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Abstract: Land use change is an important cause of habitat quality change. In order to reveal the
impact of urban land use change on habitat quality, and to explore sustainable development planning,
this paper uses the city of Tianjin, China, as a case study. Based on land use data from 2000, 2010,
and 2020, the PLUS model was first used to predict land use in 2030 under three scenarios, and the
InVEST model was then used to assess habitat quality from 2000 to 2030. This study showed that
habitat quality was highly correlated with land use change. The rapid expansion of construction
land was the main reason for the year-by-year decline in habitat quality. From 2000 to 2030, habitat
quality in Tianjin declined year-by-year according to the average habitat quality values for 2030 for
the three scenarios: the Ecological Protection Scenario (EPS) > Natural Development Scenario (NPS)
> Economic Construction Scenario (ECS). In the EPS, habitat quality will deteriorate and improve. It
would be ecologically beneficial to continue to work on the revegetation of the Jizhou area. In the
ECS, habitat quality will decline sharply. In Tianjin, urbanization will continue to accelerate. This is a
threat to the sustainable development of the city.

Keywords: land use; PLUS model; InVEST model; habitat quality; multi-scenario prediction

1. Introduction

Considering the economic development and rapid urbanization in China, the loss of
land with ecological functions, such as woodlands and grasslands, and the exposure of
habitat fragility, there is urgent need to find a reasonable urban landscape plan to maintain
ecology and promote sustainable development [1]. The transformation of land-use types
and their area changes will affect ecosystem services, and has a great impact on habitat
quality and sustainable development [2]. Habitat quality refers to the ability of ecosystems
to provide suitable resources to individuals and groups for sustainable development within
a certain spatial and temporal period [3], and an in-depth study of habitat quality will
provide a basis for more reasonable territorial spatial planning and urban development,
which is of great significance for sustainable human development.

In recent years, scholars have been paying more and more attention to issues related
to habitat quality, which is visually reflected in the current state of the ecosystem and is
of great significance to regional urban planning and ecological environmental protection.
It has become an important factor affecting the sustainable development planning of a
city. Research methods are broadly divided into two categories: the first category assesses
habitat quality by constructing a system of indicators affecting habitat, but ignores factors
such as existing sources of threats. Another group of scholars assessed habitat quality
based on the SLEUTH model [4] and the InVEST model [5–7]. The InVEST model has been
widely used by scholars because it not only considers threat factors, but it also has good
applicability and accuracy [8,9]. However, most studies have chosen ecological reserves
as their study areas [10,11], and there are fewer articles focusing on cities, ignoring the
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importance of habitat quality studies for the sustainable development of cities; despite the
increasing attention being paid to the impact of urban expansion on habitat quality, there
are few existing studies on the topic.

Research on the prediction of future land-use data has been progressing with the
development of machine learning. Initially, the FLUS model based, which is based on an
ANN neural network, was widely used [12]; later, the use of CLUS-S appeared to solve
the urban emergence problem in areas without historical cities [13]. In 2021, the newly
developed patch-generating land-use simulation PLUS model, by Liang et al. [14], was
not only able to simulate historical land type emergence areas, but could also simulate the
historical land type spatiotemporally. Wang et al. [15] compared the CA-Markov model,
FLUS model, and PLUS model using an ecological reserve in western Beijing as the study
area. Zhang et al. [16] made land-use projections for 2050 in the Fujian Delta region, and
showed that the accuracy of the coupled CA-Markov-based PLUS model was higher than
the accuracy achieved without the single PLUS model. All of the above studies show
that the PLUS model has better generalizability and accuracy, but it still has relatively
few applications.

In summary, most recent studies analyzed the habitat quality of ecological reserves
and were less focused on the habitat quality of cities, ignoring the great significance of
research predicting the future habitat quality of cities for the sustainable development of the
whole city. In addition, in terms of research methods, although some scholars have coupled
prediction models with INVEST models for habitat quality prediction [17], few scholars
have coupled PLUS models with InVEST models. More importantly, most of the existing
studies only predicted habitat quality under one natural development scenario, and a
single scenario cannot reveal the changes brought about by policy planning, and scenario
prediction after changes resulting from human disturbance has not been studied sufficiently
enough to provide a basis for future planning. There are few studies on multi-scenario
habitat quality prediction based on the PLUS model coupled with the InVEST model, and
this paper aims to fill this gap. The model not only combines land use and habitat quality
issues, but also provides guidance and recommendations for ecological improvements
from a land planning perspective with a higher degree of accuracy than other predictive
models; in addition, it has a wider range of applications for habitat quality calculations.

