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Abstract: Electrical power networks are expanded regularly to meet growing energy requirements.
Reactive power dispatch (RPD) optimization is a powerful tool to enhance a system’s efficiency,
reliability, and security. RPD optimization is classified as a non-linear and non-convex problem.
In this paper, the RPD optimization problem is solved based on novel hybrid genetic algorithms—
equilibrium optimizer (GAEO) optimization algorithms. The control variables are determined
in such a way that optimizes RPD and minimizes power losses. The efficiency of the proposed
optimization algorithms is compared to other techniques that have been used recently to solve the
RPD problem. The proposed algorithm has been tested for optimization RPD for three test systems,
IEEE14-bus, IEEE-30bus, and IEEE57-bus. The obtained results show the superiority of GAEO over
other techniques for small test systems, IEEE14-bus and IEEE-30bus. GAEO shows good results for
large system, IEEE 57-bus.

Keywords: reactive power dispatch; GAEO; power loss minimization

1. Introduction

Energy resources are scarce and deficit; as a result, the optimization of available
resources is necessary. Research in electrical power systems is a developing field. An electric
power system’s operation, economy, and quality are tightly linked to reactive power
compensation. Consumer loads include both active and reactive demand. Active demand
is for useful energy. Reactive demand must be managed efficiently to deliver active
power efficiently, improve power quality, release system capacity, improve system stability,
reduce system losses, reduce voltage deviation, and improve the system power factor [1,2].
Reactive power management is always a main concern for utilities in order to improve
system security and operation; hence, optimum reactive power dispatch (ORPD) has
appeared as an important solution [3].

RPD optimization is defined as a mixed-integer, non-linear problem used to adjust the
electric power system control parameters subjected to equality and inequality constraints to
enhance the stability, security, and efficiency of the power network to provide the best eco-
nomic operations. These parameters may be discreet, such as reactive power compensation
and transformer tap settings, or continuous, such as generator bus voltages [4,5]. ORPD
has been solved using different algorithms such as traditional methods and meta-heuristics
optimization algorithms. Traditional methods such as linear and nonlinear programming,
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quadratic programming method, and the gradient method fail to obtain accurate results,
especially for discrete variable problems. Meta-heuristics optimization algorithms, which
improve calculation accuracy and increase convergence speed, include particle swarm
optimization (PSO), flower pollination algorithm (FPA), sine cosine algorithm (SCA), water
wave optimization (WWO), bat algorithm (BA), and many others [6]. Meta-heuristics algo-
rithms are used to approximate solutions to complicated optimization problems without
having complete information about the problem. They have been applied in many fields of
life. Meta-heuristics include the exploration and exploitation phases. The balance between
these two phases determines the efficiency of the algorithm [7].

Optimization algorithms have been provided as a magical solution in order to achieve
the most beneficial results of any system. They have been applied not only in engineering,
but also in many other applications, such as statistical, social, agricultural, and medical.
Optimization techniques have been applied in power systems to improve system perfor-
mance, decrease power losses, and reduce voltage flickers. They have been applied in a
variety of electrical network parts, generation, transmission, and distribution. For instance,
they have been used to optimize power flow [8–10], size, and location of a DG connected to
a grid [11–16].

RPD has been optimized according to a variety of objective functions such as power
loss minimization, enhanced voltage profile, maximized voltage stability index, and cost
optimization. Single- and multi-objective functions have been applied with the aim of
enhanced system stability and security. Different optimization techniques have been tested
for different types of test systems. Small and large test systems with differing numbers of
control variables have been tested in optimizing RPD. ORPD has been widely tested for
an IEEE 30 bus system with 19 variables as in [17–30]. ORPD has been tested for an IEEE
118 bus system with 77 control variables as in [17,18,21,22,24,29,30]. ORPD has been tested
for an IEEE 57 bus system with 25 control variables as in [17,20,22,25,29]. ORPD has been
tested for an IEEE 300 bus system with 190 control variables as in [5,18,21]. ORPD has been
tested for an IEEE 14 bus system with 9 variables as in [3,5,24,31]. ORPD has been tested
for an IEEE 30 bus system with 13 variables as in [17,23,25,27,28,31].

