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Abstract: This study is part of an ongoing research project aiming to develop a method for under-
standing workers’ efficiency (workers’ time spent in value-adding activities) by measuring new
indexes, such as workers’ travelled distances and workers’ locations collected by smartwatches. To
achieve the objective of the study, a Design Science Research (DSR) strategy was adopted. The first
cycle consists of understanding which types of information smartwatches can collect and how this
data can be employed for measuring workers’ efficiency. This paper reports a case study as part of
the first Cycle of the DSR. The object studied were the activities carried out by a carpenter trade in a
housing renovation project. The authors used the geographic coordinates obtained by smartwatches
worn by the carpenter trade connected to two Global Navigations Satellite Systems. The primary
contribution of this research consists of proposing a set of five guidelines for the application of
smartwatches, using data gathered from the case study. The guidelines are: (1) adopt a stratified
sampling approach for selecting the workers involved according to their tasks conducted; (2) set up
the smartwatches considering workers’ physical features; (3) carefully consider the job site location
for delivering the smartwatch to workers; (4) establish assumptions for the data cleaning process
regarding construction project features and the study’s goal; and (5) use individual participant data
in the analysis according to each participant’s characteristics and role.

Keywords: construction site; transportation activities; travelled distance; smartwatch

1. Introduction

In the last decades, significant technological and scientific advances have been made
as a result of Industry 4.0, which mainly focuses on applying computers, sensors, and
cyber-physical systems in production of goods or services. The construction industry has
also benefited from this development, resulting in the term Construction 4.0, which has
gained popularity in the recent years [1]. The new technologies offer new opportunities for
companies that want to increase the quality of their work, complete projects on time, and
offer new services to their customers [2]. The adoption of Industry 4.0 technologies will
enable the improvement of productivity and, by extension, greater market success [3].

Among the different possibilities of Construction 4.0, one is to use sensors or trackers
to measure workers’ activities to understand their performance based on how and where
workers spend their time on the construction sites [4]. With regards to how workers spend
their time, several methods for improving construction labor producitivty and several
indexes for measuring construction labor productivity, either direct or indirect, have been
created and adopted within the construction industry [5]. These indexes aim to evaluate
how effectively equipment and workforce utilization are managed. An often applied
approach is Activity Analysis, which determine how workers spend their time on different
work activities, mainly classified into Value-Added Work (VAW), and Non-Value-Added-
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Work (NVAW) [5]. With regards to where workers spend their time on the construction site,
previous studies adopted location-based technologies [6].

It is recognised that the first step towards developing an automated monitoring system
for construction workers” performance consists of establishing a complete and competent
activity recognition solution [4]. A typical data-driven and automated construction moni-
toring system consists of three sequential levels: (1) activity recognition, which involves
the development of technology that determines which type of activity is taking place at
any given time; (2) activity tracking, which exploits information from recognised activities
to trace workers in different time periods and different locations; (3) performance moni-
toring, which aims to determine the progress of activities against planned schedules and
preestablished Key Performance Indicators (KPI) [7].

The main existing technologies adopted in previous research works to automate data
collection on construction workers can be grouped into two approaches: (1) computer
vision-based technologies; and (2) sensor-based technologies. Vision-based activity anal-
ysis requires single or multiple cameras for detecting and tracking resources as well as
procedures for activity recognition [8]. Sensor-based technologies enable the identification
of measurement of workers’ posture, motions, and location [9]. Among the existing digital
approaches for data collection, sensor-based technologies using body-worn sensors have
gained greater attention among researchers for monitoring construction activities [10] due
to their flexibility to adapt to different external conditions and their reduced size easily to
be embedded in e.g., wristbands [11].

Body-worn sensors, also called wearable sensors, are small devices that people can
carry around while performing their daily activities [12]. The terms ‘wearable technology’,

‘wearable devices’, and ‘wearables’ all refer to electronic technologies or computers that

are incorporated into items of clothing and accessories which can comfortably be worn
on the body [13]. These wearable sensors can integrate accelerometers, gyroscopes, and
magnetometers, collectively called Inertial Measurement Units (IMUs). IMUs can measure
inertial body motions in three axes, as each activity creates unique acceleration signal
patterns. Machine learning algorithms are commonly used to differentiate diverse activities
by learning the signal pattern conditions [10,11].

