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Abstract: In general, the stone pagoda structures with discontinuous surfaces are vulnerable to
lateral forces and are severely damaged by earthquakes. After the Gyeongju earthquake in 2016 and
the Pohang earthquake in 2017, numerous stone pagoda structures were damaged due to slippage,
rotation, and the separation of stacked stone. To evaluate seismic resistance of masonry stone pagoda
structures, we analyzed the seismic behavior of stone pagoda structures using the shaking table
test. Shaking frequency, permanent displacement, maximum acceleration, rocking, and sliding were
assessed. Responses to simulations of the Bingol, Gyeongju, and Pohang earthquakes based on
the Korean seismic design standard (KDS 41 17 00) were analyzed for return periods of 1000 and
2400 years. We found that the type of stylobate affected the seismic resistance of the stone pagoda
structure. When the stylobates were stiff, seismic energy was transferred from lower to upper regions
of the stone pagoda, which mainly resulted in deformation of the upper region. When the stylobates
were weak, earthquake energy was absorbed in the lower regions, which was associated with large
stylobate deformations. The lower part of the tower body was mainly affected by rocking, because
the structural members were slender. The higher part of the stone pagoda was mainly affected by
sliding, because the load and contact area decreased with height.

Keywords: stone pagoda; masonry structure; shaking table test; earthquake resistance; seismic be-
havior

1. Introduction

Many cultural heritage structures were damaged by the Gyeongju earthquake in 2016
(Mw = 5.8) and the Pohang earthquake in 2017 (Mw = 5.4). Therefore, the preservation
and maintenance of heritage structures in Korea became a major concern. The earthquakes
damaged over 130 heritage structures due to slippage, rotation, and the separation of
stacked stone. Among the damaged structures, the stone pagoda structures were heavily
damaged. Because the stone pagoda structures with masonry construction types were
built a long time ago, they are more vulnerable to lateral forces, such as earthquakes, due
to reduced durability and friction by weathering. For the sustainable preservation and
maintenance of stone pagoda structures, it is necessary to understand the seismic behavior
of the structure by the experiment of the shaking table test.

Gabriele Guerrini et al. (2019) [1], Sergio Ruggieri et al. (2020) [2], Gianfranco De
Matteis and Mattia Zizi (2019) [3], and Nicola Ruggieri (2021) [4] discussed earthquake
damages on masonry churches after the earthquakes. The damage mechanisms of masonry
churches were identified by analyzing the geometric characteristics, boundary conditions,
earthquake intensity, and ground acceleration. However, these studies analyzed the dam-
ages after earthquakes without performing experiments or structural analysis, so it is
difficult to describe exactly the behavior of masonry structures in time domain during
earthquakes. In terms of studies on seismic behavior of masonry structures, Fujita et al.

Sustainability 2021, 13, 5314. https://doi.org/10.3390/su13095314 https://www.mdpi.com/journal/sustainability

https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0002-4859-6822
https://doi.org/10.3390/su13095314
https://doi.org/10.3390/su13095314
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/su13095314
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su13095314?type=check_update&version=2


Sustainability 2021, 13, 5314 2 of 20

(2006) [5], L. Krestevska et al. (2008) [6], and Junlong Lu et al. (2020) [7] conducted shaking
table tests and structural analyses on the structure (temple, tower, pagoda, etc.). These
studies mainly analyzed displacement, acceleration, and frequency of the structures. From
these results, the appropriateness of the experimental methods was verified. In addition,
P. Gavrilovic et al. (1995, 2005) [8,9], Kim et al. (2011) [10], and Lidija Krstevska et al.
(2020) [11] compared and analyzed the behavior of unreinforced and reinforced struc-
tures for masonry structures (church, unreinforced masonry building, stone bridge, stone
masonry structure, etc.). These studies verified the appropriateness of the seismic rein-
forcement method or suggested a new seismic reinforcement method. However, it is not
easy to understand the seismic behavior of a three-story stone pagoda structure in Korea
from these results because the construction types between masonry structures are different.
In Korea, Kim et al. [12,13] performed shaking table tests on the stone pagoda structures.
From these results, the earthquake level, which occurred in the past, was estimated through
the experimental results and the effectiveness of seismic reinforcement method was veri-
fied. However, these studies do not provide the adequate results to derive the vulnerable
parts of general stone pagoda structures for various earthquake levels and to establish the
maintenance countermeasures. As mentioned above, many experimental studies have been
conducted on various types of masonry structures. However, it is not enough to analyze
exactly the seismic behavior of stone pagoda structures in Korea from the above-mentioned
experimental results. In addition, the existing experimental studies did not suggest reliable
data for future structural analysis and did not provide sustainable countermeasures for the
preservation and maintenance of stone pagoda structures.