A hybrid optimization technique is a combination of two or more optimization al-
gorithms. It aims to enhance the performance of the original algorithm. This could be
executed by achieving a balance between exploration and exploitation, which prevents
the original algorithm from being trapped into local optima [12]. GAEO is a new hybrid
technique created by the authors of [32]. GAEO is a combination of two algorithms, a
genetic algorithm (GA) and an equilibrium optimizer (EO). It has been successfully ap-
plied to optimize the size and location of distributed generators (DG) based on single and
multi-objective functions [32].

The RPD problem has been studied for many years; however, this topic still gathers
the attention of the power system industry and researchers. The RPD problem derives
its importance from the need to secure the operation of power systems by decreasing
power losses and increasing system efficiency. The main contributions of this paper can be
summarized as follows:

1. Solving the RPD problem using a new algorithm, GAEO, for the first time as far as
the authors know based on literature review.

2. The validity of the GAEO algorithm for minimizing power loss is investigated and
compared with results of other techniques.

3. GAEO is applied to optimize the RPD problem for the first time on three test systems:
IEEE14-bus, IEEE-30bus, and IEEE57-bus.

This paper is organized as follows: a literature review is provided as an introduction
for this research, the second section introduces GAEO, the third section introduces a detailed
model of the operating system, the fourth section introduces the mathematical model and
procedure of the proposed algorithm, results and discussions are then introduced, and
finally, the conclusion and references are provided.



Sustainability 2022, 14, 6933 3 of 17

2. Hybrid Genetic Algorithm Equilibrium Optimizer (GAEO)

Evolutionary algorithms have been applied to optimize complicated problems for
many years. GA is one of these widespread evolutionary algorithms. GA gained its
popularity due to the simplicity of implementation and its efficiency. It is a local search
technique inspired from Darwinian evolutionary theory using selection, crossover, and
mutation techniques. These three techniques can be explained briefly as follows: Selection
means that the best generation (solution) will move on to the next step. Crossover means
generating improved and new generations, referred to as parents. Mutations allow a new
generation to have different characteristics compared to their parents [32,33].

The equilibrium optimizer (EO) was introduced by Farmarzi in 2020. EO is inspired
by the estimation of dynamic and equilibrium states determined through controlling vol-
ume mass balance models. Each particle works as a search agent; i.e., particles represent
solutions and particles’ concentrations represent position. Each particle updates its concen-
tration according to the best solution so far (equilibrium candidates) until it reaches optimal
results (equilibrium state). To apply the EO algorithm, it requires three main steps. First
is initialization, which means the initial concentration vector is randomly created using a
large number of particles. Second, candidates are selected for an equilibrium pool. An EO
is used to observe the equilibrium state through determining four best particles so far (to
improve exploration) plus the arithmetic mean of them (to improve exploitation). These five
particles make up what is called the equilibrium pool. Third, adjusting the concentration
level enables EO to make balance between both exploration and exploitation [32,34].

The main question here is why to hybridize GA and EO. In order to understand things
correctly, we must be aware of two aspects, exploitation and exploration. Exploitation
requires that the algorithm search for better solutions by browsing the bounding region. On
the other hand, exploration requires scanning the whole search space efficiently. In order
to obtain a better solution, both exploration and exploitation must be balanced. An EO
algorithm can be easily trapped into local optima, which means that EO is more exploitive.
On the other hand, GA is more explorative. Therefore, hybridization between these two
algorithms would provide a new and powerful algorithm [32].