Tianjin was ranked among the top 100 cities in the world in the 2020 World City
Rankings published by the world’s leading rating agency, the Globalization and World
Cities Research Group. Tianjin is the largest open coastal city in northern China and
is located near the Bohai Sea, and it is one of the key national strategic cities for the
coordinated development of the Beijing–Tianjin–Hebei region. Its flat topography and
suitable water resources mean that the ability to expand the city’s construction land is
limited, to a negligible extent, and its sustainable development will be jeopardized if the
large encroachment of construction land on arable land, water bodies, and other land
types is indulged. Therefore, it is very important for the government to limit urban
expansion and to protect the ecology of the area. Its proximity to the capital is highly
valued, and despite strong state support for the establishment of pollution prevention and
control linkage, as well as a collaboration mechanism with Beijing, Hebei Province, and
the surrounding areas, there are still obvious ecological problems. Habitats are fragile;
land reclamation has led to a large reduction in sea area; and rapid urbanization and
the continuous expansion of construction land has led to significant land-use changes
and a declining trend in habitat quality. Therefore, this paper simulated three natural
development scenarios, highlighting economic construction and ecological protection in
the future (2030), and calculated their habitat quality based on three periods of land use
change data from 2000, 2010, and 2020. The aim of this paper was to investigate the spatial
and temporal response mechanisms of habitat quality to the expansion of urban land in
Tianjin, by comparing the policy disturbance results with the natural development results
to find the optimal future planning scenario. It will provide a reference for national spatial
planning and sustainable urban development in Tianjin as well as examples for other
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similar cities with larger plains to seek effective solutions for the coordinated development
of ecology and construction under the general trend of urban land sprawl for construction.

2. Materials and Methods
2.1. Description of the Study Area

Tianjin is located in the northeastern part of the North China Plain at latitude 38◦34′–40◦15′ N
and longitude 116◦43′–118◦04′ E (Figure 1). It is a provincial administrative region, a
municipality directly under the Central Government of the People’s Republic of China, a
national central city, the largest port city in northern China, an international comprehensive
transportation hub, and one of the important engines driving the northern economy. The
topography is high in the north and low in the south, which is mainly in the plains. It
belongs to the temperate semi-humid continental monsoon climate, and has an average
annual precipitation rate of 550–600 mm and an average temperature of 13.4 ◦C. As of 2021,
there were 16 districts under the jurisdiction of Tianjin, and this paper positions Hongqiao
District, Nankai District, Henan District, Hebei District, and Hexi District as the central
district, with an annual resident population of 13.866 million and the urbanization rate of
this district increasing from 75.73% in 2005 to 84.7% in 2020.
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Figure 1. Diagram of the study area (Projected Coordinate System: Map of China:
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CGCS2000_3_Degree_GK_Zone_39).

2.2. Data Sources

The land use data in this paper were obtained from the National Basic Geographic
Information Center (http://www.ngcc.cn/ accessed on 1 March 2022) global land cover
data, with a resolution of 30 m × 30 m and includes TM5, ETM+, and OLI multispectral
images from the US Land Resources Satellite (Landsat) and multispectral images from the
Chinese Environmental Disaster Reduction Satellite (HJ-1), which were obtained using
16 m resolution Gaofen-1 (GF-1) multispectral imagery. The overall accuracy is 85.72%,
with a kappa coefficient of 0.82. Taking into account policies such as reclamation [18]
and the construction of wetland parks in the study area, its use types are divided into
eight categories. In 2020, Farmland (60.64%), Woodland (1.18%), Grassland (2.16%), Water
(8.78%), Wetland (3.57%), Construction land (22.43%), Unutilized land (0.03%), and Sea

http://www.ngcc.cn/
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area (0.60%). This detailed classification will provide a more detailed reference for future
urban planning.

2.3. Research Methods
2.3.1. The Research Framework

Based on the land data for Tianjin from 2000 to 2020, the Markov-coupled PLUS model
was used to predict the spatial distribution of the land in 2030 for three scenarios, and the
INVEST model was used to assess the habitat quality from 2000 to 2030 (Figure 2).
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Figure 2. The research framework.

2.3.2. Land-Use Dynamic Attitudes

The land-use dynamics indicator can reflect the rate of conversion of land-use type
area to other use types [19] via the following expressions:

K =
At1 − At2

At1(t2 − t1)
× 100% (1)

where K is the dynamic attitude of the land-use in the study period; At1 is the number of
land-use types at the beginning of the study; At2 is the number of land-use types at the end
of the study; and t1, t2 are the beginning and the end of the study.

