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Abstract: In agroecosystems, drought is a critical climatic phenomenon that affects evapotranspiration
and induces water stress in plants. The objective in this study was to characterize and forecast water
stress in the Hyderabad region of India using artificial intelligence models. The monthly precipitation
data for the period 1982–2021 was characterized by the standardized precipitation index (SPI) and
modeled using the classical autoregressive integrated moving average (ARIMA) model and artificial
intelligence (AI), i.e., artificial neural network (ANN) and support vector regression (SVR) model.
The results show that on the short-term SPI3 time scale the studied region experienced extreme water
deficit in 1983, 1992, 1993, 2007, 2015, and 2018, while on the mid-term SPI6 time scale, 1983, 1991,
2011, and 2016 were extremely dry. In addition, the prediction of drought at both SPI3 and SPI6
time scales by AI models outperformed the classical ARIMA models in both, training and validation
data sets. Among applied models, the SVR model performed better than other models in modeling
and predicting drought (confirmed by root mean square error—RMSE), while the Diebold–Mariano
test confirmed that SVR output was significantly superior. A reduction in the prediction error of
SVR by 48% and 32% (vs. ARIMA), and by 21% and 26% (vs. ANN) was observed in the test data
sets for both SPI3 and SPI6 time scales. These results may be due to the ability of the SVR model
to account for the nonlinear and complex patterns in the input data sets against the classical linear
ARIMA model. These results may contribute to more sustainable and efficient management of water
resources/stress in cropping systems.

Keywords: drought; water stress; standardized precipitation index; SPI3; SPI6; artificial intelligence;
auto-regressive integrated moving average; artificial neural network; support vector regression

1. Introduction

Meteorological and hydrological droughts commonly cause agricultural drought, i.e.,
water stress in agroecosystems. The three longest droughts globally occurred between
July 1928 and May 1942 (Dust Bowl drought of the 1930s), July 1949 and September
1957 (1950s drought), and between June 1998 and December 2014 (early 21st-century
drought). However, the frequency of droughts has increased in recent decades, reducing
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the productivity of the agri-food sector [1–3]. For example, in 2017 at least 3 percent of the
world’s land area was affected by extreme drought [4]. Drought is a complex natural hazard
that affects global food security through water stress, making the agri-food sector one of
the most affected by drought. Namely, water stress negatively affects many physiological
functions of plants, including photosynthesis, transpiration, and nutrient uptake, and
reduces vegetative growth and crop yield. Water stress is projected to worsen under global
climate change and thus further threaten global food security [5–7]. Climate change is
affecting the production of most agricultural commodities and it is projected to decline
further [8].

Drought detection, characterization, and prediction via different approaches are critical
for decision support systems and more successful drought, i.e., water management, and
thus food security. Moreover, drought modeling and prediction can be a very useful tool for
more sustainable water planning to avoid future uncertainties that may arise from water
scarcity and stress [9], not only in agroecosystems but also in other sectors.

As a result, much attention has been dedicated to drought characterization and model-
ing, and continuous progress has been recorded in this field. However, a major research
challenge still remains in the development of an appropriate approach to predicting the on-
set and termination of droughts, given the critical stage in mitigating the effects of drought
is the inability to accurately predict drought conditions for the upcoming short-/medium-
term period [9]. In addition, despite significant improvements in drought modeling in
recent decades, not many studies have used advanced approaches, such as artificial intel-
ligence (AI) modeling, to characterize and predict droughts. For example, many studies
have used the standardized precipitation index (SPI) model developed by [10] to charac-
terize drought. The author of [11] modeled climatological precipitation using the gamma
distribution, ref. [12] studied hydrological drought using the SPI for medium and long time
periods, while ref. [13] used the SPI to calculate long-term spatial and temporal trends in
drought. Precipitation patterns were analyzed by [14] who studied drought severity using
SPI, while ref. [15] characterized drought in Italy using SPI at different time scales. Further-
more, ref. [16] used SPI to study meteorological droughts for different climate models at
different time scales. SPI for drought characterization using multi-satellite precipitation
data from the Tropical Precipitation Measurement Mission were computed by [17]. SPI
was developed by [18] for characterizing short and intermediate droughts, while ref. [19]
characterized drought in the Lower Mekong Basin in Southeast Asia using SPI at different
time scales. Drought conditions for maize in different growing seasons using SPI values in
the Adana, Mersin, and Osmaniye regions of Çukurova were determined by [20], whereas
ref. [21] applied SPI to calculate drought and heatwaves in China.

