bierkens (2014) [9] estimated an annual
depletion of 35 km?; Famiglietti (2014) [10] assessed the regional depletion (including
the Indus basin areas within India) at 17 km?; and Young et al. (2019) [3] concluded that
the net annual depletion in Pakistan was only 1 km®. Some of these differences can be
rationalized. The first estimate is likely to be excessive, as crop water consumption in
irrigated areas is assumed to be at the maximum potential levels, which is inconsistent
with the low average yields achieved in Pakistan. The latter estimate was based on GRACE
data at a very coarse resolution, potentially including areas outside of IBIS. For both the
second and third estimates, a particularly complicating factor was the need to distinguish
between fresh and saline groundwater areas. If water tables are rising in saline areas and
falling in fresh groundwater areas, then the observed net depletion rate may be small.
Still, the sustainability of groundwater irrigation is decided only by the depletion of fresh
groundwater. Since all estimates agree that depletion is underway, the conclusion that
fresh groundwater consumption needs to fall locally is uncontested.

Presently, 62 km? of groundwater is exploited in Pakistan by over 1.36 million private
pumps [3,11], substantially exceeding the “safe yield” in some fresh groundwater areas—
where water tables are falling at around 1.0 m/year—while saline groundwater areas are
prone to waterlogging, as pumping is much lower than the recharge rate. About 1.0 million
tubewells are working only in the Punjab province [2] (Figure 2). About 15% of the pumps
are electric, and the remaining 85% use small diesel pumps of 10-12 horsepower (hp). In
the Indus basin, access to groundwater is unregulated; anybody can extract any amount
from beneath the land they own or farm without considering the detrimental effects of
that action on the resource and other users [2]. The legal underpinning of this situation
stems from the Act of Easement (1882). Groundwater abstraction increased sixfold between
1965 and 2020. More than 80% of groundwater exploitation is done by private tube wells,
creating various management and equity problems [2]. Uncontrolled access to groundwater
has allowed farmers to grow water-intensive, remunerative crops (e.g., rice and sugarcane)
and assured higher crop yields. Currently, groundwater discharge in freshwater areas
exceeds the recharge rate, turning this boon into an impending catastrophe; water levels are
declining, pumping costs are increasing, and groundwater quality is deteriorating [12,13].
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Figure 2. Growth of private tube wells in the Punjab province of Pakistan. (Source: Punjab Agricul-
ture Statistical Department).

The groundwater table in the Indus basin is declining at a rate of 1.5 m/year in
some areas. The situation is even more challenging in the Baluchistan province, where
groundwater tables fall at a rate of 2-3 m annually. The smallholder farmers in 15%
of Punjab and 20% of Baluchistan may lose groundwater access by 2025 [2]. Excessive
lowering of the groundwater is making pumping more expensive, and wells are going out
of production. The changes in groundwater levels are less pronounced in Sindh, owing
to restricted exploitation due to quality concerns. In Khyber Pakhtunkhwa (KPK), the
situation is better due to a surplus canal water supply and less groundwater dependence.

3. Sustainability Challenges in the Indus Basin
3.1. Increasing Gap between Supply and Demand

Pakistan is the world’s sixth most populous country, with a projected population
of 250 million in 2025 and 335 million in 2050 [14]. The urban population is expected to
increase to 52% by 2025. Therefore, future water demand increases are also likely to come
from domestic, industrial, and non-agricultural uses. Evidence points to a broadening
gap between the renewable water supply and demand. Considering population growth
projections, increasing demand from industrial, domestic, and environmental sectors, and
assuming no or little change in the renewable freshwater resources in Pakistan, the current
annual renewable water resources (ARWR) are 1100 m3 per capita and are expected to
decrease to 1000 m® per capita in 2030 and 900 m? per capita in 2050 [3]. In the Central
and South Asia regions, Pakistan would be the third most water-scarce country after
Afghanistan and Tajikistan [15]. These scenarios are based on (1) the ARWR projections
for 2030 and 2050 based on freshwater availability [13]; (2) water needed to support
ecosystems (i.e., environmental flows requirements (EFR, referring to the amount and
timing of freshwater flows and levels necessary to sustain aquatic ecosystems [16,17])); and
(3) population projections for 2030.