2.3.3. Land-Use Transfer Matrix

The land use transfer matrix corresponds to different land types in different years
according to the changes in the land type, area, and location. Additionally, the matrix is:

Sij =


S11 S12 S13 . . . S1n
S21 S22 S23 . . . S2n
S31 S32 S33 . . . S3n
. . . . . . . . . . . . . . .
Sn1 Sn2 Sn3 . . . Snn

 (2)

where S is the land-use type area; n is the number of land-use types before and after transfer;
and i,j = 1 . . . n represent the land-use types before and after transfer.
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2.3.4. PLUS Model

The Markov model, which is widely used in land transfer studies, is a statistical
approach for future probability prediction. The model assumes that the probability of
something happening is only related to the previous moment state and is independent of
other factors. It is formulated as follows:

S(t+1) = Pij × St (3)

where S(t) and S(t+1) are the land use states in the study area at moments t and t + 1,
respectively, and Pij is the land use transfer probability matrix (i,j = 1,2, . . . ,n).

In this study, land types and their drivers were fitted using random forest based on
the PLUS model Markov predictions.

Similar to the FLUS model, the PLUS model also introduces adaptive inertia coeffi-
cients to make the land patches self-adjust toward the expected number during iteration,
as well as introducing the same filter matrix to limit the transformation between specific
land types, but improves the parameters set for the ensuing patch generation; the proposed
threshold decline rule in the competition process limits the spontaneous growth of specific
land use types [14,20], whose expressions are shown below;

Pd
i,K(x) =

∑M
n=1 I(hn(x) = d)

M
(4)

where Pd
i,K(x) is the integrated probability that the spatial unit is at the moment of transition

to site type k; S is the domain weight of the ground class k at the spatial cell at moment t;
and D is the adaptive drive coefficient.

Based on previous studies [21,22], combined with the characteristics of the study area
such as rapid urbanization and a large construction land area, the driving factors selected
for this study come from three aspects: natural factors, social factors, and traffic factors, as
well as fourteen driving factors, such as elevation, precipitation, etc. The driving factors
are shown in Table 1 below.

Table 1. Table of driving factors.

Factor Driving Factors

Natural factors

Elevation GDC 1

Slope Calculated using ArcGIS10.8
Slope direction Calculated using ArcGIS10.8
Precipitation RAESADC 2, calculated by interpolation
Temperature RAESADC, calculated by interpolation

Social factors

Population density Worldpop 3

Distance to medical facility sites ORM 4, calculated using ArcGIS10.8
Distance to scientific and educational centers ORM, calculated using ArcGIS10.8

Distance to city center ORM, calculated using ArcGIS10.8
GDP 2020 Government work, calculated using ArcGIS10.8

Transportation factors

Distance to railways ORM, calculated using ArcGIS10.8
Distance to motorways ORM, calculated using ArcGIS10.8

Distance to national highways ORM, calculated using ArcGIS10.8
Distance to provincial roads ORM, calculated using ArcGIS10.8

Distance to waterways ORM, calculated using ArcGIS10.8
1 GDC represent Geospatial Data Cloud (http://www.gscloud.cn/ accessed on 1 March 2022). 2 RAESADC,
Resource and Environment Science and Data Center (https://www.resdc.cn/ accessed on 1 March 2022).
3 Worldpop (https://www.worldpop.org accessed on 1 March 2022). 4 ORM represent Open Road Map database
(http://www.openstreetmap.org accessed on 1 March 2022).

The neighborhood factor indicates the interaction between different land types in the
neighboring range, and its value is set as the neighborhood factor parameter by combining
the existing research with the actual situation of Tianjin, as shown in Table 2.

http://www.gscloud.cn/
https://www.resdc.cn/
https://www.worldpop.org
http://www.openstreetmap.org
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Table 2. Neighborhood factor weight.

Land Use Type Farm Land Woodland Grassland Wetland Water Construction Land Unutilized Land Sea Area

Neighborhood
weighting factor 0.6 0.5 0.4 0.4 0.4 1 0.8 0.1

Adaptive inertia coefficient calculation.