3. Modelling of Power System

ORPD aims to optimize a nonlinear fitness function while keeping control variables
within their limits. Two distinct functions need to be optimized, power losses and voltage
deviation of all buses. This problem is expressed in a mathematical form as follows [31]:

Min F(x, u) (1)

subjected to : g(x, u) = 0, (2)

h(x, u) ≤ 0 (3)

where the fitness function is represented by F for, the decision variables represented by u
and x. the independent control parameters may be represented by

UT =
[
VG1 . . . . . . . . . VGNGen , QC1 . . . . . . . . . QCNcomp , T . . . . . . . . . ..TNTr

]
(4)

The dependent variables may be represented by

XT =
[
VL1 . . . . . . . . . . . . .VLNLine , QG1 . . . . . . ..QGNGen , SL1 . . . . . . . . . .SLNline

]
(5)

3.1. Objective Function

Minimization of power loss, which is the main objective function, can be represented
by Equation (6).

min PL = ∑
k∈N1

Pk
loss = ∑

k∈N1

Gk

(
Vi

2 + Vj
2 − 2ViVjcosθk

)
(6)
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where Vi, Vj stand for the voltage magnitude of buses i and j, the mutual conductance
between buses i and j is represented by Gk, and the difference in angle between i and j is
represented by θk. The second objective function, which is the minimization of voltage
deviation, can be represented by Equation (7).

min F2 = VD =
Nload

∑
i=1

∣∣∣Vi −Vre f

∣∣∣ (7)

where Vre f stands for the reference voltage of the buses, and Nload stands for number of
load buses in the proposed network.

3.2. System Constraints

The fitness functions have been optimized according to number of constraints.

3.2.1. Equality Constraints

Pgi − Pdi −Vi

NB

∑
j=1

Vj(Gkcosθk + Bksinθk) = 0 (8)

Qgi + QCi −Qdi −Vi

NB

∑
j=1

Vj(Gksinθk − Bkcosθk) = 0, i ∈ Npq (9)

where the generated and load active and reactive power are represented by Pgi, Pdi, Qgi,
and Qdi. The electrical susceptance between buses i and j is represented by Bk. Reactive
power compensation is represented by QCi. The number of buses is represented by NB and
the PQ buses are represented by Npq.

3.2.2. Inequality Constraints

The inequality constraints must be within the pre-determined limits.

Vi
min ≤ Vi ≤ Vi

max, i ∈ NB (10)

Tm
min ≤ Tm ≤ Tm

max, m ∈ Nt (11)

Qgi
min ≤ Qgi ≤ Qgi

max, i ∈ Npv (12)

QCi
min ≤ QCi ≤ QCi

max, i ∈ NC (13)

Ps
min ≤ Ps ≤ Ps

max (14)

Sk ≤ Sk
max, k ∈ Nl (15)

where Npv, Nt, NC, and Nl stand for PV bus numbers, on-load tap changing a transformer’s
number, number of capacitors, and number of branches, respectively. Ps

min and Ps
max

stands for lower and upper limits for slack bus. The apparent power along the transmission
line is represented by Sk.

4. Modeling and Implementation of GAEO Algorithm

The hybrid GAEO algorithm has been applied to improve the performance of electrical
networks by optimizing RPD. The working mechanism for GAEO can be introduced briefly
in a few lines. Firstly, power system data and operating parameters of GAEO are provided.
Then, the initial population is randomly created by EO, which is passed to GA (crossover
and mutation) to select the best half of the population and update the location of the other
half of the population. Then, EO is applied to determine the best candidate solution. Finally,
the best solution of each cycle is updated. The flow chart and procedures of the GAEO
algorithm are illustrated by Figure 1 [32].
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Figure 1. Flow chart of GAEO.

To provide the optimum solution, GAEO requires some steps that can mainly be
categorized into two parts, initialization and main loop, each of which consists of many
steps. A complete discussion of the GAEO algorithm mechanism can be explained by
twelve steps as follows.
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4.1. Initialization

Step 1: Provide data for a power system including, bus data, lines data, generators,
tap transformers, compensation capacitors, and the network configuration.

Step 2: Provide the control parameters of EO and GA.
Step 3: Adjust the iteration counter to zero as illustrated by Equation (16) and then

randomly creating the initial population by the EO algorithm in search space [xmin
i , xmax

i ].
Then, the initial best solution is selected according to the sorting position and the fitness of
each particle as expressed by Equation (17).

