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Abstract: Healthcare is one of the crucial aspects of the Internet of things. Connected machine
learning-based systems provide faster healthcare services. Doctors and radiologists can also use
these systems for collaboration to provide better help to patients. The recently emerged Coronavirus
(COVID-19) is known to have strong infectious ability. Reverse transcription-polymerase chain
reaction (RT-PCR) is recognised as being one of the primary diagnostic tools. However, RT-PCR tests
might not be accurate. In contrast, doctors can employ artificial intelligence techniques on X-ray
and CT scans for analysis. Artificial intelligent methods need a large number of images; however,
this might not be possible during a pandemic. In this paper, a novel data-efficient deep network is
proposed for the identification of COVID-19 on CT images. This method increases the small number
of available CT scans by generating synthetic versions of CT scans using the generative adversarial
network (GAN). Then, we estimate the parameters of convolutional and fully connected layers of
the deep networks using synthetic and augmented data. The method shows that the GAN-based
deep learning model provides higher performance than classic deep learning models for COVID-19
detection. The performance evaluation is performed on COVID19-CT and Mosmed datasets. The
best performing models are ResNet-18 and MobileNetV2 on COVID19-CT and Mosmed, respectively.
The area under curve values of ResNet-18 and MobileNetV2 are 0.89% and 0.84%, respectively.

Keywords: convolutional neural networks; deep learning; generative adversarial network

1. Introduction

A new pneumonia-type Coronavirus (COVID-19) was detected in Wuhan China in
2019, ref. [1]. Previous versions of this virus are known as SARS-CoV-2. This virus has a
higher infection ability than other viruses. As a result, many people have been infected and
require medical care in hospitals. Recent works can be found in [2–6].

A recent survey [7] explains all the different methods for COVID-19 detection.
Transcription-polymerase chain reaction (RT-PCR) tests are being used to detect the virus in
the human body. Computed tomography scans (CT scans) and X-ray images are other ways
of identifying COVID-19 in the human body. X-ray images show SARS-CoV-2 infection
areas on the human lungs. Furthermore, CT scans can be used to visualise the 3D lungs of
a person to decide on the level of severity.

Convolutional neural networks (CNNs) are known as powerful models for image
modelling. These can be used to diagnose COVID-19 on X-rays and CT scans. The main
advantage of using CNN models is that they allow faster detection of the virus from images
than doctors and radiologists. Today, CNN models are being used to diagnose viruses
on medical images. These models have been utilised for skin lesion detection on digital
images, refs. [8,9]. Authors have also used CNN models for retinography diagnosis on
images, refs. [10–12]. Furthermore, CNN models allow the diagnosis of COVID-19 on
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X-rays and CT scans. The well-known CNN models are AlexNet [13], GoogleNet [14],
VGG [15], MobileNetV2 [16], ResNet [17], and DenseNet [18]. These models are mainly
trained using an ImageNet dataset [19] and then fine-tuned on medical images.

CNN models are data-hungry, and they require many images for the training process.
However, accessing a large number of CT images might not be possible during a pandemic
or may require a long time. Therefore, inadequate data might hamper the usage of an
artificial intelligence-based model for COVID-19 detection. On the other hand, data-efficient
CNN models are built on small sets of available images and allow fast modelling of the
disease to diagnose COVID-19. Therefore, data-efficient models might make a significant
contribution to the rapid diagnosis of COVID-19 during a pandemic.

In this paper, the data-efficient GAN based CNN method (Figure 1) allows COVID-19
detection from CT scans. This paper presents enhanced data-efficient convolutional neural
networks to detect COVID-19 from CT scans. The proposed approach is based on the
generation of synthetic and augmented images and then generates CNN models using
these datasets. Synthetic images allow more information to be extracted from the CT scans
and then modelled by CNN models. The enhanced model performances and augmented
data-based CNN models are compared on two publicly datasets. The results show that the
enhanced models outperformed the classic CNN models.

Figure 1. Proposed data-efficient deep convolutional neural network model for COVID-19 detection.