Dt
k =

Dt−1
k

(
Gt−1

k ≤ Gt−2
k

)
Dt−1

k × Gt−2
k

Gt−1
k

(0 > Gt−2
k > Gt−1

k )

Dt−1
k × Gt−1

k
Gt−1

k
(Gt−1

k > Gt−1
k > 0)

(5)

where Dt
k is the inertia coefficient for site type k at the moment and Gt−1

k is the difference
between site demand and actual quantity at moment t − 1.

TPd=1,t
i,k

{
Pd=1

i,k × (r× µk)× Dt
k′

(
Ωt

i,k = 0, r < Pd=1
i,k

)
Pd=1

i,k ×Ωt
i,k × Dt

k

}
(6)

where TPd=1
i,k , t are the integrated probability of the transition to land use type k at moment

t after the introduction of the random patch generation mechanism; r is a random value
within (0,1); and uk is the new land use patch generation threshold.

The transition matrix and final site development probability calculation is as follows:

if ∑N
k=1
∣∣Gt−1

c
∣∣−∑N

k=1
∣∣Gt

c
∣∣ < step, I = I + 1{

Pd=1
i,c > τ, TMk,c = 1change

Pd=1
i,c ≤ τ, TMk,c = 0notchange

τ = σl × R1
(7)

where step is the step size required to fit the PLUS model to the land use demand; l is the
number of threshold decay steps; δ is the decay factor of the decay threshold t between
0 and 1; R1 is a normal distribution with a mean of 1; and TMk, c is the transition matrix
that defines whether land type k can be shifted to c. A value of 1 indicates that the shift is
allowed, while a value of 0 restricts the shift.

2.4. Accuracy Verification Analysis

The accuracy analysis of this study introduces kappa coefficients for testing, the
expressions of which are as follows:

Kappa =
p0 − pc

pp − pc
(8)

where P0 is the number of simulated correct grids/total number; Pc is the number of
random simulated correct grids/total number; Pp is the number of random simulated
correct grids/total number. A kappa coefficient between 0.6 and 0.8 represents a good
model effect.

2.4.1. Land Multiple Scenario Setting

For future land planning, based on previous studies considering multiple scenario
settings as well as typicality and other factors, this study selected three typical scenarios [23,24]:

(1) Natural development scenario: In this scenario, human factors, such as territorial
spatial planning, are not considered as being able to interfere, and historical data are
used for simulation. The probability distribution is the same as the transfer probability
matrix for 2010–2020.

(2) Economic construction scenario: According to statistics, the urbanization rate in
Tianjin increased from 82.64% in 2015 to 84.7% in 2020, an increase of 2.06 percentage
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points during the 13th Five-Year Plan period. During the 14th Five-Year Plan period,
the state has provided huge amounts of funding to support the urbanization of
Tianjin, establishing pilot urbanization projects in the Dongli District and Jizhou
District, which will be vigorously strengthened. The probability of transferring all
land types to building land is set to increase by 50%, and the probability of transferring
building land out of the transfer matrix is zero.

(3) Ecological protection scenario: Tianjin has a large concentration of forest land and a
large wetland area, which is a key object of national protection. In order to implement
the “Opinions on Delineating and Strictly Adhering to the Ecological Protection Red
Line” of the State Office, Tianjin has delineated an area of 1195 square kilometers
of an ecological protection red line in land area in the city in addition to a marine
ecological red line area and actively carries out artificial afforestation and artificial
wetland restoration projects. Therefore, to set the probability of transferring all land
types to forest land changed by 30% to account for the ecological red line within the
rivers, wetlands, and some sea areas to limit the transfer out [25], and forest land is
no longer transferred outward.

2.4.2. Habitat Quality Assessment Based on the Invest Model

In this study, the habitat quality was assessed by the InVEST model, which considers
the maximum stress distance and weight of the threat factor. It can assess the degree of
habitat degradation and habitat quality. The degree of habitat degradation represents the
magnitude of the level of threat stressors encountered by the species, and the value of this
index ranges from 0 to 1, with values closer to 1 indicating a greater degree and probability
of degradation.

Dxj =
R

∑
r=1y=1

ry

∑
y=1

(
wr

∑R
r=1 wr

)
ryirxyβxSir (9)

where Dxj is the degree of habitat degradation; R is the number of threat factors; r is the
number of rasters of the threat layer on the base map; w is the threat factor weights; ry is
the threat intensity; irxy is the effect of r on each raster of the habitat (linear or exponential);
βx is the effect of local protection policies, etc., but it is not considered in this study for the
time being; and Sjr indicates the relative sensitivity of each habitat to the sensitivity of each
habitat to different threat sources.