We used a shaking table to evaluate the seismic behavior of the three-story stone
pagoda at the Cheollyongsa temple site, which was damaged by the Gyeongju and Pohang
earthquakes. The member composition type and the “Jeoksim” type were included among
the experimental variables. The seismic wave was based on the Bingol earthquake, which
was similar to the design response spectrum of the Korean building seismic design standard
(KDS 41 17 00; 2019) [14], along with the Gyeongju and Pohang earthquakes. Deformation,
the effects of seismic frequency, the maximum acceleration, permanent displacement,
rocking, and sliding were analyzed.

2. The Target Structure

The three-story stone pagoda at the Cheollyongsa temple site was severely damaged
by the 2016 Gyeongju earthquake. The stone pagoda is 2.43 m wide and 7.24 m high
(the decorative top starts at 4.8 m) and is a representative, single-stylobate stone pagoda
of the late Unified Silla Dynasty. The stylobate is composed of 17 sheets, including the
foundation stone, with the main body comprising 6 sheets (1 for each story), and the upper
part comprising 16 sheets (Table 1) [15]. Figure 1 shows the elevation of the three-story
stone pagoda at the Cheollyongsa temple site.

Table 1. The three-story stone pagoda at the Cheollyongsa temple site.

Earthquake Damage Classification Member Quantity
(Sheets)
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Body 

3rd story 
Roof stone 1 

Body stone 1 

2nd story 
Roof stone 1 

Body stone 1 

1st story 
Roof stone 1 

Body stone 1 

Foundation 

Gapseok 4 

Myeonseok 8 

Foundation stone 5 

Total 39 

3. Experimental Overview 

3.1. Production of a Scale Model 

We built a 1/3 scale model of the stone pagoda using high-quality rock with similar 

strength, absorption properties, surface roughness, and member shape to the pagoda rock. 

This study used a shaking table with a size of 2 m × 2 m and acceptable weight of 50 kN. 

After examining the size and load of the specimen, it was reviewed that a 1/3 scale model 

was appropriate to install the specimen on the shaking table. The dimensions considering 

the similarity law of the specimen for a 1/3 scale model are shown in Table 2 [7,16], and 

the material properties are shown in Table 3. Here, 𝑆𝑙 is the scale factor of length. In this 

study, 𝑆𝑙 is 1/3 because a 1/3 scale model is applied. In addition, the scaling for volume 

and weight is 𝑆𝑙
3. 

Table 2. Dimensions of the scale model of the stone pagoda based on the similarity law. 

Dimensions 
Similarity Law 

Actual Size 1/3 Scale Model 
Dimension Exact Scaling 

Width L 𝑆𝑙 2430 mm 810 mm 

Length L 𝑆𝑙 2430 mm 810 mm 

Height L 𝑆𝑙 4750 mm 1583 mm 

Volume 𝐿3 𝑆𝑙
3 12 m3 0.4 m3 

Weight 𝜌𝐿3 𝑆𝑙
3 274.4 kN 9.8 kN 

Table 3. Material properties of stone. 

Density (𝐤𝐠/𝒎𝟑) 2500 Adhesion (MPa) 6.87 

Poisson’s ratio 0.26 Friction angle (°) 52.93 

Elastic modulus (GPa) 6.21 Bulk modulus (GPa) 4.30 

Compressive strength (MPa) 52.63 Shear modulus (GPa) 2.47 

Tensile strength (MPa) 3.70  

To manufacture the experimental object as shown in Figure 2, large rocks were cut to 

size and processed according to the shape and size of each member. The processed mem-

bers were finished according to the roughness of the three-story stone pagoda at the Che-

ollyongsa temple site, and the size and condition were reviewed. Finally, the scale model 

was assembled. 

