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Abstract: With the development of Internet technologies, huge amounts of data are collected from
various sources, and used ‘anytime, anywhere’ to enrich and change the life of the whole of society,
attract ways to do business, and better perceive people’s lives. Those datasets, called ‘big data’, need
to be processed, stored, or retrieved, and special tools were developed to analyze this big data. At the
same time, the ever-increasing development of the Internet of Things (IoT) requires IoT devices to
be mobile, with adequate data processing performance. The new fog computing paradigm makes
computing resources more accessible, and provides a flexible environment that will be widely used
in next-generation networks, vehicles, etc., demonstrating enhanced capabilities and optimizing
resources. This paper is devoted to analyzing fog computing capabilities for big data provisioning,
while considering this technology’s different architectural and functional aspects. The analysis
includes exploring the protocols suitable for fog computing by implementing an experimental fog
computing network and assessing its capabilities for providing big data, originating from both a
real-time stream and batch data, with appropriate visualization of big data processing.

Keywords: fog computing; big data; visualization; cloud computing; performance; capability

1. Introduction

The rapid development of Internet technologies, and the ability to retrieve information
anytime, anywhere, have changed the life of society. The Internet as hypermedia, with
its web services and applications, is creating enormous amounts of data (big data) as a
response to the tremendous changes in enabling technologies and encompassing advances.
Gartner (https://www.gartner.com, accessed on 17 October 2021) defines big data as large
volumes of various information assets, as well as the processing of such data that requires
a cost-effective and innovative form. Obviously, collecting, processing, and storing these
large and diverse sets of information, growing at ever-increasing rates, requires means
other than traditional tools to support the ‘three V’s’, i.e., volume, velocity, and variety
of big data. Big data statistics worldwide [1] show that the rates of market coverage and
penetration of impact on different businesses increased in the period 2010–2020; specifically,
the volume of data interactions increased by 5000%. If we use the statistics of 2020, one
Internet user generated 1.7 megabytes of data every second, and this gives a rough total
of 2.5 quintillion bytes of data generated in one day. More than 90% of organizations are
investing in big data and artificial intelligence; by 2023, big data market is predicted to be
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worth approximately USD103 billion, and, in subsequent years, data volumes will reach
more than 180 zettabytes.

The concept of big data involves more than just the analysis of huge amounts of
information: data is created by and from a variety of sources, stored in many different
repositories, and is mainly presented in a format that does not fit well with the traditional,
structured database format. As a result, it becomes crucial to have the necessary tools
to establish relationships between these data, and take meaningful outcomes for users.
In addition, data are now being often updated, and traditional methods of information
analysis cannot keep up with the huge amount of constantly updated data. In essence,
the concept of big data implies working with a huge volume of information of diverse
composition, very often updated and located in different sources, in order to increase work
efficiency, create new products, and increase competitiveness.

The IT industry has undergone major changes over the past decade. Among the
most influential was the emergence of cloud technologies for data storage, computing, and
networking. However, the realities of the Internet of Things imply the necessity to evolve
the new concept of fog computing, which processes data on network peripherals (such
as personal computers, smartphones, personal gadgets, and so on) out of the cloud. The
development of the IoT requires the support of the mobility of IoT devices for various
locations, with small latency for data processing [2,3]. A new platform proposed to meet
such requirements features data processing in the immediate vicinity of the sources, without
the need to transfer them to large data centers. The evolving pace of growing the amount
of data on today’s Internet brings to the arena the necessity of providing scalable access to
the computing resources, in order to process those data appropriately, on demand, anytime,
anywhere, with the required performance.

The computing paradigm, so-called cloud computing, makes it possible to implement
a ‘pay-per-use’ model over the Internet to provide computing resources on demand from
consumers. Cloud systems accelerate innovation, and save a variety of physical and
hardware computing resources, due to their scalability [4,5].

Due to the nature of data today, being extremely widely distributed, and delivered
continuously, in large volumes, and to a huge number of users of all kinds of devices, it is
challenging to make the cloud model effective, due to the need to deliver content to the
users over a geographically dispersed platform, rather than through a cloud physically
located in one place. Thus, the idea of fog computing is to distribute data and make them
actually closer to the user, which can eliminate network delays, and the limitations of
data transmission.