Iter = 0 (16)

Pnitial
i = randi ∗ (Lmax − Lmin) + Lmin i = 1, 2, 3, . . . .. (17)

where Pnitial
i is the concentration of i particles at starting, and Lmax, Lmin are upper and lower

limits respectively. randi, is a uniform random value lies between 0 and 1 (randi ∈ [0, 1]).

4.2. Main Loop

The main loop includes three phases, which illustrate the main operation of both
algorithms and the role of each one of them in optimizing RPD.

4.2.1. Using GA (Crossover and Mutations)

Step 4: Choose the first half of the population obtained from step 3 and passing to the
GA algorithm. The performance of the GA algorithm mainly depends on the size of the
population (fitness) to reduce the complexity of the EO algorithm.

Step 5: Use the GA algorithm after performing pairing and mating through single
point crossover, once the new population has been modified or mutated.

Step 6: Calculate the positions and fitness of each chromosome using the GA algorithm.
Step 7: Select the best half of the population members of EO and then update the

location of the other half using GA crossover.

4.2.2. Using EO on the Best Half Population Members

Step 8: Use EO to evaluate the fitness function of the particles. Then, determine the
equilibrium candidates through sorting as illustrated by Equation (18).

→
Peq,pool =

{
Peq(1),

→
Peq(2),

→
Peq(3),

→
Peq(4),

→
Peq(ave)

}
(18)

where the equilibrium state vector is denoted by
→
Peq,pool, the four best particles so far, identi-

fied through the whole optimization process, are denoted by
→
Peq(1),

→
Peq(2),

→
Peq(3) and

→
Peq(4),

and the first four candidate solutions’ mean value is denoted by
→
Peq(ave).

These solutions are assumed to be approximate equilibrium states.

4.2.3. Balancing of Both Exploration and Exploitation

Exploitation and exploration are balanced through the exponential term
→
F vector,

which is represented by Equation (19).

→
F = e−

→
λ(t−t0) (19)

where the turnover rate is denoted by
→
λ , and t is the time which defined as a function of

iteration (Iter) expressed by Equation (20).

t =
(

1− Iter
Max__iter

)a2
Iter

Max__iter
(20)
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where Iter and are is the current iterations and Max__iter is the maximum number of
iterations and a2 is the exploitation ability control variables. The value of the t0 is expressed
by Equation (21).

t0 =
1
→
λ

ln
(
−a1sign

(→
r − 0.5

)[
1− e−

→
λ t
])

+ t (21)

where r is a uniform random vector ∈[0, 1], a1 is the exploration ability control variables,
and the direction of exploration and exploitation is affected by sign

(→
r − 0.5

)
.

Substitute from Equation (18) into Equation (16), so the exponential term
→
F can be

expressed by Equation (22).

→
F = a1sign

(→
r − 0.5

)[
e−
→
λ t − 1

]
(22)

EO using generation rate factor Ri to improve the exploitation phase as expressed by
Equation (23).

→
R = R0e−

→
k (t−t0) (23)

where is a constant and
→
R0 is the initial value which can be calculated using Equation (24).

→
R0 =

→
RCP

(→
Peq −

→
λ
→
P
)

(24)

→
RCP =

{
0.5r1 r2 ≥ RP
0 r2 < RP

(25)

The generation rate is controlled using
→

RCP, which is the generation possibility to
contribute during the position update process. The concentration (P) can by defined as
follows using Equation (26).

→
P =

→
Peq +

(→
P −

→
Peq

)
.
→
F +

→
R
→
λV

(
1−

→
F
)

(26)

where V is the control volume and considered as unit.
Step 9: Evaluate the fitness of an old population and the new population every cycle.
Step 10: Sort the new and old population according to the fitness function and then

create the new population.
Step 11: Update the iteration number.
Step 12: Check for stop condition, else go to step 5.