3.2. Surface Water Distribution

Unlike some arid regions where water rights can be bought and sold separately from
the land, such as in the western United States and Australia, access to irrigation water
in the Indus basin is directly linked to land [18]. The Indus basin irrigation system was
initially designed to distribute limited quantities of water over large areas to provide
drought protection, rather than for intensive production over a smaller area. The original
design for seasonal irrigation intensity was around 40%. The operating system is supply-
based, with the main and distributary canals operating either at a full supply or closed



Sustainability 2021, 13, 5303

6 of 14

in a pattern designed to meet the approximate water demands of the dominant crop in
an area. Irrigation canals have a typical design capacity of about 2.0 mm/d (more in the
non-perennial canals and areas designed for rice). The distribution of water from the canal
outlets to farmers is performed on a fixed rotational system called “warabandi”, which
generally occurs on a seven-day cycle. Under this system, each farmer can take the entire
flow of the outlet once in seven days for a time proportional to their landholding size.
Given the meager duties, the water delivered in one turn is insufficient to irrigate the whole
farm. A farmer must therefore decide whether to underirrigate all land or leave a fraction
unirrigated [18]. Since the water is scarce, this automatically encourages farmers to seek
the most productive allocation of limited water.

While this system of distributing water is crude, it should be noted that the system
serves almost 60,000 outlets, each of which provides water to a group of 30-50 farmers.
Given the severe scarcity of surface water, a simple approach to management, with trans-
parent rules that invoked peer pressure among farmers to oversee local distribution, was
the only way of ensuring a degree of equity in the allocation of water [18].

In recent decades, the discipline and equity that this system was designed to achieve
have deteriorated. Good maintenance was essential to ensure proportional allocations at
all levels in the system, but maintenance budgets have been inadequate for decades. As
the service provided declined, farmers interfered with outlets, installed illegal “direct”
outlets, and officials were influenced to make ad hoc reallocations of water to favored
areas. The result is inequitable water distribution, poor technical performance, a pervasive
environment of mistrust, and conflict between the water managers and the farmers [19].
Furthermore, because no allowance is made for seepage along a watercourse, the “turn”
assigned to head-enders delivers a lot more water per hectare than an identical turn to a tail-
ender, with the difference usually exceeding 25%. This is reflected in the crop productivity
levels of the head-, middle-, and tail-enders of the same canal [20]. Therefore, equitable
water distribution remains a challenge.

3.3. Low Crop Yields and Low Water Productivity

Increasing demand for food and favorable marketing conditions has provided the
incentive to increase annual cropping intensities from the original design of 70-80%
to more than 150%, primarily based on groundwater development. Moreover, many
canals can no longer convey their actual design capacity due to siltation and inadequate
maintenance [20,21].

The productivity of water in Pakistan is among the lowest in the world. For wheat,
it is 0.5 kgm 3, compared with 1.0 kgm~3 in India and 1.5 kgm 3 in California [22]. This
reveals that there is a substantial scope for increasing water productivity which needs to
be harnessed. The average wheat yield in the Indian Punjab is 4.2 tha~!, compared with
3.2 tha! in the Pakistani Punjab. Similarly, rice, maize, and sugarcane yields are much
higher in the Indian Punjab than in the Pakistani Punjab. A recent analysis of India’s and
Pakistan’s irrigation practices showed that the primary reason for higher crop yields and
water productivity in India is their higher nitrogen use. The nitrogen use in India for wheat
and rice crops is almost double that of Pakistan [23]. This is due to the non-availability of
nitrogen fertilizers at affordable prices to farmers. Therefore, Pakistan needs to focus on all
inputs (not only water) to increase irrigated crop yields.