Box–Jenkins autoregressive integrated moving average (ARIMA) is the most com-
monly used time series model for predicting linear time series data [22]. There are many
cases where ARIMA is used for modeling and forecasting drought and other agricultural
phenomena [23–25]. However, the classical time series ARIMA model is not able to model
the nonlinear, heterogeneous, and complex patterns present in the time series and does
not provide reliable forecasts. Many nonparametric machine learning models have been
developed and are available in the literature to solve the problem of modeling nonlinear
components in time series data. However, the only approach to model and predict such
time series is still the use of AI techniques [26–29]. Artificial neural networks (ANN) and
support vector regression (SVR) is the most commonly used techniques for modeling and
prediction of drought and other agricultural variables [23,30–34].

The Hyderabad region in the Indian state of Telangana is characterized by intensive
agroecosystems affected by frequent drought and water stress [35]. According to recent
reports, 7/10 districts were affected by drought (Association for India’s development, 2016
survey report), threatening the water supply for food production and other industrial
and municipal sectors. Therefore, the development of drought characterization and its
prediction would greatly improve drought management at the multi-sectoral scale. For
the selected Hyderabad region, this is the first attempt to model and predict drought, i.e.,
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water stress, using AI techniques such as ANN and SVR. Moreover, this work was the
first attempt to significantly compare the modeling performance of the studied techniques
using the test of Diebold and Mariano [36]. The methodological framework begins with
the characterization of drought by SPI. The AI-based ANN and SVR models presented here
were developed to model and predict drought, not only in the Hyderabad region, but also
in similar water-scarce and drought-affected agroecosystems. Thus, the results could serve
as a valuable tool and extension in drought, i.e., water management, and food security.

2. Materials and Methods
2.1. Description of the Data and Study Area

The study pertains to Hyderabad, the capital city of Telangana state of India. Telangana
has an area of 112,077 sq. km and has a population of 35,003,674. The state receives an
average annual rainfall of about 1000 mm. The Hyderabad (17.3850◦ N, 78.4867◦ E) region
of the Hyderabad region of the Telangana state is selected as the study area, as the average
rainfall received by the region is usually less than the state average. The annual rainfall
of the Hyderabad region was observed to be around 750 mm, the region receives most of
its rainfall from the southwest monsoon. The monthly rainfall data (millimeter (mm)) in
Hyderabad from January 1988 to May 2021, was obtained from the Directorate of Economics
and Statistics, Government of Telangana. Further, the rainfall data is used to calculate the
SPI for three and six-month time scales.

2.2. Standardized Precipitation Index (SPI)

The rainfall data were used to calculate the SPI indices for time scales of 3 (SPI3)
and 6 (SPI6) months. The SPI was calculated based on the probability of precipitation for
a specific time scale. The gamma distribution is defined by its frequency or probability
density function.

f (x, α, β) =
1

βαΓ(α)
xα−1e−(

x
β ) (1)

where, α and β are the shape and scale parameters respectively; x is the rainfall amount
(millimeter), and Γ(α) is the gamma function, α > 0,

Γ(α) =
∫ ∞

0
xα−1e−x (2)

where, Γ(α) is the gamma function.
Computation of the SPI was mainly involved in fitting a gamma probability density

function to a given frequency distribution of precipitation. The maximum likelihood
solutions used for optimal estimation of α and β are given as follows [9]:

α =
1

4A

(
1 +

√
1 +

4A
3

)
·α > 0, (3)

β =
x
α

, β > 0 (4)

A = ln(x)− ∑n
i=1 ln(x)

n
, (5)

where, n = number of precipitation observations.
Integrating the probability density function with respect to x and attaching α and β

parameters yields the cumulative probability distribution function F(x):

F(x, α, β) =
∫ x

0
f (x, α, β) =

1
βαΓ(α)

∫ x

0
xα−1e−(

x
β )dx (6)
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Equation (6) can be expressed as follows:

F(x, α, β) =
1

Γ(α)

∫ x

0
tα−1e−(t)dx (7)

where, t = x/β.
Since the gamma function is undefined for x = 0 and the rainfall time series data may

contain zero rainfalls, the cumulative probability of zero and non-zero rainfalls, H(x) can
be calculated as:

H(x) = q + (1− q)F(x, α, β) (8)

where, q is the probability of zero rainfall. If m is the number of zeros present in a rainfall
time series, then q is estimated by m/n. The cumulative probability was then transformed
into a standard normal random variable Z, then its mean is 0 and variance is 1, which is the
value of the SPI.