Location-based sensors like Global Navigations Satellite System (GNSS), Global Posi-
tion System (GPS), Radio-frequency Identification (RFID), and ultrawideband (UWB) can
track workers’ real-time location changes to automatically collect worker-activity-related
data [5]. However, the application of sensor-based technologies often requires expensive
equipment and an extended data analysis period due to the necessity of extensive training
data sets for the machine learning process. Hence, these advanced tools can be challenging
to implement by practitioners in construction projects. To avoid these issues, the authors
chose to use smartwatches for this study. Some of the advantages of smartwatches are their
low cost, user-friendly interface, and that they are comfortable and easy to wear and use.

Today’s smartwatches have many integrated sensors, used extensively in current
activity recognition studies [14]. Several studies agree that this kind of wristband activity
tracker is an objective and non-intrusive way of continuously observing measurements
that are important for the performance monitoring of construction projects [4]. This paper
presents a new approach to use the geographical location data of workers collected through
smartwatches as means of remote activity tracking, which complements the current body of
knowledge by providing a source of evidence that can potentially increase the accuracy of
activity tracking studies. The authors of this study developed a method for understanding
workers’ efficiency (workers’ time spent in value-adding activities) indirectly by measur-
ing new indexes, such as: workers’ travelled distances and workers’ locations collected
by smartwatches. To achieve the objective of the study, the first step consists of under-
standing which type of information smartwatches can collect and how this data can be
employed for measuring workers’ efficiency. Hence, this study was driven by the following
research questions:
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e How can smartwatches be adopted to facilitate understanding workers’ travelled
distances and job site location?

e How can the data gathered using smartwatches be helpful in measuring
workers’ efficiency?

To address these questions, the authors conducted an exploratory case study. This
study is part of an ongoing research project which aims to improve on-site efficiency in
the Danish construction sector by improving resource productivity. The result section
in this paper is mainly descriptive, as it is focusing on identifying the potential uses of
the smartwatches rather than presenting a statistical analysis of the workers’ travelled
distances and their job site locations.

This paper is structured in seven sections, organised as follows. After this introduction,
the Section 2 presents the theoretical background of the research. Firstly, this section
presents, based on the existing literature, the characteristics, advantages, and limitations
of adopting smartwatches as a suitable device for measuring workers’ travelled distances
and locations. Then, the section examines the literature on the adoption of smartwatches in
the construction industry. In the Section 3, the research method is described. This section
includes the research strategy justification and the construction project description where
the empirical case study was carried out. Finally, this section explains the research design,
including a description of the steps conducted. The results are presented and described
in the Section 4. The Section 5 presents the primary contribution of this study consisting
of a set of guidelines for further application of smartwatches to collect workers’ travelled
distances and locations. The Section 6 discusses other possible contributions of the present
study. Lastly, Section 7 introduces the conclusions obtained from the study performed and
lists the actions that will be carried out to continue the initiated work.

2. Literature Review
2.1. Smartwatches

Smartwatches, smartphones, and other mobile devices have become popular in sup-
porting human activity recognition for research purposes, in contrast with other complex
devices that require sophisticated laboratories and have minimal mobility [15]. Smart-
watches are convenient to wear and have the capability to collect data in a continuous
manner, given that the battery is charged periodically [16]. Smartwatches have already
been widely used and accepted among the general population. There are applications
taking advantage of these devices, based on the analytics of their captured data to provide
personalised services to users [17]. One of the most popular applications is electronic fitness
trainers, which allow the users to generate training plans based on their physical conditions
and goals. This type of application has received good acceptance in the consumer market,
and have promoted the quick popularisation of smartwatches [17].