Upper part Decorative top 16

Body

3rd story Roof stone 1
Body stone 1

2nd story Roof stone 1
Body stone 1

1st story Roof stone 1
Body stone 1
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Myeonseok 8
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Figure 1. Views of the three-story stone pagoda at the Cheollyongsa temple site. Figure 1. Views of the three-story stone pagoda at the Cheollyongsa temple site.

3. Experimental Overview
3.1. Production of a Scale Model

We built a 1/3 scale model of the stone pagoda using high-quality rock with similar
strength, absorption properties, surface roughness, and member shape to the pagoda rock.
This study used a shaking table with a size of 2 m × 2 m and acceptable weight of 50 kN.
After examining the size and load of the specimen, it was reviewed that a 1/3 scale model
was appropriate to install the specimen on the shaking table. The dimensions considering
the similarity law of the specimen for a 1/3 scale model are shown in Table 2 [7,16], and
the material properties are shown in Table 3. Here, Sl is the scale factor of length. In this
study, Sl is 1/3 because a 1/3 scale model is applied. In addition, the scaling for volume
and weight is Sl

3.

Table 2. Dimensions of the scale model of the stone pagoda based on the similarity law.

Dimensions
Similarity Law

Actual Size 1/3 Scale Model
Dimension Exact Scaling

Width L Sl 2430 mm 810 mm
Length L Sl 2430 mm 810 mm
Height L Sl 4750 mm 1583 mm
Volume L3 Sl

3 12 m3 0.4 m3

Weight ρL3 Sl
3 274.4 kN 9.8 kN

Table 3. Material properties of stone.

Density (kg/m3) 2500 Adhesion (MPa) 6.87

Poisson’s ratio 0.26 Friction angle (◦) 52.93

Elastic modulus (GPa) 6.21 Bulk modulus (GPa) 4.30

Compressive strength (MPa) 52.63 Shear modulus (GPa) 2.47

Tensile strength (MPa) 3.70

To manufacture the experimental object as shown in Figure 2, large rocks were cut
to size and processed according to the shape and size of each member. The processed
members were finished according to the roughness of the three-story stone pagoda at the
Cheollyongsa temple site, and the size and condition were reviewed. Finally, the scale
model was assembled.
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3.3. Method 

The work plan is shown in Figure 3. 

It was important not to damage the model during transport or assembly. When as-

sembling the model, all contact surfaces were levelled to ensure a good fit. The shaking 

table and model were directly connected to prevent the model from slipping. The input 

acceleration, time, stress, and force data by considering the similarity law for a 1/3 scale 

model are shown in Table 5 [7,16]. Here, 𝑆𝑙 is 1/3 as shown in Table 2. As gravity is the 

same regardless of the scale, 1.0 is applied. Time is calculated according to Equations (1) 

and (2), and the frequency is an inverse function of time, so it is √3. 

𝐺𝑟𝑎𝑣𝑖𝑡𝑦 (𝑔) = 𝐿𝑇−2 (1) 

Figure 2. Photographs showing the model production process: (a) photograph of the members;
(b) cutting of the members; (c) manufacturing process; (d) review of the manufactured parts; (e)
provisional model assembly; and (f) the final model.

3.2. The Shaking Table

A two-axis shaking table as shown in Table 4 was used (Hyundai Engineering &
Construction Co., Ltd., Gyeonggi-do, Korea); the maximum load was 50 kN, while the
maximum vibration was 1 g and the maximum stroke was 75 mm.

Table 4. Shaking table specifications.