The advantages of the proposed method are as follows:

1. The proposed model builds on augmented and synthetic CT images of the chests
of COVID-19 patients, whereas the classic models only employ augmented images,
refs. [20–23].

2. The proposed CNN learns more possible COVID-19 signs from synthetic CT images
then the classic CNN models.

The main novelties of this work are:

1. The proposed novel method utilises a GAN model to generate unseen COVID-19
and normal CT images from a small database. This approach allows the CNN model
to learn all possible image deformations for better modelling of the CT images. In
contrast, classic CNN models build on data augmentation techniques for improved
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performance. However, image augmentation allows the generation of more COVID-19
and normal images with different views and orientations. This is problematic since
the deformation of the lungs on CT images is the same in the generated data.

2. A method is proposed for fusing synthetic and augmented CT scans for generating
enhanced CNN models for COVID-19 detection.

3. Data-efficient enhanced ResNet-18, ResNet-50, VGG, MobileNetV2, AlexNet, and
DensNet121 models are proposed for the diagnosis of COVID-19.

The content of this paper is as follows. First, information about the related databases is
given. Second, the generation of augmented images is described. Then, the GAN model for
synthetic CT scan image creation is explained. The architecture of the GAN model is also
explained. Furthermore, the enhanced CNN models based on GAN models are described.
Finally, the performance of the proposed methods is evaluated and discussed.

2. Related Work
2.1. Convolutional Neural Networks

He et al. [24] and Hu et al. [25] used CNN models to detect COVID-19 on CT images.
He et al. [24] proposed a new transfer learning approach to train a CNN on available CT
images. Furthermore, Hu et al. [25] proposed the generation of a CNN model using a small
number of CT images.

Mei et al. [26] combined a convolutional neural network and a support vector machine
to classify COVID-19 related CT images. The new model architecture was described for
more accurate COVID-19 identification on CT images.

Harmon et al. [27] proposed a DensNet-121 network for differentiating COVID-19
from pneumonia virus. The classification accuracy was evaluated using several datasets.

Bhandary et al. [28] replaced the last layer of several CNN model architectures and
they introduced a support vector machine. The authors evaluated the performance of this
new architecture for COVID-19 diagnosis. The proposed network also detected cancer
using CT and X-ray images.

Butt et al. [29] use 3D CT scans for classifying COVID-19, and viral pneumonia. The
authors processed each of the CT image patches and then used these patches as inputs to
the ResNet-18 model to detect the COVID-19 virus.

2.2. Generative Adversarial Networks

Waheed et al. [1] and Loey et al. [30] utilised a convolutional neural network and gen-
erative adversarial network (GAN) for the diagnosis of COVID-19. The authors generated
synthetic medical images using a GAN model to create a CNN model.

Generative adversarial networks have been used for medical imaging. The well-
known GAN models are vanilla GAN, deep convolutional GAN (DCGAN), pix2pix, and
CycleGAN, ref. [31]. The authors of [1,32–34] mainly used the vanilla GANs and DPGAN
models for generating synthetic images.

3. Method

Figure 1 shows the proposed data-efficient convolutional neural network (CNN)
model for COVID-19 detection. The proposed novel method uses the deep convolutional
generative adversarial network (DCGAN) and the data augmentation technique to increase
the small number of available CT scans. First, the data augmentation technique allows for
the creation of many images. Then, these images are used as input to the DCGAN model to
produce synthetic images. Then, a CNN model is trained on both synthetically generated
and augmented images. In the testing part, the created CNN model provides COVID-19
and non-COVID-19 classification on CT scans.

The proposed data-efficient CNN models are generated and tested on COVID19-
CT [24] and MosMed [35] datasets. Table 1 describes the number of images and
related categories.
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Table 1. Total number of images in the datasets.