Fog is not an alternative to the cloud. On the contrary, fog has a fruitful relationship
with the cloud, especially in administration and data analytics, and such interactions are
spawning a new class of applications. The fog computing (FC) architecture can be seen as a
layer on the border between the cloud and IoT devices. According to [6], fog computing is
an extension of the cloud at its core, which has some specific computing resources and data
storage registers, and is located at the nodes of networks. Currently, fog computing tech-
nologies are widely used in next-generation networks, vehicles, energy management, radio
access networks, etc., and optimize the computational resources of different application
systems [7,8]. FC also helps achieve sustainability through several application areas, while
in the emerging IoT, it is the first choice for time-sensitive applications, due to it residing
closer to the devices and sensors [9].

Fog computing is expanding the boundaries of cloud computing by making the net-
work and data extremely widely dispersed by allowing a geographically dense distribution
of computation and data. There are several reasons why the distributed fog computing
infrastructure is useful: the possibility of analyzing big data faster and more efficiently;
there is no need to create a complete network infrastructure for local users’ needs; and it
makes real-time data analysis more feasible, even when the infrastructure is actively scaling.
In this context, the authors provide analysis of fog computing capabilities for big data
provisioning, and describe the modeling scenario for visualizing the way to attract related



Sustainability 2022, 14, 8070 3 of 14

processes. The paper briefly outlines the related work in this research domain, emphasizing
the potential and capabilities of FC for different problematic areas. The methodology is
then proposed for exploring the layered architecture of FC, where the necessity to study
the real-time nature of data processing is justified, and the big data processing framework
developed for FC is outlined. Based on this, FC performance evaluation is performed,
by demonstrating the capability of the fog node and its ability to process data. Result
analysis is followed by presenting analysis of fog computing usages for big data process-
ing scenarios, providing detailed introductions and experiments for FC capabilities in
data analytics.

2. Related Work

Some applications require large amounts of network bandwidth, as well as very low
latency, and naturally, these needs require data processing near the end terminals. Based
on the concepts of fog computing, it is safe to say that fog computing implies a proximity
to data generators. In most cases, such generators are IoT sensors. The term was initially
coined by Cisco, and is seen as the concept of edge computing, wherein resources have
placement between users and the cloud, in order to improve performance. In a general
view, FC is similar to edge computing, with alterations made to where the intelligence and
computing power is placed.

The potential and capabilities of FC within different problematic areas are considered
and studied in different research papers and development projects. A recent report [10]
outlines the framework for a comprehensive understanding of the edge computing ecosys-
tem, with valuable insights on infrastructure, hardware, networking, and software. This
report provides edge computing particulars from the experts in this field, including updates
from the market and thoughts from industry leaders, a brief review of applications, and a
glossary of terms related to edge computing.

The authors in [11] provide an overview of edge and fog computing concepts to
address big data storage and analysis for smart cities, describing service delivery models
that emphasize issues of latency and network bandwidth required by time-sensitive smart
city applications. In [12], the authors discuss the background and motivations for fog
computing, and present a reference architecture for FC by describing the services and
related characteristics. Research directions and enablers in this research domain, such as
programming models, security and reliability, resource management, and energy mini-
mization, are outlined by shedding light on the commercial applications and case study
scenario implementation.

The security and privacy of fog computing are considered in [13], wherein the authors
study different types of attacks, and investigate the features of such attacks. It is shown
in security scenarios that properly applied authentication techniques ensure the system is
safeguarded. The authors in [14] consider fog computing model architecture while studying
various applications in real-time scenarios, with the implied security challenges. Paper [15]
outlines some of the main security and privacy challenges faced by fog and edge computing.
The authors demonstrate security issues affecting the work and implementation of edge
and fog computing.

Paper [16] presents the dimensions of big data, and how different needs and services
are transformed using applications. It is demonstrated in the paper how cloud computing
can be applied for the visualization of big data, and work with cloud computing capability.
A methodology is presented to deal with appropriate functionality.