4.3. Adjusting Operating Parameters

GAEO, like many other hybrid optimization algorithms, has a lot of parameters.
In order to achieve good results and reach the best value, these parameters have to be
adjusted accurately. The operating parameters of the GAEO algorithm are illustrated as
follows:

1. The exploration ability of control variables (a1).
2. The exploitation ability of control variables (a2).
3. Mutrate.
4. Selection and participation probability of concentration updating by the generation

rate control variable (GP).

Trial and error is the main technique to obtain the operating parameters properly.
From observation, it can be concluded that parameters from one to three are best adjusted
at the original values of the creator (2, 1, 0.09, 0.5), which provide the best benefits so far.
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The generation rate is expected to be the key parameter (as it has a substantial effect on the
results) and must be adjusted according to the problem. The generation rate can also be
determined by trial and error method.

5. Simulation and Results

In this section, the proposed algorithm (hybrid GAEO) is implemented to optimize
RPD. The proposed algorithm was tested upon three types of test systems, IEEE 14-bus,
IEEE 30-bus, and IEEE 57 bus. The minimization of power losses over the whole network
is chosen to be the objective function. The system simulation was executed using MATLAB
R2016a software.

GAEO has been used to optimize power losses for all three test systems as follows:
Case I, IEEE 14-bus system.
Case II, Modified IEEE 30-bus system.
Case III, IEEE 57-bus system.
The data for these test systems are illustrated by Table 1 and include the number of

buses, the number of variables, the number of generators, the number of tape transformers,
and the number of compensators [35,36].

Table 1. Test systems description and details.

IEEE 14-Bus IEEE 30-Bus IEEE 57-Bus

Number of buses 14 30 57

Number of line flow 20 41 80

Generating units 5 6 7

Transformer tap changer 3 4 15

Reactive compensator 2 3 3

Control variables 10 13 25

P load (MW) 259.0 283.40 1250.8

Q load (MVAR) 73.5 126.20 336.40

P gen (MW) 272.0 289.211 1279.26

Q gen (MVAR) 82.44 108.922 345.45

P loss (MW) base case 13.49 17.557 28.462

The upper and lower limits of control variables, generating units, transformer tap
changing, and reactive compensators are illustrated by Table 2.

Table 2. Control parameters limits.

Range Vg Vl tap Qc

Minimum 0.95 0.95 0.9 0

maximum 1.1 1.5 1.1 0.3

5.1. Case I IEEE 14-Bus System

GAEO was used to achieve ORPD upon IEEE 14-bus system based on minimum
power losses in the system. The tuning parameters of GAEO have been adjusted according
to Table 3.
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Table 3. Adjusting parameters of GAEO for IEEE 14-bus system.

Parameters Values

No. of iterations 100

Number of populations 40

The exploration ability control variables (a1) 2

The exploitation ability control variables (a2) 1

Participation probability of concentration updating by
the generation rate control variable (GP) 0.3

Mutrate 0.09

Selection 0.5

Table 4 illustrates the control parameters and optimum values obtained by GAEO, sine
cosine algorithm (SCA), chaotic bat algorithm (CBA), and improved slap swarm algorithm
(ISSA) algorithms. The obtained results were compared to the best obtained solution so
far based on recent articles [5,35,37]. GAEO successfully reduced the power loss to 12.2694
MW which is very close to the minimum value obtained by sine-cosine algorithm (SCA)
proposed in [35], but still the best value obtained.

Table 4. Control variables and optimum values obtained for IEEE 14-bus system.

Variable Name Base Value CBA-IV [5] SCA [35] ISSA [37] GAEO

V1 1.06 1.092 1.09 1.1 1.0600

V2 1.045 1.0884 1.08 1.085802 1.0450

V3 1.01 1.0558 1.05 1.056346 1.0100

V6 1.07 1.0325 1.09 1.096919 1.0700

V8 1.09 1.0951 1.09 1.1 1.0900

T1 0.9467 0.9746 0.95 1.03 0.9780

T2 0.9524 1.0676 0.94 0.9 0.9690

T3 0.9091 1.0599 1.03 0.98 0.9320

Q9 0.18 0.2208 0.16 0.18 0.1900

Qc14 0.18 0.0786 0.05 0 0.1900

Real power loss (MW) 13.49 12.2923 12.27 12.2834 12.2694

Figure 2 clarifies the comparison of GAEO against other algorithms. GAEO algorithm
comes first, with minimum power loss 12.2694 MW followed by SCA 12.27 MW. ISSA and
CBA-IV come last, with the largest power losses, 12.834 and 12.2923, respectively.