Parameter One-Axis Two-Axis
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𝐺𝑟𝑎𝑣𝑖𝑡𝑦 (𝑔) = 𝐿𝑇−2 (1) 

Size (m) 5 × 3 2 × 2
Load (kN) 300 50

Stroke (mm) ±100 ±75
Speed (mm/s) 500 500

Frequency range
(kHz) 1~200 1~200

Maximum
acceleration (g) 1.0 1.0 Shaking Tables (left: Two-axis, right:

One-axis).Control method Displacement Displacement

3.3. Method

The work plan is shown in Figure 3.
It was important not to damage the model during transport or assembly. When

assembling the model, all contact surfaces were levelled to ensure a good fit. The shaking
table and model were directly connected to prevent the model from slipping. The input
acceleration, time, stress, and force data by considering the similarity law for a 1/3 scale
model are shown in Table 5 [7,16]. Here, Sl is 1/3 as shown in Table 2. As gravity is the
same regardless of the scale, 1.0 is applied. Time is calculated according to Equations (1)
and (2), and the frequency is an inverse function of time, so it is

√
3.

Gravity (g) = LT−2 (1)

Time (T) =
√

L/g (g = 1.0, L = Sl) = Sl
1/2 (2)
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Table 5. The experimental conditions based on the similarity law.

Variable Length Time Gravity Frequency Weight

Similarity Dimension L T LT−2 T−1 ρL3

Exact scaling Sl Sl
1/2 1.0 Sl

−1/2 SESl
2

1/3 scale model 1/3 1/
√

3 1.0
√

3 1/27

3.4. Installation of Measurement Equipment

Installation locations of measuring equipment are shown in Table 6. Displacement
gauge/accelerometer units were installed on the foundation stone (n = 1), Myeonseok
(n = 2), Gapseok (n = 2), each main body stone and roof stone (all n = 1), and the decorative
top (n = 1). All units were installed in the excitation direction, at the center of the member,
and numbered.

As shown in Table 7, displacements were measured using the displacement gauge
with measurable displacement of±75 mm, and accelerations were measured by connecting
only one type channel with the 3-axis accelerometer.
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Table 6. Measuring equipment installation locations.
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Classification Specification

Displacement gauge Displacement (mm) ±75
Frequency (Hz) 2

Accelerometer
Frequency (Hz) 2.0~7000

Axis 3
Maximum acceleration (g) 500

3.5. Experimental Variables

The pagoda models as shown in Figure 4 were classified as Jeoksim type A, Jeoksim
type B, or loss of Jeoksim. Here, Jeoksim means soil and gravel surrounded by stylobate
stones. Jeoksim A models were characterized by large, regularly stacked stones aligned
along a central axis, and filled with soil and stone. The Jeoksim B model included irregularly
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stacked stones of various sizes compacted with soil. The loss of Jeoksim model was
characterized by a partial loss of the stones in Jeoksim B type regions.
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Table 8. Model types.

Model Type Number of Myeonseok Jeoksim Type

Model 1 (basic model) 8 A
Model 2 4 A
Model 3 8 B
Model 4 8 Loss of Jeoksim
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Figure 5. The Myeonseok and Gapseok: (a) Myeonseok included in models 1, 3, and 4; (b) Myeonseok included in model 2;
and (c) Gapseok included in models 1–4.

3.6. Earthquake Waves

We modeled the waves from the Gyeongju earthquake (2016), Pohang earthquake
(2017), and Bingol earthquake (2003), based on the KDS 41 17 00. The return periods were
1000 and 2400 years. Details of the simulated earthquakes are shown in Table 9.
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Table 9. Details of the simulated earthquakes.

Earthquake Year Country Station
Information

Magnitude Rrup * (km) Duration (s)

Gyeongju 2016 Korea MKL 5.8 6 2.65
Pohang 2017 Korea PHA2 5.4 9 2.8
Bingol 2003 Turkey Bingol-Bayindirlik Murlugu 6.3 14 6.78

* Distance between the epicenter and observation point.

The effective ground acceleration and ground conditions were considered by the KDS
41 17 00 [15]. The details of the input earthquake waves are presented in Table 10. The input
order of earthquakes was determined by spectral accelerations of the response spectrum of
each earthquake. Table 10 shows the input order from small to large earthquakes. Between
the experiments, the accelerometer and displacement gauge were adjusted to zero, and
relative displacements and cumulative displacements were measured.