In addition, the aspects of modelling the infrastructure are also studied, e.g., [17–19].
The authors in [17] propose solutions to fog computing problems, including a blockchain-
enabled federated learning model. It is assumed that global and local updates are stored
on fog servers. Blockchain-related issues are discussed in [8] to provide persistency and
audibility. In [18], the authors discuss security and privacy in an FC-enabled IoT environ-
ment. The reliability requirements are given in [19], including the implied latency when
fog nodes work together. Furthermore, in [20], the analysis of fog computing at a higher



Sustainability 2022, 14, 8070 4 of 14

level, considering its use in cases and potential issues, is carried out, though the use of
implementations. The authors in [21] conduct in-depth research studies with mathematical
models for areas comprising low-latency devices; fog computing reduces latency and
energy dissipation considerably, due to dwindled data transmission. Moreover, research
studies of security issues outline several theoretical vulnerabilities.

Notwithstanding, little research into actual implementation has been performed. One
of these implementations was completed by Cirani et al. [22], who created a fog node
called ‘IoT Hub’. The results derived from their experiment highlight low memory and
processing requirements.

To better grasp the critical issues of FC capabilities, the actual implementation of
fog computing, comprising a few fog nodes providing the big data gained from sensor
networks and assessing the performance of protocols used for big data provisioning in fog
computing, is within the scope of this research.

3. Methodology and Prerequisites for Modeling the FC Environment

For this research, a single board computer called Raspberry Pi was chosen as a fog node
to create research conditions. The current implementation of fog computing uses several
protocols, either standardized or experimental, to transmit real-time sensor data [23]. The
following were potential candidates, namely, MQTT and CoAP. The first protocol suitable
for FC is MQTT, designed for IoT in tandem machine-to-machine communications. MQ
Telemetry Transport is a publish–subscribe messaging protocol, which is inherently used in
networks that have the following characteristics: unreliability, high latency, small data, and
data transfer nodes that are too remote. The minimum amount of service information, the
availability of service classes, and the hierarchical structure of topics are the undeniable
advantages of the MQTT protocol, which is confirmed by a wide variety of both client
and server software, including open-source software. Its primary application is in sensor
technologies that work with satellite technologies. While brokers receive information
from the satellite, it is also used to automate home life, medicine, and much more. In
addition, owing to its miniature size, low energy consumption, and a small number of data
packets, along with the effective distribution of information to receivers, it is suggested as
an excellent choice for mobile applications [24].

Following this, the experimental FC network is expected to follow the OpenFog
Reference Architecture, which proposes some advantageous aspects compared to other
counterparts. These benefits are combined into the term SCALE, standing for:

• Security (additional measures need to be taken to guarantee safe and
trustworthy transactions);

• Cognition (the conscience of client-centric goals to enable autonomy);
• Agility (scalability of the overall infrastructure/pace of innovation);
• Latency (system control/real-time processing);
• Efficiency (dynamical free resource accumulation from participants).

Apart from the aforementioned criteria, the FC hierarchy is advised to be set up
in accordance with one of the approaches introduced in [24]: Figure 1 shows the cloud-
independent fog. This model is applicable in the cases of some events, such as when
regulation, security, and confidentiality are required (military direction), and when the
central cloud is unavailable in a certain territory. Figure 2 demonstrates a type of cloud
that requires different time intervals in action.

Having chosen an appropriate model for the potential FC, a lambda architecture-based
framework (http://lambda-architecture.net/, accessed on 1 February 2021) is proposed,
with the purpose of processing big fata generated by various devices. At its core, lambda
architecture involves processing big data using batch processing methods. This approach
focuses on compensating for fault tolerance, throughput, and latency through packet
processing. Broadly, the demand for lambda architecture is accelerated due to the growth of
big data, real-time analytics, and motivation to dwindle the latencies of MapReduce. Due
to the flexibility of lambda architecture (depicted in Figure 2), it can be adjusted to process