Ref. [37] derived the following equations to transform the cumulative probability
distribution into a standardized normal distribution to calculate the SPI as follows:

SPI = −
(

K− c0 + c1K + c2K2

1 + d1 + d2k2 + d3K3

)
when K =

√√√√ln

(
1

(H(x))2

)
(9)

for 0 < H(x) ≤ 0.5

SPI = +

(
K− c0 + c1K + c2K2

1 + d1 + d2k2 + d3K3

)
when K =

√√√√ln

(
1

1− (H(x))2

)
(10)

for 0.5 < H(x) ≤ 1

where, C0 = 2.515517, C1 = 0.802853, C2 = 0.010328, d1 = 1.432788, d2 =0.189269, and
d3 = 0.001308. The SPI for time scales 3 (SPI3) and 6 (SPI6) represent short-term and mid-
term meteorological droughts, respectively [37]. The SPI is categorized in to different
groups as mention in Table 1 below:

Table 1. Category of Standardized precipitation index.

SPI Range Category

+2 to more Extremely wet
1.5 to1.99 Very wet
1.0 to 1.49 Moderately wet
−0.99 to 0.99 Near normal
−1.0 to −1.49 Moderately dry
−1.5 to −1.99 Severely dry
−2 to less Extremely dry

SPI: standardized precipitation index.

After the development of SPI3 and SPI6, the indexes from January 1982 to May 2020
were considered as the training dataset (data for model building), while the indexes from
June 2020 to May 2021 were considered as the testing dataset (data for model validation) in
this study.

2.3. ARIMA Model

The ARIMA model was characterized by three terms: p, d, and q, where, ‘p’ is the
order of the ‘auto regressive’ (AR) term, referring to the number of lags of Yt time series
to be used as predictors. ‘q’ is the order of the ‘moving average’ (MA) term, assuming the
number of lagged forecast errors that should go into the ARIMA model. ‘d’ is the number
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of differences required to make the time series stationary; the most common approach of
differencing is, subtract the previous value from the current value.

∅(B)(1− B)dYt = θ(B)et (11)

Yt = ∅1Yt−1 +∅2Yt−2 + · · ·+∅pYt−p + εt − θ1et−1 − θ2et−2 − · · · − θqet−q (12)

where, Yt is the time series, ∅i and θj are model parameters for AR and MA terms, respec-
tively, et is the random error, p is a number of autoregressive terms, q is number of lagged
forecast errors, and B is the backshift operator such that BYt = Yt−1. The ARIMA model
building consists of four stages, viz. identification, estimation, diagnostic checking, and
forecasting [22].

2.4. Artificial Neural Network (ANN)

The ANN is one of the most widely used artificial intelligence techniques in the
last two decades, for both classification and regression tasks. As time-series falls under
regression problem, the lagged autoregressive observations were used as input to the
network with an implicit functional representation of time. The mathematical expression
for the output Yt of a single-layer or multi-layer feed-forward autoregressive network is
expressed as follows:

Yt = α0 +
q

∑
j=1

αjg

(
β0j +

p

∑
i=1

βijYt−i

)
+ et (13)

where, αj(j = 0, 1, 2, . . . , q) and βij(i = 0, 1, 2, . . . , p, j = 0, 1, 2, . . . , q) are the model param-
eters, p is the number of input nodes, q is the number of hidden nodes, g is the activation
function, and et is the random error [38]. The logistic function is the most commonly used
activation function in time series modeling.

g =
1

1 + exp(−x)
(14)

The ANN model building was generally divided into the model building part (training
data set) and validation part (testing set). In model building, the algorithm minimizes
the error function between actual and predicted values. The error function was expressed
as follows:

E =
1
N ∑N

t=1 (et)
2 =

1
N ∑N

t=1{Xt − (w0 + (∑Q
J=1 wJ g(woj + ∑P

i=1 wijXt−i)))}2 (15)

where, N is the total number of error terms and wij are the weight parameters of the
neural network which are changed by a number of changes in ∆wij = −η ∂E

∂wij
where η is the

learning rate which is a user-defined hyper-parameter [39,40]. The schematic representation
of the autoregressive feed-forward neural network is depicted in Figure 1.
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2.5. Support Vector Regression (SVR)

The support vector regression (SVR) is a supervised machine learning technique
originally developed for binary classification and later extended to nonlinear regression
estimation problems by introducing an ε-insensitive loss function [41]. The basic principle
involved in NLSVR (nonlinear SVR) is to transform the original input time series into a
high dimensional feature space and then build the regression model in a new feature space.