3.4. Increasing Soil Salinity Problems

As irrigation has spread in the Indus basin, so has the prevalence of soil salinity,
affecting crop productivity. In addition to saline soils, waterlogged soils also occur in the
basin due to a lack of drainage systems. These pose a significant impediment to the optimal
utilization of agricultural production systems [20]. Salt-affected soils adversely affect the
socioeconomic conditions of the people living in these areas, causing low living standards
and health problems for humans and animals.
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The basin faces a substantial salt balance problem. The salts brought in by the rivers
and their tributaries are estimated at 23 million tons (Mt) annually. The extensive ground-
water pumping adds another 45 Mt of salt annually to the irrigated lands. Most of it is
in Punjab (41.5 Mt), and 3.5 Mt is in Sindh. Most salts are fossil salts deposited in the
deeper strata and aquifers during the Indus plain’s formation. The outflow to the sea is
10 Mt, while 2.2 Mt are captured in a series of evaporation ponds [20]. The remaining 49
Mt of salts is retained in the irrigated lands and its underlying strata and aquifer [20,24].
This implies that, annually, an average of 3.5 tons of salts is added to each hectare of
irrigated land. Currently, about 4.5 Mha are affected by various levels of salinity [24]. The
highest concentration of saline area is in the Sindh province, where nearly half of the land
is affected by soil salinity. The efforts have reduced the saline area from 35% of the total
area in 1980 to 28% in 2007 (Figure 3). Due to deeper groundwater depths and leaching
through monsoonal rains, much of the salt added by the groundwater in Punjab is washed
away. This is the reason that the saline area in Punjab is low compared with Sind. In the
Sind province, groundwater is shallow and of inferior quality, restricting leaching even in
monsoon months [20].
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Figure 3. Salt-affected area (%) in different provinces of Pakistan (Source: WAPDA, 2007).

The cost of inaction in underperforming degraded lands, such as salt-affected soils,
is estimated to be a 15-69% loss in revenues, depending on variables such as the crops
grown, the intensity of land degradation, and the level of water quality deterioration,
among other factors [25]. These estimates do not account for additional costs, such as loss
of employment, increased human and animal health problems, reduced land values, and
associated environmental costs. Therefore, along with water shortages, equal attention is
needed for salinity management in the irrigated areas.

Over the last four decades, the government and farmers have tried various options
for salinity management. These include engineering, reclamation, and biological inter-
ventions. Under engineering options, public sector tube wells were installed to lower the
groundwater levels, and the pumped groundwater was discharged into canals to increase
the water supply for irrigation. For the reclamation of salt-affected soils, gypsum was
provided to farmers at the subsidized rates along with technical training. In the highly
saline areas, farmers were encouraged to plant salt-tolerant food and feed crops to improve
the productivity of salt-affected lands [20,25]. These interventions help in reducing the
extent of salt-affected lands, although success has been limited.
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3.5. Funding

Annual irrigation service fees are about USD 2/ha, and no government over the last
50 years has sought to raise irrigation charges to cover the costs of repairs and maintenance,
due to political reasons. Currently, the annual operations of the surface system for farmers
cost the government roughly USD 14/ha [3]. Young et al. [3] estimated the total cost of
system operation and annual maintenance at USD 102/ha. The gap between revenue
collection and the amount spent on operation and maintenance (O&M) for the Punjab
province widens continuously (Figure 4).

8000 -~
W Collected M Expenses

i

2000 2002 2004 2006 2008 2010 2012 2014
Years

Millions (Pak Rupees)

Figure 4. Comparison of expenses and collected water charges in the Punjab province.

The large gap between the collected irrigation fees and actual (let alone required)
expenses stresses the need to revisit the irrigation service fee mechanism needed to provide
farmers with adequate services. Furthermore, an intersectoral approach is also required
for charging water use by different subsectors. It is evident from the global experiences
that raising water tariffs, levying effluent charges, and encouraging water markets can
significantly improve economic efficiency and environmental sustainability [26]. Therefore,
a holistic approach is needed to estimate the total cost of the provision of irrigation services.
However, the practicality of full cost recovery requires building the financial capacity of
farming communities. This can only be achieved through proper service delivery, provision
of the right quality inputs, and favorable production marketing [27].

4. Response Options
4.1. What Is Feasible?

Irrigation management in Pakistan is based on the Northern India Canal and Drainage
Act of 1873 (as an amended following partition). The act defines the rules and responsibili-
ties of all involved, from senior engineers to individual farmers, associated with a complex
infrastructure system designed to support the uniform sharing of scarce water over a vast
area with minimum active management levels. Access to groundwater is governed by the
Act of Easement (1882, as amended), which allows the operator of the land unrestricted
access to underlying groundwater.

Unsurprisingly, almost 150 years after the framing of these acts, many factors have
changed. Cropping patterns have changed, and cropping intensity has increased. Ground-
water has developed into a major source of irrigation water, and salinity and waterlogging
have evolved in many irrigated areas. The progressive deterioration in system performance
has provided the excuse for individual farmer interventions that have undermined system
managers’ effectiveness [27].
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A typical response to this situation is to recommend “reform.” The recent World
Bank report [3] has many recommendations, including the following related to water
service delivery:

e  Replace warabandi with new water-sharing rules based on economic efficiency and
farmer equity;
Reform irrigation tariffs to reflect realistic operations and maintenance (O&M) costs;
Strengthen water user associations for improved system operation and improved
collection of water charges;

e  Reform the governance of water user associations and farmer organizations to prevent
elite capture;

e  Modernize irrigation systems, including new hydraulic control structures and the
lining of canals in waterlogged and saline areas;

e Automate the control of hydraulic structures using real-time data acquisition systems.