http://lambda-architecture.net/
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real-time big data streams; in other words, processing large data streams in real-time. From
a high-level perspective, the infrastructure based on lambda architecture consists of three
layers, as shown in Figure 2.
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The batch layer is primarily responsible for storing immutable, increasing master
datasets (HDFS), along with random computing views from the dataset (MapReduce). The
calculation of the so-called views is a continuous operation; when new data arrive, the
process of aggregation into views takes place. The knowledge gained from all datasets is
computed at the batch level, and is not expected to frequently change the conclusions. In
this case, the time spent on the calculation depends on the size of the processed data. The
outcome of the previous layer is a collection of files comprising pre-processed knowledge.
The second layer, called the serving layer, indexes and discloses the views, so that they can
be queried. Batch views are static, meaning the maintainer provides batch updates as well
as random reads. There are ideal tools for batch processing and maintenance layers, such as
Hadoop and Impala. Hadoop is relevant because it can process and store petabytes of data,
while Impala, in turn, interactively requests such data [25]. The real-time requirements for
the batch and service layers are not met, since MapReduce itself has a significant delay, so
hours of time can be required before the presentation data are propagated to the serving
layer. It is for this reason that a layer with speed is needed. The last layer is the speed layer
(Apache Storm, Spark Streaming), resembling the batch tier. The similarity is that either the
batch or speed layer gains insight from the data received. The speed layer compensates for
the shortcomings of the packet layer here, and the disadvantage is the delay at this level.
The compensation is carried out due to the peculiarity of real-time streaming applications,
such as Storm or others. The real-time insights include only the delta results to complement
the batch views. One noteworthy point related to the term ’real-time’ is its association
with near real-time, delays in the occurrence of events, and the availability of processed
data of the current event. The real-time mode in lambda architecture, by its very nature,
enables the processing of large data, which are captured after the start of a batch iteration.
The batch layer recalculates the batch views from scratch, while the speed layer uses an
incremental model (in which the views increase depending on the received data). The
feature of the speed level is characterized by the fact that real-time views are necessarily
temporary, and after the data is propagated through the respective layers, the results in the
views can be discarded here; all this implies real-time mode (Figure 3).
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The final piece of the puzzle is disclosing the real-time insights, so they can be queried
and merged with the batch views to obtain in-depth knowledge. Since real-time views are
incremental, the speed layer requires both random reads and writes, and for this purpose,
Apache Kudu, Apache Cassandra, or Apache HBase are primarily preferred, which provide
Apache Storm or Apache Spark streaming capability. For continuously growing real-time
views, it can be requested to merge with batch views simultaneously. Meanwhile, the
provisioning of raw data to be processed is performed using Apache Kafka and other data
collecting frameworks, e.g., StreamSets Data Collector, allowing the routing and processing
of data streams.

Considering the above-mentioned, a real-time big data processing framework for
FC, which is provided in Figure 4, was developed. The figure represents the high-level
structural model of real-time big data processing in a fog environment. The provision of
big data is primarily made by StreamSets Data Collector, which supports several origins
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i.e., Apache Kafka, MQTT, CoAP, HTTP, and UDP. While the batch processing layer is
based on Apache Hadoop, the speed layer relies on either Apache Storm or Apache
Spark streaming. Following this, Apache Cassandra and Apache Kudu real-time database
management systems constitute the serving layer, which is then connected to the data
visualization software supporting real-time data visualization and data preparation to
present the data obtained from the lower layer of FC.
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The estimation of the performance of FC is carried out on working fog nodes, and
the incoming traffic is captured using a network analyzer, which is Wireshark v2.2.6 in
this case. Having captured the network state in the high-loading, generated by sensors
transmitting a vast amount of raw data through each of the protocols to be assessed, the
capture file is analyzed on a desktop PC, using a language and software environment
for statistical computing R, to reach a conclusion regarding FC performance in big data
provisioning. In addition to the previous elements, the batch processing capabilities of FC
were scrutinized by running a word count MapReduce operation and Pi estimation using
the quasi-Monte Carlo method on a fog cluster. In this case, the time spent on the execution
was measured in order to draw a reasonable conclusion on the basis of the result obtained
from the simulation.

4. Fog Computing Performance Evaluation

In this subchapter, we create an experimental network based on the previous sub-
chapter to evaluate the possibilities of fog computing. In this experimental fog, a cloud-
independent model is chosen, which is shown in Figure 1. The parameters of this experi-
mental network are as follows: StreamSets (data collector) fog node (the number of network
elements is 100 threads) receives data at a speed of 100 Mbps, and the time allotted for the
experiment is 450 s. The foggy cluster consists of six machines assigned to three nodes for
data processing; the Raspberry Pi Model B is chosen. For the remaining nodes, Intel Core 2
Duo E8500 is chosen.