Table 10. Details of the earthquake waves.

Input Order Earthquake Return Period Earthquake Wave

1 Gyeongju 1000 years
(R1-G)
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Table 10. Cont.

Input Order Earthquake Return Period Earthquake Wave

4 Gyeongju 2400 years
(R2-G)
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4. Results
4.1. Deformation

The Myeonseok and Gapseok experienced the largest deformation; the main body of
the stone pagoda was also rotated. Separation of the Myeonseok was minimal for models 1
and 2 (Jeoksim A; Figure 6a,b). However, for models 3 [Jeoksim B; Figure 6c] and 4 [loss
of Jeoksim; Figure 6d], separation of Myeonseok 6 and 7, on the righthand side, was the
main type of deformation. Myeonseok 7 protruded to the rear (east). Seismic waves were
delivered from the left (north) and right (south); the Myeonseok stones on the left and right
were able to resist the forces due to the presence of the upper structure, and thus showed
minimal deformation. However, the front and rear Myeonseok stones at right angles to the
excitation direction were pushed out by the lateral pressure, indicating that the binding
effect of the upper load was weak. Therefore, Myeonseok deformation was closely related
to Jeoksim type; more regular and stable Jeoksim arrangements were associated with less
stylobate deformation. Figure 6e shows the cumulative displacements for all models.
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Figure 6. Images of Myeonseok deformation: (a) model 1; (b) model 2; (c) model 3; (d) model 4; and (e) cumulative dis-
placement graph (for models 1, 3, and 4, displacement occurred between Myeonseok 6 and 7, and for model 2 displacement
occurred between Myeonseok 3 and 4).

In addition, the first story of the main body of the tower was rotated counter-clockwise
in models 1 and 3, while the second and third stories were rotated clockwise. All stories of
the main body were rotated clockwise in model 2, and the first story of the main body in
model 4. This result occurred because the loads acting on the tower differed by story. The
roof stones tended to behave similarly to the main body stones.

The basic model 1 [Figure 7a] showed less deformation of the stylobate than models 3
and 4, but there was more rotational deformation of the tower body of model 1 than for
the other models. For model 3 and model 4 [Figure 7c,d], the Jeoksim type and stylobate
deformation affected the deformation of the tower body. In model 2 [Figure 7b], in which
four sheets of Myeonseok were affected, the generally stable stylobates reduced overall
tower body deformation. Figure 7e shows the cumulative rotation angle of the first-story
main body stone.
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Figure 7. Images showing the deformation of the main body stone in the various models: (a) model 1; (b) model 2; (c)
model 3; (d) model 4; and (e) cumulative rotation angle of the first-story main body stone.

In summary, tower body deformation was affected by member configuration and the
Jeoksim type. The first-story main body stone is more slender than those of the second and
third story, and therefore exhibited rotational deformation caused by rocking.

4.2. Frequency Analysis

The frequency data for all models are shown in Table 11 and Figure 8. Frequency
can be analyzed based on the acceleration response spectra or by using the amplification
function of the measured accelerations. However, for a stone pagoda, if frequencies are
calculated using only the acceleration response spectra method, the values may be inflated,
for example by rocking. Thus, we analyzed frequencies using both methods. Frequency is
related to stylobate stiffness; reduced frequency means change or a decrease in stiffness.
The Bingol earthquake reduced stiffness more than the Gyeongju and Pohang earthquakes.
For model 4, most seismic waves were very low frequency, because stylobate stiffness
was reduced by the loss of Jeoksim. For model 3, the frequency with a return period of
1000 years was lower than for the other models, while with a return period of 2400 years,
the frequency was similar to that of model 1. The frequency of the waves was higher
for model 1 than models 3 and 4 over the short return period; for the longer period, the
behavior was similar to that of model 3. As the return period increased, the frequency
decreased sharply, attributable to the rocking of the first story of the main body stone.
Overall, model 2 was the least damaged.

Table 11. Frequency data for the four stone pagoda models.