Consider a vector of data set Z = {xi yi}N
i=1 where xi ∈ Rn is an input vector, yi is the

scalar output, and N is the size of data set. The general equation SVR can be written as
follows [41]:

f (x) = WTφ(x) + b (16)

where, φ(x) is function of x, W is weight vector, b is bias term, and superscript T denotes
the transpose. The coefficients W and b were estimated by minimizing the following
regularized risk function:

R(θ) =
1
2
‖w‖2 + C

[
1
N ∑N

i=1 Lε(yi, f (xi))

]
(17)

The first term 1
2‖w‖2 is called ‘regularized term’, which measures the flatness of the

function. Minimization of the regularized terms will make a function as flat as possible.
The second term 1

N ∑N
i=1 Lε(yi, f (xi)) is called as ‘empirical error’ or loss function Lε which

was estimated by Vapnik ε-insensitive loss function as follows:

Lε(yi, f (xi)) = f (x) =
{
|yi, f (xi)− ε|; |yi − f (xi)| ≥ ε,

0; |yi − f (xi)| < ε,
(18)

where, yi is the actual value, f (xi) is the estimated value, and ε is the margin of tolerance
where no penalty is given to errors.

The kernel function in SVR plays a critical role in mapping the input to output, where
the information is processed using a suitable kernel function. The most commonly used
kernel functions radial basis function (RBF) K is given as follows:

K(Y1, Y2) = exp

(
− (‖ x1 − x2 ‖)2

2σ2

)
(19)

where, σ2 is the variance, and ‖x1 − x2‖ is the Euclidean distance between two sample
points x1 and x2. The performance of SVR depends upon the optimization of two hyper-
parameters; regularization parameter C also called the cost function, which balances the
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complexity and approximation accuracy of the model and kernel bandwidth parameter
γ = 1

2σ2 , which represents the variance of the kernel function.
Finally, a general flow chart of the methodology followed in this study is delineated in

Figure 2. The flow chart depicts the development of drought indices SPI3 and SPI6 using
rainfall data, modeling, and forecasting of drought using different models and performance
of models in both training and testing data sets in terms of RMSE and Diebold–Mariano
(DM) test.
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3. Results
3.1. Calculated SPI

The calculated water stress indexes for SPI3 and SPI6 timescales (Table S1) are plotted
in Figure 3a,b, respectively. The drought events were developed from 1982 to 2021 for both
SPI3 and SPI6 timescales (Tables 2 and 3). For instance, ten months in 1983 (−2.24 SPI3_Feb,
−2.25 SPI3_Mar, −3.15 SPI3_Apr, −2.13 SPI3_May), 1992 (−2.06 SPI3_Mar),
1993 (−2.04 SPI3_ Feb), 2007 (−2.08 SPI3_ Mar), 2015 (−2.25 SPI3_Jul), and 2018
(−2.08 SPI3_Jan, −2.49 SPI3_Feb) experienced extreme water stress on SPI3 time scale
(Table 2, Figure 3a). In addition, on the same scale during 1982, 1983, 1984, 1985, 1988,
1989, 1990, 1992, 1993, 1994, 1997, 1998, 1999, 2002, 2003, 2004, 2010, 2018, and 2019 were
recorded as moderately dry, while in 1983, 1984, 1990, 1991, 1998, 2003, 2010, 2018, and
2019, severely dry conditions were observed (Table 2).
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Figure 3. (a) SPI3 water stress index; (b) SPI6 water stress index.

On the other hand, SPI6 indicates medium-term drought conditions, and on this time
scale there were four months with extreme water stress in 1983 (−2.66 SPI6_May), 1991
(−2.42 SPI6_May), 2011 (−2,20 SPI6_June), and 2016 (−2.38 SPI6_Mar), moderately dry
conditions were confirmed in 1983, 1985, 1989, 1990, 1996, 2000, 2002, and 2003, while
severely dry conditions were recorded in 1986, 2002, 2003, 2007, 2011, 2018, and 2019
(Table 3, Figure 3b).
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Table 2. Calculated drought months by short-term SPI3.