The habitat quality value ranges from 0 to 1. The closer to 1, the better the habitat
quality, and the closer to 0 it is, the worse it is, and the expression is:

Qxj = Hj

(
1−

Dz
xj

Dz
xjz + kz

)
(10)

where Qxj is the biblical quality index of raster x in the land use and type j; Hj is the habitat
suitability of land type j; Dz

xj is the habitat degradation of raster x in land type j; z is the
default parameter; and k is the half-saturation constant and is 0.2 in this paper.

This article refers to a previous study and the InVEST User Manual [26–28]. Cultivated
land, construction land, unused land, highways, and railroads are used as threat factors,
and the impact distance and weight of different threat factors as well as the sensitivity are
set as shown in Tables 3 and 4 below.

Table 3. Maximum distances, weights, and spatial distribution types of threat factor sensitivities.

Threat Factor Maximum Impact Distance/km Weighting Distance Decay Function

Construction land 10 1 Index
Farmland 5 0.4 Index
Unutilized 7 0.5 Linear
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Table 4. Threat factor sensitivities.

Landscape Types Habitat Suitability Construction Land Unutilized Farmland

Farmland 0.3 0.6 0.3 0.4
Woodland 1 0.5 0.8 0.5
Grassland 0.8 0.4 0.4 0.8
Wetland 0.3 0.7 0.4 0.5

Water 0.7 0.3 0.3 0.2
Construction land 0 0 0.2 0

Unutilized land 0 0.6 0 0
Sea area 0.7 0.3 0.1 0.2

3. Results and Analysis
3.1. Land Use Change in Tianjin from 2000 to 2020

In terms of land area changes and land use dynamics (Table 5), the 20-year period
from 2000 to 2020 in Tianjin was characterized by overall changes, with construction land
expanding rapidly and arable land and sea area decreasing year by year. The largest
increase in area was in construction land. With an increase from 1365.21 km2 in 2000 to
2673.49 km2 in 2020, the overall increase was 1309.35 km2, an increase of 95.98%, with a
decrease in the dynamic degree of land use over the next ten years. The arable land area
decreased by 753.61 km2, and the dynamic degree of land use decreased from −0.70% to
−0.26% over the next ten years, probably due to the arable land red line policy, which
played a certain protective role. The forest area increased by 11.42 km2, and the dynamic
degree of land use was 1.09% in the first ten years and 5.58% in the second ten years. The
forest land coverage rate was 18.11%. It can be seen that Tianjin’s protective forestry and
ecological restoration measures have been effective in the past ten years.

Table 5. Land use area changes and land dynamics in 2000, 2010, and 2020.

Landscape Types 2000 (km2)

2000–2010
Dynamic
Degree of

Land Use (%)

2010 (km2)

2010–2020
Dynamic
Degree of

Land Use (%)

2020 (km2)
2000–2020

Total Change
Rate (%)

Total Change
Area

Farmland 7982.43 −0.70 7423.90 −0.26 7228.82 −9.44 −753.61
Woodland 204.48 1.09 226.76 −0.48 215.90 5.58 11.42
Grassland 266.46 −1.72 220.63 1.66 257.16 −3.49 −9.30
Wetland 320.65 2.79 410.21 0.37 425.39 32.66 104.74

Water 1408.22 0.13 1426.95 −2.67 1046.45 −25.69 −361.77
Construction land 1364.14 4.89 2031.03 3.16 2673.49 95.98 1309.35

Unutilized land 1.11 1.24 1.25 14.30 3.03 172.97 1.92
Sea area 376.56 −5.19 181.03 −6.06 71.34 −81.05 −305.22