CT-Scan Dataset Train Test

COVID-19 COVID19-CT 324 40
Normal COVID19-CT 293 37
COVID-19 Mosmed 168 20
Normal Mosmed 168 20

3.1. COVID19-CT Database

The authors of [24] prepared a COVID19-CT dataset for research purposes. This
dataset is comprised of 349 COVID-19 and 397 normal CT images. Figure 2 also presents
samples of COVID-19 and normal images.

3.2. Mosmed Database

The authors of [35] collected 1110 COVID-19 and non-COVID-19 CT scans from
hospitals in Moscow, Russia. The authors also grouped COVID-19 related CT scans as a
normal, mild, moderate, or severe condition. Sample images are presented in Figure 2.

3.3. Augmented Datasets

The DCGAN model allows the production of synthetic versions of the available images
in the dataset. However, GAN models require a number of pictures for accurate modelling
of the images in the dataset. Therefore, available images are augmented to increase the
quantity. Then the DCGAN uses these enlarged images to produce synthetic images.

Table 2 shows the number of augmented (Aug.) CT scans for the COVID19-CT and
Mosmed datasets. The datasets are split into training and testing sets. Then, CT scans of the
training set are rotated to increase their numbers in both datasets. We applied the image
rotation technique to augment the training set.

Table 2 also shows the number of synthetically generated (GAN) CT scans. The
datasets included a combination of synthetic and augmented images (Aug+GAN) and the
number of combined images is also reported in Table 2.

Table 2. Total number of images in the datasets.

Data CT-Scan Dataset Train Test

Aug. COVID-19 COVID19-CT 1393 40
Aug. Normal COVID19-CT 1672 37
GAN COVID-19 COVID19-CT 500 40
GAN Normal COVID19-CT 500 37
Aug+GAN Normal COVID19-CT 2172 37
Aug+GAN COVID-19 COVID19-CT 1893 37
Aug COVID-19 Mosmed 1087 23
Aug Normal Mosmed 1069 23
GAN COVID-19 Mosmed 128 23
GAN Normal Mosmed 128 23
Aug+GAN Normal Mosmed 1197 23
Aug+GAN COVID-19 Mosmed 1218 23

3.4. Synthetic CT Image Generation

Synthetic CT image generation is based on the DCGAN method [34] in Figure 1 to
generate synthetic CT images. The DCGAN method is the improved version of the GAN
method [33]. Figure 3 also shows the synthetically generated CT scans of the COVID19-CT
dataset. This convolutional neural network comprises a generator and discriminator. The
discriminator builds on convolution layers while the generator builds on convolutional
transpose layers.
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This method employs the generator G(x) to produce synthetic images and then utilises
the discriminator D(z) to classify a given synthetic image of a real image. Latent vectors of
distribution are used as inputs to the generator and then the generator outputs synthetic
images. These generated images are used as inputs to discriminate together with real
photos. Finally, the discriminator classifies the input image as a real or synthetic image.
This process is repeated for many latent vectors, and the optimisation function is minimised.
This function is defined by

min
G

max
D

V(D, G) = Ex[logD(x) + Ez[log(1 − D(G(z))]] (1)

where data are denoted by x, generator distribution and noise variables are denoted by pg
and p(z) respectively.

The discriminator employs several convolutions, and this method utilises batch nor-
malisation and LeakyReLU operations after each convolution.

(a)

(b)

Figure 2. Sample images of COVID19-CT dataset. (a) COVID-19, (b) Normal.

(a)

(b)

Figure 3. Sythetic images of COVID19-CT dataset. (a) COVID-19, (b) Normal.

3.5. Model Generations

The AlexNet, VGG, ResNet-18, ResNet-50, MobileNetV2, and DensNet-121
networks were generated using augmented and synthetic images. All RGB images of
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224 × 224 × 3 sizes are used as inputs to fine-tuned convolutional neural network mod-
els (CNNs) for training. All networks are pretrained on the Imagenet dataset, and then
these models are further trained using augmented and synthetic images. Fine-tuning is
achieved by freezing all convolutional layers and adapting the last fully connected layer
for COVID-19 and non-COVID-19 classification.