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1982 −1.21
1983 −1.56 −2.04 −2.25 −3.15 −2.13 −1.30 −1.48
1984 −1.56 −1.23 −1.89
1985 −1.15
1988 −1.30
1989 −1.19 −1.43 −1.22 −1.08 −1.34
1990 −1.34 −1.64 −1.78 −1.17
1991 −1.51
1992 −2.06 −1.11 −1.49
1993 −2.04 −1.12 −1.71
1994 −1.21
1997 −1.30 −1.48
1998 −1.60 −1.00 −1.92
1999 −1.14
2002 −1.26
2003 −1.37 −1.48 −1.67
2004 −1.15 −1.13
2007 −2.08
2010 −1.32 −1.67
2015 −2.25
2018 −2.08 −2.49 −1.27 −1.97 −1.11 −1.80
2019 −1.12 −1.82 −1.66

Jan: January, Feb: February, Mar: March, Apr: April, Jun: June, Jul: July, Aug: August, Sep: September, Nov:
November, Dec: December.

Table 3. Calculated drought months by mid-term SPI6.

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1983 −1.18 −1.08 −2.66
1985 −1.37 −1.33 −1.36
1986 −1.86 −1.53
1989 −1.27 −1.35 −1.19
1990 −1.11 −1.18
1991 −2.42
1996 −1.37 −1.28 −1.07
2000 −1.08 −1.02 −1.04
2002 −1.21 −1.86 −1.56 −1.98
2003 −1.72 −1.24
2007 −1.53
2011 −2.20 −1.85
2016 −2.66
2018 −1.95 −1.62
2019 −1.66

Jan: January, Feb: February, Mar: March, Apr: April, Jun: June, Jul: July, Aug: August, Sep: September, Nov:
November, Dec: December.

3.2. ARIMA Model

The time series plots of SPI at 3 and 6 timescales are depicted in Figure 4a,b. The time
series modeling ‘Box–Pierce test’ was performed to check the autocorrelation of the series
using the following formula [22]:

Q = n(n + 2)∑h
k=1

ρ̂2k
n− k

(20)

where n is the sample size, ρ̂k is the sample autocorrelation at lag k, and h is the number of
lags being tested; and Q follows χ2, a distribution with h degrees of freedom. Both SPI3
and SPI6 are autocorrelated as the Box–Pierce test was significant (p < 0.0001) (Table 4).
The main step in the ARIMA model is the identification of the different combinations of
parameters, such as autoregressive terms (p), differencing terms (d), and moving average
terms (q). A combination of the order of the parameters which has maximum log-likelihood
and lowest values of Akaike information criteria (AIC) and Bayesian information criteria
(BIC) is considered the best model. Along with log-likelihood, AIC and BIC criteria’s ACF
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and PACF plots were also used (Figures S1–S4) for model order identification. The results
are presented in Table 4. For SPI3 and SPI6 the best fitted ARIMA model was (1,0,2) and
(1,0,0) with maximum log-likelihood of −544.14 and −479.53, minimum AIC and BIC
values are 1096.27 and 1112.79 for SPI3 and 963.07 and 971.31 for SPI6. After ARIMA
model fitting, the diagnostic checking of residuals was carried out using the Box–Pierce
non-correlation test, and residuals under consideration are non-correlated in nature as the
probability of significance are p = 0.938 and p = 0.779 for SPI3 and SPI6, respectively.

Figure 4. (a) Time series plot for SPI3; (b) time series plot for SPI6.

For building the AI model, the nonlinearity of the original data set was tested using
the BDS test [42]. The results of the BDS test are shown in Table 5 and confirm that the data
under consideration is nonlinear in nature as the probability of significance of residuals is
p < 0.0001.
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Table 4. Parameter estimation of ARIMA by maximum likelihood method for SPI3 and SPI6 time
scales of Hyderabad region.