Figure 3 illustrates the convergence curve of GAEO for IEEE 14-bus system while
minimizing power losses of all system lines. The convergence curve is not fast but, it is
almost quite smooth. GAEO reaches the optimum value after one hundred iterations.
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5.2. Modified IEEE 30-Bus System

Another challenge for the proposed algorithm (GAEO) is how to minimize power
losses of the modified IEEE 30-bus system in order to achieve ORPD while keeping control
variables within their predefined limits. The tuning parameters of GAEO were adjusted
according to Table 5.

Table 6 provides the obtained results by GAEO compared to two algorithms, diversity-
enhanced particle swarm optimization (DEPSO) and classification and Pareto domination-
based multi-objective evolutionary algorithm (CPSMOEA). GAEO greatly reduces the system
losses compared to other techniques. The losses were decreased to 16.0428 MW, which is
much lower than 16.17 MW and 17.52 MW obtained by CPSMOEA and DEPSO, respectively.
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Table 5. Adjusting parameters of GAEO for IEEE 30-bus system.

Parameters Values

No. of iterations 100

Number of populations 40

The exploration ability control variables (a1) 2

The exploitation ability control variables (a2) 1

Participation probability of concentration updating by the
generation rate control variable (GP) 0.4

Mutrate 0.09

Selection 0.5

Table 6. Control variables and optimum value obtained for the IEEE 30-bus system.

Variable Name Base Value DEPSO [38] CPSMOEA [36] GAEO

V1 1.06 0.9925 1.01 1.0600

V2 1.043 0.9989 1.0778 1.0450

V5 1.01 1.0646 1.0417 1.0100

V8 1.01 1.0017 1.0478 1.0100

V11 1.082 1.0448 1.0393 1.0820

V13 1.071 1.0252 1.0293 1.0710

T1 0.98 1.017 1.05 0.9780

T2 0.97 1.0461 1.05 0.9690

T3 0.93 1.0363 1.05 0.9320

T4 0.97 1.0299 1 0.9680

Q3 5 14.7 12 19.0000

Q10 19 13.99 20 4.3000

Q24 4 12.03 12 0.9000

Real power loss 17.55 17.52 16.17 16.0428

Figure 4 illustrates a comparison between GAEO and other algorithms for the IEEE
30-bus system. As shown, GAEO has obtained the minimum value, 16.0428 MW, which is
significantly more than CPSMOEA, which minimized power loss to 16.17. Finally, DEPSO
comes last, with power loss equal to 17.52 MW.

The convergence curve of GAEO is fast; i.e., it reaches its optimum value quickly and
is smooth, as illustrated by Figure 5.
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5.3. Case III IEEE 57-bus System

IEEE 57-bus is a large system. It consists of seven generators, fifteen transformer tap
changers, three reactive compensator units, fifty-seven buses, and eighty lines. The tuning
parameters of GAEO were adjusted according to Table 7.

Table 7. Adjusting the parameters of GAEO for IEEE 57-bus system.

Parameters Values

No. of iterations 200

Number of populations 40

The exploration ability control variables (a1) 2

The exploitation ability control variables (a2) 1

Participation probability of concentration updating by the generation
rate control variable (GP) 0.2

Mutrate 0.09

Selection 0.5
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Applying GAEO to obtain ORPD while minimizing power losses is expected to be
a milestone in judging our algorithm. As illustrated in Table 8, the chaotic bat algorithm
(CBA) provided the best result so far at 21.9627 MW.