These recommendations are no doubt desirable, but are they feasible? “Replacing
warabandi in pursuit of farmer equity and economic efficiency” poses at least three major
difficulties. First, it would require total reformulation of both the laws governing water al-
location and access. Second, “farmer equity” suggests that more water should be provided
to less productive areas to improve low farm incomes, while “economic efficiency” requires
reallocation of water in the opposite direction to improve average productivity. Third, since
the entire system consists of 170,000 km of channels, all the associated control structures
(and 58,000 outlets serving farmer groups) would need to be rebuilt to new standards
to support the flexible delivery of water to individual farms, all of which is required to
support individualised service delivery and water trading. Once built at a potential cost
of USD 5000-10,000/ha, the operational costs would vastly exceed the current needs of
USD 102/ha [3], the actual expenditure of USD 12/ha, and the current service charges
of USD 2. Regarding the need to strengthen and reform farmer organizations, the 1873
act created effective farmer organizations for each watercourse, defining their obligations
in operating and maintaining all the infrastructure at that level. These functions have
declined in parallel with the drop in service standards.

Paradoxically, of course, the need to reform water laws after more than a century
is offset by the entrenched interests in place after such a long period. Any substantial
reform of the system management and water allocation would be resisted by those benefit-
ting from current inequities in distribution. All these factors constrain a realistic reform
program, which should prioritize interventions that do not require amendment of the
Acts and reconstruction of the entire system and are relatively inexpensive. If successful,
such interventions may provide the basis for further, more substantial reform toward the
objectives set out by the World Bank.

4.2. What Are the Priorities?

Three issues stand out. First, inequitable water distribution along the irrigation
channels allows excessive use by the head-end farmers, contributing to waterlogging. This,
in turn, causes erratic supplies and low productivity at the tail tends, increasing soil salinity.
Second, interventions should minimize the extent to which salt is mobilized from saline
aquifers (and the deeper levels of currently “fresh” groundwater areas). Third, funding for
maintenance (and remedial works) that restores the functionality of the rules under which
the system is supposed to operate must be provided. This is a fundamental component of
“governance” that only the government can address, either through increased user charges
or direct government subsidies. It may seem defeatist to prioritize rehabilitation and
reassert the management approaches of the nineteenth century. However, these objectives
can be pursued within the existing rules and infrastructure to improve productivity while
minimizing saline water mobilization.
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4.3. What Should Government Agencies Do?

In areas where the groundwater is saline, the distributary canals’ rotational priorities
should be reorganized to match delivery schedules as closely as possible to current crop
water demand, limiting the quantity of water delivered while increasing the reliability
of the schedules. In other words, the quality of service should be prioritized over the
quantity. This would have the dual benefits of reducing the incentives to pump and mix
saline water with fresh water and minimizing untimely excess deliveries that contribute
to waterlogging. Untimely deliveries (for example, when there has been rainfall and
irrigation is not needed) should be allocated to fresh groundwater areas, where the excess
can contribute to reusable recharge. Additionally, wherever possible, the government
should pump fresh groundwater into distributaries to improve availability at the tail ends.
Both these interventions would serve to enhance the productivity of water in the system,
reduce inequities, and minimize, if not reduce, the mobilization of salt. At the watercourse
level, warabandi would continue, with investments (to the extent possible and supported
by cost recovery) focusing on lining channels to ensure equitable distribution and reduce
waterlogging at the head ends. The recommendations to replace the existing warabandi
system with water-sharing rules based on economic efficiency and equity [3] are practically
impossible without a complete restructuring of the system. These changes also require
analysis of the trade-off between efficiency and equity, especially in a system where millions
of smallholders rely on the canal water for their livelihoods.

Changing water allocation laws would also require a political understanding of the
issue, government-level interventions for changing the policies, and realignment of public
sector organizations to improve their capacity to handle complex land and water manage-
ment issues. The approach outlined is consistent with the primary objectives of the recently
adopted National Water Policy. This policy stresses the need to adopt a more integrated
approach to protect all upstream and downstream stakeholders’ interests concerning quan-
tity and quality and empowers the federal government to develop a regulatory framework
to ensure efficient and sustainable groundwater resource utilization [28].