Time
Scales Model Parameters Estimation S. E Z Value Prob. Model Fitting Box–Pierce

Non-Correlation Test

SPI3
ARIMA
(1,0,2)

AR1 −0.018 0.130 −0.143 p < 0.0001 Log
likelihood −544.14 Original Residuals

MA1 0.674 0.121 5.559 p < 0.0001 BIC 1112.79 Chi-square
= 148.39

(p < 0.001)

Chi-square
= 0.005

(p = 0.938)MA2 0.393 0.066 5.956 p < 0.0001 AIC 1096.27

SPI6
ARIMA
(1,0,0) AR1 0.717 0.032 22.03 p < 0.0001

Log
likelihood −479.53

Chi-square
= 233.19

(p < 0.001)

Chi-square
= 0.078

(p = 0.779)
AIC 963.07

BIC 971.31

SPI: standardized precipitation index, ARIMA: auto-regressive integrated moving average, AR: autoregressive,
MA: moving average, S.E: standard error, prob. (p): probability, BIC: Bayesian information criterion, AIC: Akaike
information criterion.

Table 5. BDS test for non-linearity.

Sample Dimension
SPI3 SPI6

Statistics Probability Statistics Probability

eps(1) m = 2 15.63 p < 0.0001 15.68 p < 0.0001
m = 3 15.37 p < 0.0001 18.09 p < 0.0001

eps(2) m = 2 14.23 p < 0.0001 12.72 p < 0.0001
m = 3 13.11 p < 0.0001 12.09 p < 0.0001

eps(3) m = 2 13.90 p < 0.0001 12.51 p < 0.0001
m = 3 12.34 p < 0.0001 11.18 p < 0.0001

eps(4) m = 2 15.40 p < 0.0001 13.92 p < 0.0001
m = 3 13.76 p < 0.0001 12.43 p < 0.0001

eps: epsilon values (standard deviation of input variable as sample), m: embedded dimension, p: probability.

3.3. ANN Model

ANN model parameters are given in Table 6 for both SPI3 and SPI6 time scales. The
drought indices of time series were subjected to ANN model with 5 and 4 tapped time
delays and 2 and 4 optimum nodes for SPI3 and SPI6, respectively. Sigmoidal activation
function in input to the hidden layer and linear identity function in hidden layers to output
layer was used with feed-forward network architecture. The total number of parameters
or weights obtained was 15 and 25 for SPI3 and SPI6, respectively. Diagnosis checking of
residuals by Box–Pierce non-correlation test, which indicates the non-auto correlated or
random nature of the residuals (p = 0.83 and p = 0.72) for SPI3 and SPI6 was done.

Table 6. Parameter specification of ANN model.

Parameters SPI3 SPI6

Input lag 5 4
Output variable/dependent 1 1

Hidden nodes 1 1
Hidden layers 2 4

Model (5:2S:1L) (4:4S:1L)
Total number of parameters 15 25

Network type Feed forward Feed forward
Activation function (I:H) Sigmoidal Sigmoidal
Activation function (H:O) Identity Identity

Box–pierce non-correlation test for residuals 0.018 0.124
p-value 0.873 0.724

I: input node, H: hidden node, S: sigmoidal activation function used in input to the hidden layer, L: linear unit
activation function used in hidden to the output layer, p-value: probability value.
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3.4. SVR Model

For the SVR model, parameters were considered based on the least RMSE values. The
parameter specifications are listed in Table 7 for both SPI3 and SPI6 timescales, where
the radial basis function (RBF) was used as a kernel function, and the number of support
vectors obtained are 451 and 337, respectively. The cost function, gamma, and epsilon are
7.9, 0.16, and 0.01 for SPI3, and 7.7, 0.16, and 0.1 for SPI6, respectively. Box–Pierce tests
done for diagnostic checking of residuals are random and white noise in nature as p = 0.27
and 0.53 for both SPI3 and SPI6, respectively.

Table 7. Parameter specification of SVM model.

Model SPI3 SPI6

Parameters Values Values
Kernel function RBF RBF

No. of S. V’s 451 337
Cost 7.9 7.7

Gamma 0.16 0.16
Epsilon 0.01 0.1

Cross validation error 0.043 0.029
Box–Pierce non-correlation test for residuals 0.19 0.31

p-value 0.27 0.57
RBF: radial basis function, p-value: probability value.

4. Discussion

Drought characterization by using SPI3 and SPI6 timescales indicated different cate-
gories of water stresses, i.e., moderately dry, severely dry, and extremely dry. Ten months
showed extreme water stress in SPI3 and four months showed water stress on the SPI6
time scale, which indicates high water scarcity during the reported period (Table 8). Sim-
ilar results for different classes of droughts and different time scales were also reported
in [43–50].