Return
Period

Earthquake
Model 1 Model 2 Model 3 Model 4

Period
(s)

Frequency
(Hz)

Period
(s)

Frequency
(Hz)

Period
(s)

Frequency
(Hz)

Period
(s)

Frequency
(Hz)

1000 years
Gyeongju 0.111 9.00 0.109 9.13 0.109 9.13 0.108 9.27
Pohang 0.093 10.80 0.105 9.53 0.118 8.47 0.100 10.00
Bingol 0.123 8.10 0.101 9.90 0.169 5.90 0.171 5.85

2400 years
Gyeongju 0.102 9.80 0.100 10.00 0.109 9.20 0.205 4.87
Pohang 0.108 9.27 0.107 9.33 0.105 9.53 0.188 5.33
Bingol 0.189 5.30 0.169 5.90 0.169 5.90 0.206 4.85
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Figure 8. Frequency graphs for the four stone pagoda models.

4.3. Maximum Acceleration

Large changes in maximum acceleration were measured with a return period of
2400 years rather than 1000 years. The acceleration data for all models are shown in
Table 12. For model 1, as the return period increased, the maximum acceleration also
increased slightly, particularly for the decorative top and the Gapseok. Acceleration did
not differ significantly among the other parts of the stone pagoda. The high acceleration
at the decorative top was reflected in severe rocking, where the members are light in
this part of the stone pagoda and the contact surface is unstable. Model 2 was similar to
model 1, but the maximum acceleration was slightly lower. The discontinuous surface
area of model 2 (four sheets of Myeonseok) was smaller than that of model 1 (eight sheets),
and the resistance to seismic load was accordingly higher. For model 3 (Jeoksim type B),
the stylobate stiffness was relatively low compared to the Jeoksim type A models, but
the maximum acceleration did not differ significantly. This is because the weight of the
stone pagoda structure was mainly supported by the Jeoksim, so the seismic load was
concentrated in the Jeoksim part. Maximum acceleration was not significantly measured
in the Myeonseok or Gapseok. For model 4, the acceleration of both the Myeonseok and
Gapseok was low due to their discontinuous surfaces, in turn caused by the loss of Jeoksim.
Furthermore, the surface contact areas of the Myeonseok and Jeoksim were smaller than in
models 1 and 3. When comparing the behavior of the Myeonseok between models 4 (loss
of Jeoksim) and 3 (Jeoksim type A), maximum acceleration was lower in model 4 because
of the reduced lateral pressure exerted on the Myeonseok (in association with the lack of
Jeoksim). Also, the maximum acceleration of the upper members (first and second story of
the main body and roof stones, third story of the main body stone) was lower than that of
the other models. This occurred because seismic energy was dissipated toward the top,
and mainly deformed Myeonseok when stiffness was low because of the loss of Jeoksim.
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Table 12. Acceleration data for all stone pagoda models.

Position Model 1 Model 2 Model 3 Model 4
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4.4. Permanent Displacement

The permanent displacement data for all models are shown in Table 13. In model 1,
permanent displacement of the first story of the main body stone was largest for the Bingol
earthquake simulation; the stone was significantly rotated by rocking. For model 2, the
overall displacement was not large. In most of the simulations, Myeonseok and Gapseok
displacement did not occur. In model 2, the seismic load was relatively large due to the short
vibration period. However, earthquake resistance was high due to the small discontinuous
contact surface, so no permanent displacement occurred. For models 3 and 4, no obvious
displacement of Myeonseok or Gapseok was evident; any displacement of Myeonseok
stones was perpendicular to the direction of deformation. Stylobate deformation was
significant (2.5~20 mm) on the y-axis, due to the separation of Myeonseok, but not on the
x-axis. Stylobate stiffness was lower when there was no Jeoksim, which greatly increased
stylobate deformation.
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Table 13. Permanent displacement data of the stone pagoda models.