3.6. COVID-19 Prediction

Figure 1 presents the data-efficient deep learning method. Each of the CT images
is used as input to the deep network and then CT images are classified as COVID-19 or
non-COVID-19.

3.7. Components of the Optimisation Function

Optimisation values are as follows. We use 0.9 and 256 for momentum and the batch
size respectively. The learning value is 0.0001. We use 50 epochs for optimizing the function.

3.8. Implementation

A desktop computer was used to run the experiments. This computer is equipped
with an Intel Corei7-4790 CPU and NVIDIA GeForce GTX-1080Ti graphics card.

3.9. Softwave

We used Pytorch deep learning library for generating and testing the proposed method-
ology.

4. Performance Evaluation

The performance evaluation of the classic deep learning method and the proposed
data-efficient methods were evaluated using the COVID19-CT and Mosmed datasets.

Performance evaluation was performed using the metrics described as follows. The
area under the receiver operating characteristic (ROC) curve (AUC), accuracy (ACC),
sensitivity (SE), and specificity (SP) performance merits were used to test the accuracy of
the methods. Accuracy, sensitivity, and specificity can be described as:

Accuracy =
TP+TN

TP+TN+FP+FN
(2)

Sensitivity =
TP

TP+FN
(3)

Specificity =
TN

TN+FP
(4)

where true positive, positive, true negative, false positive, and false negative are denoted
as TP, TN, FP, and FN, respectively.

Comparison between Classic Deep Learning Method and Proposed Data-Efficient Method

Table 3 reports the performances of the AlexNet, VGG, ResNet-18, ResNet-50, Mo-
bileNetV2, and DensNet-121 deep learning models. These models only build on aug-
mented data of the CT scans. These models were evaluated for both the COVID19-CT and
Mosmed datasets.

The performances of the proposed data-efficient models are also evaluated in Table 3.
Table 3 also reports the performances of the AlexNet, VGG, ResNet-18, ResNet-50, Mo-
bileNetV2, and DensNet-121 deep learning models. These models build on both augmented
and synthetic data of the CT scans. These models were evaluated for both the COVID19-CT
and Mosmed datasets.

Table 3 also reports a comparison between the classic deep learning method and the
proposed data-efficient method. First, the comparisons of the models were performed
using the COVID19-CT dataset. All data-efficient AlexNet, VGG, ResNet-18, ResNet-50,
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MobileNetV2, and DensNet-121 models outperformed the classic convolutional models.
Furthermore, the ResNet-18 model built on augmented and synthetic data outperformed
the ResNet-18 model, which only builds on augmented data. This model provided a
0.89% ROC value. This augmented and synthetic data-based model also outperformed all
other models.

The comparisons of the models were performed using the Mosmed dataset. All data-
efficient AlexNet, VGG, ResNet-18, ResNet-50, MobileNetV2, and DensNet-121 models
outperformed the classic convolutional models. Furthermore, the MobileNetV2 model
built on augmented and synthetic data outperformed the MobileNetV2 model, which only
builds on augmented data. This model provided a 0.84% ROC value. This augmented and
synthetic data-based model also outperformed all other models.

Table 3. Performance comparisons.