Table 8. Control variables and optimum values for the IEEE 57-bus system.

Variable Name SCA [35] CBA-IV [5] GAEO

V1 1.096 1.0964 1.0400

V2 1.089 1.0949 1.0100

V3 1.083 1.0906 0.9850

V6 1.082 1.0838 0.9800

V8 1.091 1.100 1.0050

V9 1.075 1.0869 0.9800

V12 1.070 1.0822 1.0150

T4-18 1.004 0.9002 0.9700

T4-18 1.029 0.9005 0.9780

T21-20 1.039 0.9958 1.0430

T24-25 1.022 1.0086 1.0430

T7-29 0.99 0.9061 0.9670

T34-32 1.029 0.9990 0.9750

T11-41 0.998 0.9087 0.9550

T15-45 1.023 0.9003 0.9550

T14-46 1.016 0.9002 0.9000

T10-51 0.999 0.9123 0.9300

T13-49 1.022 0.9002 0.8950

T11-43 0.998 0.9000 0.9580

T40-56 1.022 1.0267 0.9580

T39-57 0.992 0.9729 0.9800

T9-55 0.984 0.9220 0.9400

Qc18 0.066 0.1827 10.0000

Qc25 0.046 0.1335 5.9000

Qc53 0.030 0.0858 6.3000

Active power loss 24.05 21.9627 23.2514

Figure 6 illustrates a comparison between GAEO and other algorithms based on power
loss for IEEE57-bus system. Chaotic bat algorithm (CBA-IV) comes first with the minimum
power loss, i.e., 21.9627 MW. GAEO comes second with active power losses of 23.2514 MW.
Sine-cosine algorithm (SCA) comes last at 24.05 MW. GAEO has provided good results, but
they were not superior CBA. This case shows that GAEO has a shortage when dealing with
larger systems such as many other algorithms.
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The GAEO convergence curve is illustrated in Figure 7. Due to its random nature,
GAEO has started below its optimum value 1.299 × 109 but reached the best value so far
within 200 iterations.
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6. Conclusions and Future Work

Electrical networks become much more complicated due to regular expansion. This
comes from increasing power demand due to industrial development and population
increases. Power system utilities should provide efficient, reliable, and secure operation
of electrical networks to meet power demands. This can be achieved by improving old
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methods or creating new ones. RPD optimization has been used in the past to enhance
system performance, but it is still an efficient and applicable method. In this paper, a new
hybrid optimization technique, namely genetic algorithm-equilibrium optimizer (GAEO),
has been successfully applied to minimize system power losses by optimizing RPD. Three
test systems were used to evaluate the proposed algorithm, IEEE 14-bus, IEEE 30-bus, and
IEEE 57-bus systems. The obtained results of GAEO were compared to results obtained by
recent powerful algorithms, sine cosine algorithm (SCA), improved slap swarm algorithm
(ISSA), chaotic bat algorithm (CBA-IV), classification and Pareto domination based multi-
objective evolutionary algorithm (CPSMOEA), and diversity-enhanced particle swarm
optimization (DEPSO). According to the results obtained, we can say that GAEO has
succeeded in two cases showing fast convergence and good performance. In the first case,
the minimum power loss has been obtained by GAEO at 12.2694 MW, followed by SCA at
12.27 MW. In the second case (IEEE 30-bus system), GAEO succeeded in minimizing power
loss to 16.0428, which is much better than CPSMOEA at 16.17 MW. As expected for all
algorithms, it passed partially in the third case by obtaining a good result, but not an
optimal result. In the third case (IEEE 57-bus system), CBA-IV achieved the best result
compared to GAEO and SCA. GAEO, like any other hybrid technique, requires many
parameter adjustments, which is an expected disadvantage. Another disadvantage is
that GAEO could not provide the best result in 57-bus system, which contains 25 control
parameters. It can be concluded that GAEO is a good optimization technique that may
be very useful in small systems. GAEO needs to be modified in order to cope with large
systems. Exploration characteristics need to be enhanced.
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