Position Model 1 Model 2 Model 3 Model 4
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Return period = 2400 years

4.5. Rocking

When only vertical loads were applied to the unit member, the forces were compressive
[Figure 9a] [17]. When the moments acted with the vertical loads, the load distributions
were as shown in Figure 9b. As the moments increased, the load distributions changed
[Figure 9c]. When the compressive stress was zero on the left side and reached its maximum
value on the right side, a critical state without uplift developed. The moment in this state is
the moment of the resistance force. In a triangular load distribution, the load was applied
at 1/3 of the member width (Lf); the distance from this point to the centroid was 1/6 of the
member width. The moment resistance (overturning moment) of each member is given by
Equation (3). The calculation of the overturning moments is shown in Figure 10.

Mupli f t =
∑i

n=1 Wn × L f

6
(3)

where W is the total weight between the upper and lower members, L f is the width
of the contact surface of the bottom member, i is the top member number, and n is the
member number.
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Figure 9. Limitations on the uplift of members: (a) initial state; (b) elastic state prior to uplift; and (c)
elastic state at uplift.
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Figure 10. Calculation of the overturning moments.

The rocking analysis revealed that the moment resistance of the decorative top was
very low, because the weight and area of the contact surface were very small compared
to those of the other parts of the stone pagoda. However, for the slender first-story main
body stone, the overturning moment greatly exceeded the moment resistance, and rocking
occurred. Rocking over time for all models is shown in Table 14. We found no significant
difference in the time of rocking occurrence between models 1 and 2. However, for model 2,
the maximum overturning moments of stories 1 and 3 were smaller. For the first-story main
body stone, the probability of rocking was higher for model 1 than model 2. Therefore,
resistance to overturning was lower when there were eight rather than four sheets of
Myeonseok. For models 3 and 4, stylobate stiffness was lower than for model 1; upper-
story shearing and the overturning moments decreased because vibration energy was
dissipated by deformation of the stylobates.
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Table 14. Rocking over time in the various stone pagoda models (return period 2400 years; Gyeongju earthquake).

Model 1F Main Body 3F Main Body

Model 1
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4.6. Sliding

The critical horizontal forces required for sliding are shown in Figure 11. Here, P
is the vertical force acting on a block, H is the horizontal force, W is the weight, δ is the
displacement, µ is the friction coefficient of the contact surface, Hs is the horizontal force
when sliding occurs, kh is the horizontal stiffness, and δs is the displacement when sliding
occurs. The normal force (P) acting on a block is the sum of the weights of the members
above the block. Here, the weight of the tower body is the same in all models. Sliding
occurs when the story-shearing force exceeds a critical value. However, as µ varies by the
contact surface, it is difficult to estimate. We considered that sliding occurred when the
maximum story-shearing force exceeded the horizontal force derived using a µ value of 0.6.
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Figure 11. The critical horizontal force (Hs).
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Table 15 shows the sliding data for all models. The decorative top is very light and is
not subjected to any loading force; thus, it slid during all earthquake simulations, for all
return periods. In addition, as the µ value of 0.6 was exceeded by more members during
the Bingol earthquake than the other earthquakes, it was associated with more sliding. For
models 1, 2, and 3, sliding was mostly confined to the decorative top and third-story roof
stone, while for model 4, only the top slid for the return period of 2400 years. In most
models, sliding was reduced in lower regions because the self-weights and vertical loads
increased sliding resistance.

Table 15. Sliding data for all stone pagoda models.

Return Period Gyeongju Pohang Bingol

1000 years
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4.7. Countermeasures of Vulnerable Parts

Three types of damage were investigated in this shaking table test. First, in stylobate,
as the input earthquake increased, Myeonseok and Gapseok stones were separated and
protruded. These deformations caused the loss of Jeoksim in the stylobate and resulted in
the structural instability of the stone pagoda structure. In order to reduce the damage on
stylobates, steel connectors in Figure 12a, or reinforcement of Jeoksim by adding a binder
in Figure 12d, can be used to reduce the separation.

Second, the rocking of the 1F main body stone was investigated. The rocking effect
due to the slenderness of the member might cause the overturning of a stone pagoda.
When a stone pagoda is newly constructed, the slenderness of the member might be
considered. However, when an existing stone pagoda is restored, installing doweled joints
or vertical steel connectors between the members in Figure 12b,e can prevent the rocking
and overturning.