Table 8. Classification of drought categories in SPI3 and SPI6.

Category SPI3 SPI6

Extremely wet - -
Very wet - -

Moderately wet - -
Near normal - -

Moderately dry

Oct-1982, Sep-1983, Oct-1983, Jul-1984,
Dec-1985, Dec-1988, Jan-1989, Feb-1989,
Apr-1989, Nov-1989, Dec-1989,
Jan-1990, Apr-1990, Jun-1992, Jul-1992,
Jun-1993, Oct-1994, Aug-1997, Sep-1997,
Jun-1998, Nov-1999, Oct-2002,
Mar-2003, Jun-2003, Sep-2004,
Nov-2004, Apr-2010, Sep-2018,
Nov-2018, Jan-2019

Jan-1983, Feb-1983, Jun-1985,
Jul-1985, Aug-1985, Jan-1989,
Feb-1989, Mar-1989, Jan-1990,
Feb-1990, Jul-1996, Aug-1996,
Sep-1996, Fep-2000, Nov-2000,
Dec-2000, Aug-2002, Feb-2003

Severely dry

Jan-1983, Jun-1984, Aug-1984, Feb-1990,
Mar-1990,
Mar-1991, May-1998, Jul-1998, Jul-2003,
May-2010,
Oct-2018, Dec-2018, May-2019, Jun-2019

Oct-1986, Nov-1986, Sep-2002,
Oct-2002, Dec-2002, Jan-2003,
Jun-2007, Mar-2011, Nov-2018,
Dec-2018, Jan-2019

Extremely dry

Feb-1983, Mar-1983, May-1983,
Mar-1992, Mar-1993,
Jul-1993, Mar-2007, Jul-2015, Jan-2018,
Feb-2018

May-1983, May-1991,
Feb-2011, Mar-2016
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The modelling and forecasting of SPI3 and SPI6 were compared in terms of MSE, RMSE
for both training and testing sets for SPI3 and SPI6, respectively. AI models outperformed
the classical model, SVR model was found to be superior over ARIMA and ANN models in
training and testing sets for both SPEI3 and SPEI6. Performance hierarchy of these models
is as follows: SVR > ANN > ARIMA in both training and validation sets. The detailed
comparison of modelling and forecasting performance of different models in training and
testing sets are depicted in Tables 9 and 10. Forecasted values and model comparison
criteria of testing data sets are given in Table 10. Further, actual vs. fitted data of both
training and testing sets are given in Table S2 and are also plotted in Figure 5a,b for drought
in both SPI3 and SPI6 time scales, respectively. Similar results were obtained in [51–54],
where the SVR model outperformed ARIMA and ANN models.

Table 9. Model comparison for training data for SPI3 and SPI6.

Model Parameter ARIMA ANN SVR

SPI3
MSE 0.438 0.418 0.378

RMSE 0.496 0.459 0.413

SPI6
MSE 0.328 0.275 0.237

RMSE 0.363 0.317 0.289
MSE: mean square error, RMSE: root mean square error.

Table 10. Model comparison for testing data for SPI3 and SPI6.

Period
Actual

Forecasted

ARIMA ANN SVR

SPI3 SPI6 SPI3 SPI6 SPI3 SPI6 SPI3 SPI6

Jun-20 0.917 0.851 0.241 0.083 0.132 0.254 0.197 0.064
Jul-20 1.477 1.418 0.194 0.11 0.07 0.182 0.713 0.669

Aug-20 0.133 0.12 −0.004 0.082 −0.089 0.131 0.554 0.83
Sep-20 0.226 0.262 −0.689 0.085 −0.068 0.094 −0.085 0.352
Oct-20 0.279 0.400 −0.812 0.059 −0.083 0.067 −0.186 −0.501
Nov-20 1.734 0.369 −0.987 0.433 0.357 0.048 0.403 0.338
Dec-20 1.142 0.322 −0.988 0.025 −0.072 0.035 0.87 0.294
Jan-21 −0.342 0.23 −0.567 0.096 −0.069 0.025 −0.549 0.25
Feb-21 −0.636 1.646 −0.288 −0.028 −0.074 0.018 −0.804 0.839
Mar-21 −0.853 0.84 −0.755 −0.013 −0.07 0.013 −0.025 1.416
Apr-21 −0.138 −0.526 1.988 −0.02 −0.072 0.009 −0.994 0.399
May-21 1.709 1.491 1.832 −0.025 −0.07 0.007 −0.111 0.227

MSE 1.317 0.72 0.867 0.672 0.686 0.495
RMSE 1.734 0.848 0.931 0.82 0.828 0.703

MSE: mean square error, RMSE: root mean square error.