The following metrics are selected to measure the performance of big data provisioning
in fog computing:

- throughput;
- the value of the transmitted information;
- jitter.

Here, the provision of raw data is significantly dependent on the protocols, since
these data are directly dependent on these protocols. In this regard, the MQTT and CoAP
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protocols of the Internet of things are comparable with the regular protocols HTTP and
UDP. Accordingly, all these protocols are assigned the same data formats.

The simple raw data is data from temperature sensors that have the appropriate
formats with JavaScript Object Notation (JSON) (Concise Binary Object Representation
(CBOR) is also suitable in this case). All packets are analyzed using a real-time fog node
packet analyzer, including a stream processing pipeline (Figure 5).
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Figure 5. Data processing pipeline running on fog node.

Figure 5 shows the raw data being received by the HTTP server on the fog node, which
is still processing streams, i.e., converting UNIX time to a convenient format. After time
processing, real-time data is transferred to Apache Cassandra.

Data transfer to the database is omitted to eliminate the distortion of metrics, directing
outgoing traffic to the basket, while all information is discarded. This approach prevents
deviations in the experiment results, due to the lack of redundant data flow to be stored in
the real-time data warehouse, which consumes a huge amount of network resources.

A further capability of the fog node is the ability of stream processing; to put it
differently, the real-time data stream can be processed within strict time constraints. This
allows for monitoring various processes in important areas of the government, such as
banking. An example of the validation of credit card transactions performed by taxi services
is provided in Figure 6. In this case, the transactions are obtained from the pseudo-real-time
source generating credit card records on the fog node itself, to briefly demonstrate the
existence of fog nodes’ real-time stream processing capabilities. As shown in Figure 6, the
pipeline classifies credit card details before their identification, in accordance with vendors.
Following the classification, the credit cards with valid records are parsed to recognize the
number of credit cards. It is then saved to the distributed file system, which is a Hadoop
distributed file system (HDFS) in this implementation [25,26]. One point to be noted
concerning this implementation is the feature of user notifications. The pipeline has several
interactive charts depicting the number of records being processed, throughput, batch or
stream processing time per record, and the total number of processed records (Figure 7).
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The real-time database management system Apache Cassandra supports various
database import and export mechanisms, allowing the querying of data from the database
using external applications running either local or remote fog nodes. An example of these
mechanisms is Open Database Connectivity (ODBC), providing access to databases for
further analysis. The analysis in edge analytics allows other participants, either humans or
machines, to make rational decisions based on the tendency witnessed in the real-time data,
which allows for the monitoring and prevention of potential disasters, or other unexpected
circumstances. For this reason, edge analytics, as compared to cloud analytics performed in
the remote cloud, have paramount importance in the prevention of and reaction to events
in the extremely early stages. Due to immediate actions, a tremendous number of natural
and anthropogenic catastrophic accidents would be recognized before their proliferation,
thereby saving thousands, if not millions, of people’s lives. One implementation of data
aggregation in the fog nodes is the gathering of pipeline real-time data from seismometers
residing in seismograph stations. Their data are classified and routed to specific destina-
tions, including a database. Owing to Apache Cassandra’s support of real-time data storage,
the other fog nodes querying the database for the existence of new records concerning new
earthquake details can also provide a real-time data visualization (Figure 8).
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5. Analysis and Discussion of the Results

Before the post-processing of experimental data, the measure of central location
recognition should be chosen. The reason for this is that, from the perspective of statistics,
the mean, which is also known as the average, is not always appropriate. Therefore, another
valid measure of central tendency (median) is calculated and chosen as a primary criterion
for the comparison. The median is the average score for a set of data sorted by order of
magnitude, and less affected by outliers and skewed data (Figure 9).