Third, the sliding of the upper member was investigated. Because the vertical load on
the bottom of the upper member was small, the friction resistance on the sliding decreased
and the upper member was horizontally moved. Processing roughness on the contact
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surface or installing a binder on the contact surface in Figure 12c,f can be used to increase
the friction of contact surface and to prevent the sliding.
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5. Conclusions

We analyzed the seismic behavior of a 1/3 scale model of the three-story stone pagoda
during earthquake simulation performed using a shaking table test. Deformation, maxi-
mum acceleration, permanent displacement, rocking, and sliding were evaluated.

With fewer Myeonseok stylobates, the discontinuous contact surface area was smaller
and seismic performance was better. For the Jeoksim B and loss of Jeoksim models, the
contact surface between Myeonseok and Gapseok decreased, and stylobate stiffness also
decreased, resulting in significant stylobate deformation. As most of the seismic energy
transversely deformed the Myeonseok, damage was mainly seen in the lower region
of the stone pagoda. In contrast, in the Jeoksim type A models, stylobate stiffness was
relatively high, and rotational deformation (caused by rocking of the main body stones)
was more significant than the deformation seen in the lower region. This mainly affected
the first-story main body stone, leading to rotational deformation above that region.

The variation in maximum acceleration was greater for the longer return period,
as was permanent displacement, rocking, and sliding. However, in terms of frequency,
the seismic wave input was more important than the return period. Both the Gyeongju
and Pohang earthquakes had short periods and relatively small deformation. The seismic
duration was longest for the Bingol earthquake, and the response acceleration was therefore
large. Thus, the structure became more deformed, and the frequency decreased because of
the reduced stylobate stiffness.

The Bingol earthquake caused the most sliding, mainly in the upper region. Both
the self-weight and vertical loads reduced sliding in the lower region. Rocking of the
decorative top was associated with a low overturning moment resistance; the top was very
light and had minimal contact with other members. Furthermore, the first-story main body
tended to rock because of its slender members.

When stylobate stiffness is high, seismic energy received at the bottom of the pagoda is
transferred upwards, which is associated with upper-region deformation. When stylobate
stiffness is low, the Jeoksim absorbs most of the seismic energy, an effect associated with
large stylobate deformation. In particular, the tower stone is strongly affected by rocking,
because it becomes more slender toward the bottom. In contrast, sliding damage increases
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toward the top, because it is associated with a low applied load and minimal contact
surface with lower members.

Based on the test results, earthquake damages and countermeasures were analyzed.
The main deformations in the stone pagoda structure were the separation between the
Myeonseok, the separation and protrusion between the Gapseok, and the rotation and
sliding of the tower body part. To reduce the damage of stylobates, steel connectors can be
installed in Myeonseok and Gapseok to prevent separation, and a reinforcement method
that increases the stiffness of stylobates by adding binder in Jeoksim can be applied. When
an existing stone pagoda is restored, installing doweled joints or vertical steel connectors
between the members can prevent the rocking and overturning. The damage caused by
the sliding in the tower body part can be reduced through a method of increasing friction
by changing the roughness of the contact surface or a reinforcement method of installing a
binder on the contact surface.

Existing general experimental research focuses on analyzing the basic behavior of
structures from experimental results, but reliable data for future structural analysis or
maintenance are insufficient. Therefore, this study suggests directly useful values ap-
plicable to future numerical analysis by providing the demonstrated horizontal stiffness
and moment capacity based on the experimental results. In addition, it provides sustain-
able countermeasures for the continuous preservation and maintenance of stone pagoda
structures.

For further research, a detailed analysis of the stress acting on the stone is required by
performing a structural analysis to examine the weak points of the stone pagoda structure
and prepare a reinforcement plan. This study can provide basic data for structural modeling
and analysis, and furthermore it can provide basic information for preventing earthquake
damage and preparing countermeasures to contribute to the sustainable preservation and
maintenance of stone pagoda structures.
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