The ANN for water stress modeling was developed with the ‘Levenberg–Marquardt
backpropagation algorithm’ in a feed-forward network based on repetitive iterations. The
user-defined hyper-parameters for ANN model, such as learning rate and momentum,
were fixed based on repetitive experimentation as 0.04 and 0.001, respectively. To obtain the
stable model, the network was repeated 30 times with 1250 iterations. The candidate input
lags and hidden nodes were determined based on the lowest training errors. Tenfold cross-
validation was carried out for each model and the lowest cross-validation error obtained is
reported in Tables 6 and 7. For SPI3 and SPI6 time scales we tuned the model with different
permutations and combinations of hyper-parameters and chose the candidate parameters
based on the lowest training MSE and RMSE. A similar procedure was followed in [55] for
building ANN and SVR models.
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Figure 5. (a) Actual vs. fitted plots of SPI3; (b) actual vs. fitted plots of SPI6.

The comparison criteria, viz., MSE and RMSE exhibit only the observed differences
between the predicted values of the models. The DM test statistics were used to determine
the statistically significant differences among the models used. The ARIMA (M1) and ANN
(M2) models are significantly different with respect to SVR (M3) model for both SPI3 and
SPI6. Inter combinational significances are clearly mentioned in Table 11 for both SPI3 and
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SPI6. The performance of SVR model is significantly superior to the other two models in
the input and testing data sets for both SPI3 and SPI6. These results may be due to the
ability of the SVR model to account for the nonlinear and complex patterns in the input
data sets, which can be a comprehensive tool for managing and alleviating water stress
in plants. Similarly, the DM test was applied in [27,56,57] for significant comparison of
modeling performance of the developed model in both training and validation data sets.

Table 11. Diebold–Mariano (DM) test for comparing performance of different time series models for
training and testing data set for both SPI3 and SPI6.

Model Data Type M1, M2 M1, M3 M2, M3

SPI3
Training set 5.62 (p < 0.0001) 5.05 (p < 0.0001) −0.38 (p < 0.0001)
Testing set 3.67 (p < 0.0001) 2.57 (p < 0.0001) −0.12 (p < 0.0001)

SPI6
Training set 7.77 (p < 0.0001) 6.24 (p < 0.0001) 4.07 (p < 0.0001)
Testing set 0.75 (p < 0.0001) 0.62 (p < 0.0001) 0.52 (p < 0.0001)

M1: ARIMA, M2: ANN, M3: SVR, p: probability value.

5. Conclusions

The present study was carried out to understand the short and medium-term water
stress in agroecosystems of the Hyderabad region using SPI3 and SPI6 timescales. The
results showed that during the period 1982–2021, 13 months were identified as severe
drought, 10 months as extreme drought, and 29 months as moderate drought on the short-
term scale (SPI3). Similarly, the medium-term drought index (SPI6) identified 4 months as
extreme drought, 11 months as severe drought, and 18 months as moderate water stress
during the period 1982–2021. In addition, classical models and AI models were used to
predict water stress, confirming that among the AI models, SVR performs better vs. ANN,
and the classical ARIMA model in terms of MSE and RMSE. The results can be a very useful
tool for management and planning at the regional/national level of water (stress) as one of
the most important and critical resources in cropping systems. Due to the lack of availability
of continuous historical data on other weather parameters for the study region, only rainfall
data was used for estimating the drought index in this study. However, future studies
need to be expanded with either weather (e.g., air temperature, solar radiation), hydrologic
(e.g., water table), agronomic (e.g., yield reduction), or in combination, parameters to allow
detailed characterization of drought using various machine learning-based models.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/su14116690/s1, Figure S1. Autocorrelation Function (ACF) plot
of SPI3; Figure S2. Partial Autocorrelation Function (PACF) plot of SPI3; Figure S3. Autocorrelation
Function (ACF) plot of SPI36; Figure S4. Partial Autocorrelation Function (PACF) plot of SPI6;
Table S1. Calculated SPI3 and SPI6; Table S2. Actual vs. Fitted SPI.
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