There are several smartwatch brands in the market, some of the most popular being
Garmin®, Polar®, Suunto®, and TomTom® [18]. Within these brands, there are various ex-
isting models, e.g., Garmin Forerunner® 45, which is the model used in this research study.
Most smartwatches give information about distance and speed using a GNSS, such as GPS.
To obtain the best possible GPS readings, a high sampling frequency, open areas free from
obstructions such as tall buildings, and clear skies are required [19]. Johansson et al. [18]
conducted a case study to determine the accuracy of various GPS sport watches in mea-
suring distance throughout a 56 km running race. They concluded that the GPS sport
watches in the study have an accuracy of 0.6 & 0.3% to 1.9 & 1.5% (median =+ interquartile
range) in reporting distance covered. This indicates that GPS sport watches are a valid and
feasible method for sport scientists and coaches to measure performance and track training
load. However, the accuracy could differ depending on the field of application. To the
authors’” knowledge, the accuracy of smartwatches has not yet been tested on construction
sites, where several solid objects (e.g., concrete structures) could potentially interfere with
the GNSS signal. Hence, the aspect of accuracy needs to be considered when data are
interpreted in other fields.
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Despite the advantages of using smartwatches in terms of gathering data, the trans-
fer process of the collected data to other devices presents some limitations [17]. Gener-
ally, there are two main approaches: (1) access to raw data through a smartphone; and
(2) access to data through an app provided by the wearable proprietary warehouse. The
first option enables the researcher to perform real-time studies. However, to transfer the
data from the wearable to the smartphone, a specific app needs to be developed, and this
requires programming knowledge about e.g., event communication. Moreover, depending
on the brand of the wearable, an app in the wearable itself also needs to be developed.
In the second option, data is transferred through proprietary Application Programming
Interface (APIs) based on a Representational State Transfer (REST) service provided by the
wearable provider. The main drawback of this approach is that real-time access to data is
not possible, because it depends on the continuous synchronisation between the wearable
and the warehouse [17]. In the construction industry, during the construction phase, the
visualisation of real-time worker locations could benefit safety engineers and managers to
react in real-time to an incident. However, for the purpose of this study, not having access
to real-time data from the smartwatches is not considered a critical limitation. The authors
of this paper consider it sufficient to obtain the data after synchronising at the end of
each workday.

Probably, the most significant limitation of the adoption of smartwatches is that they
collect location from a GNSS, as mentioned above. A GNSS receives signals from more
than three satellites. With these, it can accurately estimate the current location through
trilateration by the rear intersection, using three different distances [20]. The accuracy
of GPS, one of several GNSS satellite systems, is within 4.9 m (16 ft.) radius under open
sky [21]. However, in an indoor environment, GNSS cannot be used. The GNSS signals
are carried through waves, which have a frequency that does not move easily through
solid objects, such as walls of buildings. [20]. For this reason, the approach presented in
the present paper is limited to construction projects where workers spend most of their
working time outdoors (e.g., renovation building projects with predominantly external
activities and civil infrastructure projects such as roads and bridges).

2.2. Previous Studies That Used Wristworn Sensors in the Construction Sector

Previous studies that adopted wristworn sensors in the construction industry mainly
aimed to automate the worker’s Activity Recognition (AR) or monitor workers” Health
and Safety (HS) conditions. Table 1 presents 19 papers found in the existing literature that
adopted these devices. Five of them adopted this wearable technology for AR purposes;
ten of them focused on HS management purposes; and four papers conducted Desk-Study
(DS) approaches.

For workers’ activity recognition, studies mainly focus on associated IMUs to the
movements and motions executed tied to performing a specific construction task. The
first research work published that adopted a smartwatch, specifically the GearLive from
Samsung, for workers’ activity recognition was published in 2012 by Cezar [22]. The
author collected the data from a 3D accelerometer and 3D gyrometer from three workers
on three different days and labelled them during each activity. Cezar [22] evaluates five
machine learning algorithms to classify four construction activities (hammering, sawing,
sweeping, and drilling). The results showed the algorithms allow for classification of
activities with an accuracy of 91%. Ryu et al. [23] conducted a similar study for action
recognition using a wristband-type activity tracker, specifically the eZ430-Chronos sport
watch. The authors proposed and tested an approach based on accelerometer-based action
recognition in five workers of a masonry trade. Innovative research was recently conducted
in the activity recognition field by Jassmi et al. [4]. The authors used physiological signals
as an additional source of information that helps improve the accuracy of machine learning
classifiers to recognise construction labour activities. For this, they combined the use of a
wristband biosensor unit with a heart rate monitoring chest strap on workers during their
working hours.
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Regarding the use of smartwatches to collect physiological signals for health and
safety management, most of the papers found in the literature are part of a long-term
research project conducted by researchers from the University of Michigan [24-27] and
Pennsylvania State University [28]. In all these studies, the research group adopted the
Empatica E4 to collect physiological signals, which is a wristband biosensor especially
designed for researchers and physicians who are conducting research on physiology in
daily life and is not for consumer use [29].