Network Disease Data AUC ACC SE SP

Resnet18 COVID19-CT Aug 0.77 0.75 0.83 0.71
Resnet18 COVID19-CT Aug+GAN 0.89 0.74 0.88 0.68
Resnet50 COVID19-CT Aug 0.71 0.77 0.86 0.72
Resnet50 COVID19-CT Aug+GAN 0.81 0.73 0.95 0.66
Vgg COVID19-CT Aug 0.65 0.75 0.86 0.70
Vgg COVID19-CT Aug+GAN 0.67 0.76 0.87 0.70
MobileNetV2 COVID19-CT Aug 0.71 0.73 0.82 0.69
MobileNetV2 COVID19-CT Aug+GAN 0.77 0.73 0.84 0.68
Densenet121 COVID19-CT Aug 0.70 0.74 0.87 0.69
Densenet121 COVID19-CT Aug+GAN 0.77 0.67 0.92 0.61
AlexNet COVID19-CT Aug 0.60 0.67 0.72 0.64
AlexNet COVID19-CT Aug+GAN 0.80 0.69 0.88 0.64
AlexNet MosMed Aug 0.71 0.70 1.00 0.63
AlexNet MosMed Aug+GAN 0.73 0.66 0.89 0.60
MobileNetV2 MosMed Aug 0.77 0.67 0.69 0.65
MobileNetV2 MosMed Aug+GAN 0.84 0.62 0.65 0.60
Resnet50 MosMed Aug 0.74 0.69 0.69 0.69
Resnet50 MosMed Aug+GAN 0.78 0.69 0.69 0.69
Resnet18 MosMed Aug 0.70 0.67 0.68 0.66
Resnet18 MosMed Aug+GAN 0.75 0.69 0.69 0.69
Vgg MosMed MA 0.63 0.69 0.71 0.68
Vgg MosMed Aug+GAN 0.71 0.66 0.67 0.64
Densenet121 MosMed Aug 0.60 0.65 0.64 0.65
Densenet121 MosMed Aug+GAN 0.62 0.61 0.63 0.60

5. Discussion

The proposed models are also compared with the recent work of ref. [30]. ResNet-18
and ResNet-50 models give 0.88% and 0.95% sensitivity values. However the authors of
ref. [30], report 0.85% sensitivity value for ResNet-50 model. The sensitivity value is the
measure of the COVID-19 detection. The proposed method shows that the COVID-19
was detected more accurately than other work. Training models on both synthetic and
augmented datasets increase the sensitivity values. Table 3 also presents a comparison of
the proposed and other works.

All data-efficient models outperformed the classic convolutional neural networks on
the COVID19-CT and Mosmed datasets. These models show that building the CNN model
on synthetic and augmented images allows better recognition of COVID-19 on CT scans.
The reason is that GAN models produce different synthetic CT images related to different
COVID-19 deform CT scans. Since synthetic images cover large variations of COVID-19
disease signs on CT scans, the CNN can capture all details of these signals on the images.
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When synthetically generated images are used in conjunction with augmented data, CNN
models perform better than augmented data-based CNN models.

This study also shows that the different CNN models exhibited varying performance
results for the two datasets. The models and their performances are listed in Table 4. In this
table, the best performing model on the COVID19-CT dataset is ResNet-18, while the best
performing model on the Mosmed dataset is MobileNetV2. Both of these models employed
augmented and synthetically generated CT images for COVID-19 detection.

Table 4. Performance comparisons.

Network Model AUC ACC SE SP

[30] AlexNet - 75.73 63.83 87.62
[36] VGG16 - 0.90 0.91 0.80
Proposed Work ResNet18 0.89 0.74 0.88 0.68

6. Conclusions

The proposed data-efficient ResNet-18 and ResNet-50 models give 0.88% and 0.95%
sensitivity values. The sensitivity value is the measure of the COVID-19 detection. The
proposed method shows that the COVID-19 was detected more accurately than other works.
We found that we can generate accurate deep networks using limited data. We achieved
this using synthetic and augmentation techniques.

The proposed machine learning-based systems provide faster healthcare services.
Doctors and radiologists can also use these systems for collaboration to provide better help
to patients.

The main novelty of the proposed method is that CNN networks can be generated from
several available CT images during pandemic situations. It is well known that accessing
CT images during a pandemic might be problematic. Therefore, this paper presents novel
data-efficient networks for the diagnosis of the COVID-19 virus from CT images. This
method builds on a convolutional neural network and a generative adversarial network
(DGAN). The method utilises the DGAN model to produce unseen COVID-19 and normal
CT images from a small dataset. Then, the CNN network uses these synthetically generated
CT images to learn all possible virus signs on the images. The experiments prove that the
proposed method allows higher accuracy results than the classic CNN networks.
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