From the perspective of land transfer (Figure 3), from 2000 to 2020, the construction
land area gradually expanded around the central area, and a large area of cultivated land
was converted to construction land. During the two decades, 679.16 km2 (Figure 4) and
697.10 km2 (Figure 5) of cultivated land were transferred to construction land, respectively,
and the change area was mainly concentrated in the central area and the peripheral area
of the city. A large number of sea areas were converted to wetlands and construction
land, showing a decrease of 305.22 km2 in 20 years (Table 5), and the reduction value was
81.05% of its original value. The conversion of some sea areas to wetlands had a certain
relationship with the decline in sea level, but it was more so caused by the reclamation
policy and the expansion of construction land in the Tianjin Binhai New Area. Recovery
has been observed in woodland areas in the last ten years. Of its increased area, 78% comes
from grassland and is concentrated in the south of the Jizhou district. It can be seen that
human afforestation and ecological restoration have made great contributions. Comparing
the simulation with the actual 2020 land use data acquired using a random sampling test,
the Kappa coefficient is calculated to be 0.75, and the overall accuracy is 88.86%, and the
model has strong robustness.
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Based on the land use data in 2020, the Markov and plus models were coupled
to predict the spatial distribution of land use types in 2030 under three scenarios, as
shown in Figure 6. (1) Under the NDS, the overall trend remained unchanged, with the
construction land area increasing to 3206.32 km2. The area of cultivated land decreased
to 6999.93 km2, the area of forest land remained largely unchanged, and the area of other
land types decreased accordingly. (2) Under the EPS, the construction land area increased
from 2673.49 km2 to 3856.25 km2, while the area of arable land decreased to 6454.11 km2.
(3) Under the EPS, the forest area increased from 215.90 km2 to 245.46 km2, an increase in
the original area of 13.69%.
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Analysis from a spatial perspective: (1) In the 2030 National Development Strategy,
the area of built-up land in the central region had expanded further outwards compared
to 2020 (Figure 7a) due to development in the Wuqing District, central Jizhou District,
and northern Binhai New Area. However, the forests and grasslands in the Jizhou Dis-
trict had been degraded, with threats mainly coming from the expansion of arable land.
(2) Compared to the NDS, the ECS showed an expansion of built-up land in the central area
(Figure 7b), with the decentralized construction centers of the Jizhou District beginning
to connect. The fragmentation of the landscape pattern increased with the encroachment
of the main river route on the border of Jinghai and Xiqing by built-up land. (3) Under
the EPS, the increase in woodland areas was mainly concentrated in the northern part of
the Jizhou District (Figure 7c), with most of the grassland being converted to woodland.
This is consistent with the vegetation restoration measures in Tianjin. In the restricted areas
within the ecological red line, river trunk lines and wetlands were protected.

3.2. Habitat Degradation

The Habitat Degradation Index (HDI) measures the threat level to a site, with values
close to zero indicating a low threat level and higher values indicating a higher threat level.
From 2000 to 2020, the maximum value of HDI increased year by year (Figure 8), with
values of 0.1678, 0.1689, and 0.1814, respectively. The main areas with high vales were
concentrated at the edge of the central area, and construction land spread outwards in a
dispersive manner, posing a greater threat to the arable land in the area. The main high
value areas were concentrated at the edge of the central area, where construction land was
spreading outwards in a dispersive manner, posing a greater threat to the arable land in
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the area. Additionally, some watersheds were covered by higher habitat degradation index
areas, which also have certain ecological problems. This was highly correlated with the
extent of human activity and the spatial pattern of construction land. The maximum values
for 2030 in the three scenarios are as follows: ECS (1.1849) > NDS (1.1911) > EPS (1.2015),
with the high value areas increasing significantly under the ECS and large areas of arable
land and rivers becoming threatened.
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3.3. Habitat Quality Projections for Tianjin in 2030 under Different Scenarios

The Habitat Quality Index (HQI) measures the ability of the environment to provide
the conditions and resources necessary for species and populations to sustain and repro-
duce, with values ranging from 0 to 1. The closer the value is to 0, the lower the habitat
quality and the lower the biodiversity, and conversely, the closer the value is to 1, the higher
the habitat quality. In this paper, the results are classified into five classes: low (0–0.1),
relatively low (0.1–0.4), medium (0.4–0.6), relatively high (0.6–0.8), and high (0.8–1).

In terms of the temporal changes and percentages of each class (Figure 9), the mean
values in 2000, 2010, and 2020 were 0.3027, 0.2711, and 0.2311, respectively, which were
among the lower levels among cities in the country, and the Habitat Quality Index decreased
year by year. To conclude, habitat quality as a whole was in a degraded stage. The low
value areas surged from 11.54% to 22.47%, and these were inextricably linked to rapid urban
expansion. High-value areas remained at around 1.7%, which shows that the woodland
protection policy had some success.