4.4. Improving Water Productivity

Water productivity can be improved in several ways. First, reducing excess deliveries
during periods of low demand reduces evaporative losses (estimated at one-third of the
water applied and infiltration into saline aquifers). Secondly, a more reliable irrigation
service encourages more intensive use of inputs and hence higher yields. All these out-
comes would be supported by the interventions proposed above. Improved agronomic
and on-farm water management practices, such as land leveling, ridge and furrow, zero
tillage, and mulching also enhance water productivity. Studies have shown that irrigation
deliveries to wheat and cotton can be reduced up to 40% without reducing yields or rising
soil salinity [29-32]. Qureshi and Bastiaanssen (2001) [33] recommended that in Pakistan,
wheat and cotton crops can produce optimal yields by applying 300 mm of irrigation water
instead of the current practice of 420 mm.

Drip irrigation techniques are also widely used to improve irrigation efficiency by
reducing soil evaporation and deep percolation losses. These micro-irrigation systems
can be economically more attractive if used to grow high-value crops, as the productions
and income will be many times higher than traditional crops. However, in the absence
of a lucrative market and affordable access to these systems, their large-scale adoption
for small farmers will remain a challenge. The water-saving techniques for rice, such
as direct seeding and alternate wet and dry (AWD) methods, can reduce water use by
15-20% [34,35]. However, fixed rotational irrigation systems and a lack of farmer training
would be serious constraints in the large-scale adoption of the AWD method in Pakistan.

4.5. Reusing Saline Drainage Water

Saline drainage water is being extensively used for growing a range of salt-tolerant
crops. These include (1) fiber and grain crops; (2) forage grass and shrub species; (3) medic-
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inal and aromatic plant species; (4) biofuel and multipurpose species; (5) fruit trees; and (6)
agroforestry systems. Several studies in the Indus basin have shown emerging examples of
crop diversification and management for optimal drainage water use for irrigation [36,37].
Among grain crops, barley—at soil salinity levels around 12 dS/m-—can produce 80% of
the yield potential anticipated from non-saline conditions [38]. Quinoa is a salt-tolerant
crop of high nutritional value. It is now recognized as a potential alternative crop for
salt-affected areas and is expected to play an essential role in ensuring future food secu-
rity [39]. The quinoa crop is now being cultivated in many (semi-) arid regions, especially
where soils are salt-affected and freshwater availability is limited. Forages produced by
irrigation with saline water provide additional income sources for farmers in marginal
lands. Several promising forage species that can be successfully grown on salt-affected
soils using saline drainage water have been identified. The selection of suitable plants for
saline lands depends on the cost of the inputs and the subsequent economic or on-farm
benefits [40].

4.6. Improving Water Governance

The Irrigation and Drainage Act of 1873 gives extensive powers to irrigation officers
to control the irrigation infrastructure and financial resources. Provincial irrigation depart-
ments (PIDs) were responsible for irrigation water distribution to farmers, collecting water
charges, and repairing and maintaining irrigation infrastructure down to the outlet, with
farmers responsible below that point. In addition to the top-down and rigid supply-driven
irrigation managers’ approach, poor service delivery has increased farmers” dissatisfaction
and resulted in poor maintenance of the system and low collection of water charges. The
situation was further exacerbated by inequitable water distribution, unauthorized outlets,
and illegal pumping from canals [41].

It was generally argued that the IBIS’s efficiency is low because it is being managed
without farmers’ involvement [42]. In the late 1990s, the government of Pakistan also
restructured the Provincial Irrigation Department (PID) by establishing the Provincial
Irrigation and Drainage Authorities (PIDAs) at the provincial level with three broad
objectives in mind: (1) decentralization and autonomy; (2) empowering farmers; and
(3) improving efficiency and sustainability. The management tiers of the PIDAs included
commercially oriented area water boards (AWBs) at the canal level to operate the main and
branch canals and participatory farmer organizations (FOs) for operation and maintenance
at distributaries and minor canals. As part of this reform process, the irrigation canals at
distributaries and minor levels were transferred to FOs [24]. The PIDAs act also defined
groundwater extraction rights and empowered water user associations (WUAs) to monitor
groundwater extraction in the canal command areas.