In the case of the performance assessment, pure UDP transport protocol was included
to monitor the dependency of aforementioned network metrics on the upper-layer protocols
used for the transmission of raw real-time data to fog nodes for further processing real-time
processing and storage. The results of the experiment outline that, despite being based on
User Datagram Protocol (UDP), Constrained Application Protocol (CoAP) has overtaken
even its foundation UDP, and withstood the intense competition from other counterparts.
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However, pure UDP without upper-layer protocols is not suggested for usage, as security
and error correction mechanisms are not utilized.
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sioning in FC.

The use of the Transmission Control Protocol affects a higher delay variation in HTTP,
at 0.153 ms, which is the highest value amongst participants, and deemed as the least
appropriate protocol for big data provisioning in FC because it still follows the constraints
in the value of jitter concerning real-time data. Finally, MQTT demonstrates a value of jitter
at 0.099 ms, which makes it the third best possible candidate for the provision of big data
(as given in Table 1).

Table 1. The jitters of four protocols in the experimental fog computing network.

Protocol
Jitter (ms)

Median Mean

CoAP 0.053 0.07995726
HTTP 0.153 0.45754430
MQTT 0.099 0.47545580
UDP 0.055 0.12100310

A further performance evaluation is devoted to the batch processing abilities of fog
nodes in fog computing, in order to scrutinize whether fog computing can tackle this task
in the same way as conventional cloud computing. For this purpose, two estimations
were conducted, namely, the estimation of Pi using the quasi-Monte Carlo method, and
the prominent example of batch processing called ‘Word Count’. The results of both
experiments are provided in Tables 2 and 3.

Table 2. The time spent on calculating pi using the quasi-Monte Carlo method.

Fog Node
The Number of Partitions

10 16 26 32 64

Desktop (s) 3.700 3.760 3.780 3.777 3.790
Raspberry Pi 3 Model B (s) 12.126 12.070 12.168 12.040 12.209

Table 3. The time spent on a batch processing of datasets of various sizes.

File Size (Bytes) 1,226,438 35,926,176 148,610,460 371,526,148

Small Medium Large Bigger
Single node (s) 83.007 504.689 809.096 2208.476
Two nodes (s) 75.084 116.434 336.209 1245.088

Three nodes (s) 65.120 84.393 219.528 568.000
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Following the previous examination, fog nodes based on Raspberry Pi 3 Model B single-
board computers were joined into a cluster running Apache Hadoop and Apache Spark.

Concerning the data above, they demonstrate that the performance of single fog
nodes is limited to some extent; thus, cannot be compared with cloud computing’s high
performance in batch processing. This trend is arguably attributed to the heterogeneous
character of fog computing involving a vast number of devices having either similar, or
distinguishing, hardware characteristics.

The data in the Table 2 demonstrates that as the number of nodes in fog computing
increases, the time spent on batch processing decreases exponentially. Meanwhile, the
efficiency of batch processing improves proportionally to the size of the file (Figure 10).
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The following results given in Table 3 are derived from the experiment (measures are
given in seconds):

Due to the high amount of time spent processing data at rest, it is not recommended
to delegate batch processing to fog computing. The reason is that the ability of cloud
computing to process this data is much faster compared to fog nodes, which have modest
amounts of computing resources. However, they can generally fulfill the requirements of
real-time streaming processing.

6. Conclusions

The paradigm of fog computing is gaining increasing popularity, with the ability
to complement cloud solutions by scaling and optimizing the IoT infrastructure, being
especially efficient in solving real-time problems. Fog computing is seen as an extension
of the cloud at its core, which has some specific computing resources and data storage
registers, and is located at the nodes of networks. With its flexible ability to process data
closer to where it is produced, fog computing significantly overcomes the problem of
extensive data volume, diversity, and speed.

In this paper, the capabilities of fog computing for big data provisioning were analyzed
with an appropriate visualization scenario. The capabilities of fog computing for big data
provisioning, such as the ability of batched stream processing, were evaluated, taking
into account the above-mentioned prerequisites in terms of time using different protocols,
types of nodes, and partitions; and found that the CoAP protocol is the most applicable
protocol for this context in terms of jitter, while HTTP protocol shows a higher jitter time.
Evaluations show that fog can be used for real-time data streaming; however, it is ineffective
for batch processing.
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In further works, the capabilities of fog computing in machine-learning and predictive
analysis will be elaborated.
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