This paper used a coupled Markov and Plus model to predict land use in 2030 for three
different scenarios and evaluated the habitat quality under the three scenarios using the
INVEST model (Figure 9). The habitat quality values were ranked from highest to lowest:
EPS (0.2195) > NDS (0.2076) > ECS (0.1898). An analysis was performed to determine the
area share of each class: (1) The low value area in the NDS accounted for 27.2%% of the
area, which was one of the reasons for its lower mean value. (2) In the EDS, the address
area was 4.81% higher than in the NDS, with a corresponding decrease in all other values
and an overall shift towards lower habitat quality values. (3) In the EPS, the high-value
area increased by 0.26% even though the proportion was not large, but considering the
actual situation, this part of the increase can be achieved by considering afforestation and
the protection of woodland. This result had a certain degree of reliability and feasibility.
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Therefore, it was proposed that an effective ecological protection policy will lead to some
improvement in habitat quality.

1 
 

 

Figure 8. The Habitat Degradation Index(HDI).

In order to clearly observe the changes in the habitat quality values, they were divided
into five categories at natural intervals according to the above (Figure 10). The spatial
pattern of the biblical and habitat quality from 2000 to 2020 showed a clear pattern of
evolution, with high values mainly being concentrated in the forests of the Jizhou District
in the north of Tianjin, the increase in which was related to the implementation of the “forest
manager system”, which attached great importance to forest protection and ecological
restoration; the most noteworthy areas were those with low levels, indicating areas where
the habitat quality is severely affected by urban expansion. These areas included all of
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the central areas (Hongqiao, Nankai, Henan, Hebei, and Tuanbo Lakes). Expansion was
characterized by the eastward and northward movement of the low habitat quality area
from the central area and its gradual expansion, with a tendency to link up with the Binhai
New Area.
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Figure 9. Percentage of area in each class of habitat quality and the mean.
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In terms of the spatial pattern, the difference in habitat quality between the three
scenarios in 2030 was obvious. (1) The change in each value area under the NPS was
basically the same as the change trend in the previous decades. It was noteworthy that the
low-value areas spread more rapidly towards Binhai New Area and the northern part of
Tianjin (Figure 11a). (2) Under the ECS, the low-value areas spread from the city center to
the surrounding area, with the eastern part directly approaching the coastal boundary line
of the Binhai New Area. They spread northwards to occupy part of the Wuqing District
and Baodi District, extending to the Jizhou District and even approaching the protected
forest area (Figure 11b). (3) Under the EPS, the high-value areas were mainly concentrated
in the woodlands and reservoirs to its north, and the high value areas and higher value
areas basically corresponded to the ecological red line areas, and the overall habitat quality
was relatively high (Figure 11c).
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To determine the changes in the habitat quality spatially, the difference between the
habitat quality of the three scenarios and the habitat quality in 2020 was plotted. Changes
were divided into five categories: drastic decline (<−0.5), decline (−0.5–0.1), basically
unchanged (−0.1–0.1), rise (0.1–0.5), and drastic rise (>0.5). (1) Under the NDS, areas with
a declining habitat quality were clustered in the Wuqing District, Binhai New Area, and
Dongli District. (2) Under the ECS, the habitat quality declined over a large area in the
whole region, with the declining areas mostly located around the central area. (3) Under the
EPS, the areas with increasing habitat quality were concentrated in the woodland areas of
the Jizhou District. The reason why there are no areas with increasing habitat quality in the
southern part of the Binhai New Area is because wetlands are protected from encroachment
by water bodies under the wetland ecosystem protection policy.

4. Discussion
4.1. Causes of Land Use Change

Land use change in Tianjin is the result of a combination of natural and human factors,
and the main causes of such change vary from place to place. Tianjin has large plains
and sufficient water resources, and these unique advantages make the area convenient
for urban construction. As a result, the urbanization of Tianjin was ranked among the
top cities in China. However, because of this, the expansion of land for construction
had led to the increasing fragmentation of arable land [29], which, if not restricted and
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planned by the government, would threaten sustainable development. Although some
ecological areas have been degraded, major ecological function areas are still present. This
is due to the document “The Twelfth Five-Year Plan for the Construction of Tianjin Eco-
city” released in 2013, which specified three important ecological functional areas, namely
the Jibei Mountain Ecological Function Area, the Dahangbao-Qilihai Wetland, and the
Tuanbowa-Beidagang Wetland, for effective protection.