However, farmers’ focus remained on the canal water distribution and collecting
water fees, while groundwater monitoring was entirely ignored. The weak enforcement of
the PIDA laws and regulations disappointed local water users. The main lesson learned
was that ordinances and laws are irrelevant if not correctly implemented [42]. However,
the main question remains: Who should organize farmers? Even the establishment of FOs
in many countries could not solve this issue. Limited success has been achieved in areas
where smaller numbers of farmers are involved. However, this has not been the case in
India and Pakistan, where the numbers of farmers are large. It is argued that PIDAs have
transferred the government’s financial burden to farmers, but it has not improved the O&M
and productivity of irrigated lands [24,42].

Hassan et al. (2004) [24] noted that farmers are willing to pay an irrigation service fee
only if they are assured of the benefit of the service they pay for. The above discussion does
not mean that rules are not necessary. However, they must be backed by a public awareness
campaign about resource depletion and degradation [43]. There is a need to review the
performance of PIDAs and take necessary measures to address the issues hindering its
proper implementation.
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4.7. Strengthening Institutions to Improve Water Management

There is a need to rethink the political and public policy fronts in Pakistan by prioritiz-
ing water conservation, ensuring water recycling and reuse, and supporting productivity
enhancement of underperforming land and water resources [42]. Such policy actions
should be accompanied by a call for sustainable intensification of agricultural production
systems [43]. Skilled professionals, supportive institutions, and strengthening institutional
collaborations would be key to supporting such policy actions. The key challenge would
be supporting subsistence farmers by providing new knowledge about improved irrigation
management and soil reclamation approaches.

The capacity at the provincial and federal levels for improving water and associ-
ated natural resource management remains heavily eroded. This requires building an
engineering, social, and scientific cadre capable of working with all users in defining the
problem and developing solutions. Adoption of a multidisciplinary and participatory
approach is the way to go. This would require bringing together concerned government
departments, farmers, the private sector, the civil society, knowledge institutions, local
political leadership, and other serious stakeholders [44]. Using an integrated approach that
combines the role of technology, research and extension services, and best management
practices at the farm level as described by Mpanga and Idowu [45] will complement the
proper governance of water allocation.

The roles and responsibilities of public organizations should be clearly defined to
ensure efficient management at all levels. Effective water management requires integrating
institutions, policies, skills, and technologies to promote water saving and improve water
use efficiency and disaster management. A concerted approach that incorporates all
stakeholders is needed to make necessary changes in water supplies and allocations. This
discussion reveals that Pakistan’s water stress is not related solely to supply and demand
problems, but it is linked more to unsustainable practices and gross mismanagement. The
irrigation department has failed—in the absence of adequate funding—to maintain the
physical infrastructure that is intrinsic to its successful operation. Unless profound changes
are made to address institutional inadequacies, weak governance, and political deadlock,
Pakistan may witness further complications in managing its water resources.

5. Conclusions

This paper suggests several options to improve—or more precisely, to reinstate—water
governance and water and salt management to support sustainable, large-scale irrigation
in Pakistan. Three governance issues need the immediate attention of government agencies.
First, inequitable water distribution along the irrigation canals stimulates excessive use by
the head-end farmers, contributing to waterlogging while causing low, erratic, and poor
productive use at the tails (increasing soil salinity). Second, interventions should minimize
the extent to which salt is mobilized from saline aquifers (and the deeper levels of current
fresh groundwater areas). Third, funding for maintenance (and works) that restores the
functionality of the rules under which the system is supposed to operate must be provided.
Changing the basic process of allocating water among farmers would require both a change
in the law and system-wide upgrades to infrastructure.

In areas where the groundwater is saline, the distributary canals’ rotational prior-
ities should match the crop water demand to the greatest extent possible. This would
have the dual benefits of reducing the incentives to pump and mix saline water with
fresh water and minimizing untimely excess deliveries that contribute to waterlogging. In
fresh groundwater areas, the government should pump groundwater into distributaries
to improve availability at the tail ends. At the watercourse level, warabandi would con-
tinue, with investments focused on lining channels to ensure equitable distribution and
reduce waterlogging at the head ends [41]. Within Pakistan’s current political economy,
changing the current water allocation and distribution laws without modernizing the
infrastructure seems complicated. Therefore, operating the system in its current form



Sustainability 2021, 13, 5303 13 of 14

while appropriately maintaining the infrastructure is the best route to improved Pakistan’s
irrigation productivity.
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