Hwang et al. [30] conducted one of the first studies in this field for understanding the
challenges and opportunities to measure workers’ physical demands through field Energy
Expenditure (EE) measurements. Hwang et al. [30] used workers” Heart Rate (HR) to
estimate EE. Continuing the interest to estimate EE using smartwatches, Jebelli et al. [26,27]
collected information from 10 construction workers on a job site to examine their physio-
logical signals when executing different construction tasks. Jebelli et al. [26,27] used the
EE to separate tasks into low-, moderate-, and high-intensity activities. Jebelli’s studies
contributed to the body of knowledge on the in-depth understanding of construction
workers’ stress on construction sites by developing a non-invasive means for continuous
monitoring and assessing workers’ stress. Prior to this, Jebelli et al. [25] confirmed the
feasibility of the wristband-type wearable sensor to evaluate construction workers’ physical
and mental state. To do this, Jebelli et al. [25] investigated three bio signals of two workers
for 10 h to detect their physical and mental conditions during their work on the site. The
three bio signals were: (1) Electrodermal (EDA), measuring the changes in the electri-
cal properties of the skin; (2) Skin Temperature (ST), measuring body temperature; and
(3) Photoplethysmogram (PPG), measuring the blood-volume variations in vascular tissues.
Another study conducted by the group [24] focused on investigating the bio signal EDA to
understand construction workers’ perceived risk during their ongoing work. To achieve
this objective, the authors [24] collected 30 h of physiological sensory data from eight
construction workers during their ongoing work. The main contribution of this study was
to show the flexibility of using wearable sensors to understand workers” perceived risk in
construction sites continuously.

The last study published by the referred group of researchers from the University
of Michigan, conducted by Shakerian et al. [28], aimed to assess the occupational risk of
heat stress in construction. For this purpose, the authors collected physiological signals
from 18 workers while performing specific construction tasks under three predetermined
environmental conditions with a different probability of exposure to heat stress. The
analysis results revealed that the proposed process could predict the risk of heat strain with
more than 92% accuracy.

Still in the adoption of smartwatches for health and safety management, Guo et al. [31]
used a Basis Peak™ smartwatch to collect workers’ psychological status to associate with
unsafe behaviour in order to prevent accidents. To do this, the authors ran an experiment
for 18 days on workers conducting activities in a high-rise building job site. The results
showed significant correlations between workers’ psychological status and physical status.

The four desk-research studies identified focused on both health and safety manage-
ment and how smartwatches and other wearable technologies have been used in previous
studies [7,32,33], and on the construction workers” possible acceptance of the adoption of
these technologies [13]. The literature review concerning applications of wearable kinematic
and physiological sensors in construction safety and health conducted by Ahn et al. [32]
revealed five general applications: (1) preventing musculoskeletal disorders, (2) preventing
falls, (3) assessing physical workload and fatigue, (4) evaluating hazard-recognition abili-
ties, and (5) monitoring workers’ mental status. Awolusi et al. [33] concluded from their
review that a wide variety of wearable technologies are being used in other industries to
enhance safety and productivity while few applications are observed in the construction
industry. The study conducted by Choi et al. [13] aimed to investigate determinants for
workers” adoption of wearable technology in the occupational work context. To achieve
this, the authors developed and applied a survey questionnaire to 120 workers at three
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construction sites in the United States of America. The research results indicated that
perceived usefulness, social influence, and perceived privacy risks are associated with
workers’ intention to adopt smart-vests and smartwatches.

The present literature review indicated growing attention to wristband-type activ-
ity trackers, such as smartwatches, as a tool to monitor and track construction workers’
activities. The existing literature emphasises a high accuracy in their results for activity
recognition based on the data gathered by the biosensors, accelerometers and gyroscopes
embedded in the smartwatches. However, a significant limitation of those approaches
consists in the data labelling process. Researchers need to select and classify a limited num-
ber of activities. Hence, this sophisticated approach can be very impractical for adoption
by practitioners. Other functionalities presented in those smartwatches related to their
location-based sensors were, to the author’s knowledge, not yet tested. So, the location
information collected by the GNSS receiver of these devices can be helpful in understanding
workers” movements within the job site. To bridge this gap, the present exploratory study
aims to adopt smartwatches to determine the distance travelled by workers and workers’
locations during their working hours.
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Table 1. Previous studies that adopted wristworn sensors in the construction industry. AR: activity recognition, HS: health and safety management, DS: desk-study.