4.2. Relationship between Habitat Quality Change and Land Use Change

The studies referenced in this paper reconfirm that the spatial pattern of habitat quality
values is highly correlated with the distribution of land use types [24,30]. On the one hand,
there was an increase in areas with low habitat quality values, the growth of which coincides
with urban expansion and the expansion of construction land [31]. This is concentrated
in the central areas of the Heping District, Hedong District, Hexi District, Nankai District,
Hebei District, and Hongqiao District. Therefore, the expansion of construction land was
the main cause of habitat quality decline, which was in line with previous studies on the
causes of habitat quality decline in the Beijing–Tianjin–Hebei region [32,33]. Secondly, the
existence of a lower value area on the periphery of the central area that was about to be
transformed into an even lower value area was consistent with the outward expansion of
urban centers encroaching on arable land on the periphery of the central area. On the other
hand, despite the conversion of arable land and water to land for construction, the quality
of habitats within the ecological red line categories remained high. This suggests that the
delineation of the ecological red line and the control of land class shifts in Tianjin have
played a protective role [34], again demonstrating that habitat quality changes are closely
related to land use changes. In addition, it was found that habitat quality is highly sensitive
to construction land expansion, with areas of lower habitat quality values predicting areas
of future construction land expansion.

4.3. Causes of Habitat Quality in the Multi-Scenario Simulation

(1) In the case of natural development, the dispersal of built-up land from the central
area to the periphery was the main cause of habitat quality degradation (Figure 12) [35].
Most of the habitat quality degradation areas are located in the four districts bordering
the central area (Hedong, Jinbei, etc.) and in the western part of the Jizhou District. The
Binhai New Area showed an aggregated decline in the habitat quality classes. Although
habitat quality classes have increased in the Binhai New Area where wetlands border rivers
(Figure 12), this was due to an increase in the water area, a change that will be prevented
by the wetland protection policy. (2) Compared to the NDS, the ECS demonstrate a larger
area with declining grades. Among them, the Dongli District, Jinan District, Jizhou District,
and Binhai New Area were the most prominent (Figure 12). This was consistent with
the fact that the state should plan specific areas of arable land in these areas for orderly
expansion [36]. This also coincides perfectly with the current areas of support policies,
such as the National Rapid Urbanization Pilot Area and the Binhai Industrial Development
Talent Introduction Policy. Combining the population raster data and GDP distribution
data for Tianjin also showed that areas with a higher population and a higher GDP had
lower habitat quality values and that human disturbances to the ecological environment
were the factors causing the most disturbance [37]. This indicates that urban construction
should be based on national territorial spatial planning conditions and scientific planning
for the moderate development of urban boundary areas [38]. (3) Under the EPS, ecology
was effectively protected [39]. Controlling land-use type shifts can effectively maintain
ecology and reduce ecological risks [40]. A comparison of the graphs shows that the state
should make great efforts to restore the vegetation in the Jizhou District (Figure 12) and that
such efforts would have promising results [10], but woodland restoration is still constrained
by the small grassland area and the relatively concentrated area.
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5. Conclusions

This study analyzed the land use changes in Tianjin from 2000 to 2020, predicted the
land use in Tianjin in 2030 under different scenarios using the coupled Markov and Plus
models, and assessed the habitat quality from 2000 to 2030 using the habitat quality module
in Invest 3.9, allowing the following conclusions to be drawn:

(1) From 2000 to 2020, the construction land increased by 1309.35 km2, and the existing
construction land had nearly doubled compared to in 2000. It was mainly transferred
from arable land. The overall habitat quality value in Tianjin was low and decreasing
year by year. Habitat quality was closely related to the land use type.

(2) In all three scenarios, construction land expands further. Habitat quality values in
2030 were lower than the average habitat quality values in 2020 for all three scenarios,
in the following order: EPS > NPS > ECS. Under the NPS, the low-value areas continue
to expand. Under the ECS, habitat quality decreases significantly.

(3) Based on the above research this paper makes the following recommendations. In
the future, there will be a large increase in construction land in the Dongli, Jinan,
Binhai, and Jizhou districts; therefore, the existing arable land in these areas should
be designated as protected areas as early as possible. The government should control
the existing boundaries of construction land to achieve orderly urbanization. It is also
important to plan for the connected areas between the two centers, Tianjin city center
and the Binhai New Area, which will gradually link up. With the further increase
in woodland area in Jizhou District, we should continue to implement the existing
vegetation restoration policy and adhere to the ecological red line policy. The shift
in ecological land types should be effectively controlled to improve the ecological
environment. We should continue to strictly control the benchmark farmland, im-
prove the level of intensive land use, and seek new development models for ecologi-
cal agriculture.

The development of territorial spatial planning and the enactment of spatial gover-
nance policies have a substantial impact on urban land use change. However, policies
cannot be quantified, and relatively few policies are considered in this paper. In the future,
it may be possible to find ways to quantify quantifiable policies to improve accuracy.
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