. . Sensors/ Testing
# Ref. Field Index Measured Topic Evaluated Tools Used Goal Type of Wearable Environment
Four activities (hammering, Accelerometer To classify construction activities using ~ Samsung GearLive .
! (221 AR Heart rate (HR) sawing, sweeping, and drilling) Gyrometer accelerometer and gyrometer data Smartwatch Outdoor Job site
, . . HR sensor To monitor workers” physical strain Basis PeakTM .
2 [34] HS HR Workers’ physical strain ECG sensor based on HR fitness tracker Job site
. To estimate energy expenditure (EE) by Basis PeakTM .
3 [30] HS HR Energy Expenditure (EE) Accelerometer monitoring HR fitness tracker Job site
Four activities (spreading
mortar, bring and laying blocks, . . eZ430-Chronos Indoor Masonry
4 (23] AR HR adjusting blocks, and removing Accelerometer To recognise masonry actions sport watch Training Centre
remaining mortar)
Heart rate To investigate the relationship between
5 [35] AR Work patterns HR sensor work patterns and heart rate “off-the-shelf”-type Job site
reserve (HRR)
reserve measurements
Usefulness (PU), Social . . , s . .
6 [13] DS Intention to adopt influence (SI), Perceived Questionnaire To investigate workers mter}tlon to B.aSIS PeakTM Job site
. . adopt a smart vest and a wristband fitness tracker
privacy risk (PR)
HR Level of stress: (1) Calm; To investigates the relationship between g by .
7 [31] HS HR sensor workers’ psychological status and Job site
Number of steps (2) Stress; and (3) Sport status . smartwatch
physical data
Electrodermal (EDA),
Skin Temperature (ST), Workers’ physical and . To assess workers’ physical and mental . .
8 (23] HS Photoplethysmogram mental state Biosensor state based on three bio signals. Wristband sensor Job site
(PPG)
To review the applications of wearable
9 [33] DS - Predicting safety performance  Literature Review technology for personalised construction - -
safety monitoring
Four masonry activities
(spreading mortar, bringing . . ’
10 [10] AR Hand activities and laying blocks, adjustments Accelerometer To recognise actions of masonry work for ¢Z430-Chronos Laboratory

blocks, and removing
remaining mortar)

automatic field data collection

sport watch
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Table 1. Cont.
. . Sensors/ Testing
# Ref. Field Index Measured Topic Evaluated Tools Used Goal Type of Wearable Environment
Level of stress: (1) low; . To measure workers’ stress with signals Empatica E4 .
1 [26] HS HR (2) medium, and (3) high Biosensor from a wristworn biosensor wristband biosensor Job site
Physical demand: (1) low; . To measure workers’ physical demand Empatica E4 .
12 [27] HS HR (2) moderate, and (3) high Biosensor levels from a wristworn biosensor wristband biosensor Job site
Workers’ perceived risk: . To understand workers’ perceived risk Empatica E4 .
13 [24] HS EDA (1) low; and (2) high Biosensor by monitoring physiological responses  wristband biosensor Job site
Five applications to evaluate
and prevent:. State-of-the-art within applications of
(1) musculoskeletal disorders, . . . . . .
14 [32] DS - - Literature Review wearable kinematic and physiological - -
(2) falls, (3) physical workload, . .
o\ e sensors in construction safety and health
(4) hazard-recognition abilities,
and (5) workers’” mental status
Three ce_ltegorles: State-of-the-art of literature concerning
(1) audio-based, technologies for automated performance
15 [7] DS - (2) kinematic-based, and Literature Review OB ‘P - -
(3) computer vision- monitoring of construction workers
basedrt)echniques and equipment
HR To estimate fatigue based on monitoring
16 [36] HS Sleep qualit Fatigue Biosensor HR and sleep quality of Fitbit Charge 2 Laboratory
Pq Y construction workers
To propose a predictive heat strain
17 [28] HS ST, PPG, EDA Heat-related illnesses Biosensor process based on workers physmloglcal . Emp atlc'a Ed Laboratory
signals to address the risk of wristband biosensor
heat-related illnesses
To develop an automatic method for
Workers’ perceived risk: . identifying workers” perceived risk level Empatica E4 .
18 [37] HS HR (1) low; and (2) high Biosensor using a wristworn biosensor collecting  wristband biosensor Job site
physiological signals
Blood volume pulse
19 4] AR (B\r]zi)e’ gf;g)lglt{lon Fourjggr‘g:ez;?illgn§;1$OV1ng’ Biosensor To recognise actions using labour Empatica E4 Pre-fabrication
C & pening Accelerometer physiological data wristband biosensor factory

Galvanic skin
response (GSR), ST

stone moulds)
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3. Research Methodology
3.1. Research Strategy

This research project adopted a Design Science Research (DSR) strategy, which aims
to produce innovative constructions, called artifacts, to solve real-world problems and
to contribute to the theory of the discipline in which it is applied [38]. This project’s
artifact consists of a method for understanding workers’ efficiency indirectly by measuring
workers’ travelled distances and workers’ locations collected by smartwatches worn by
construction site workers. The research process of designing the artifact developed involved
four learning cycles, named Cycle 1, 2, 3, and 4. During each cycle, the four main phases
that categorize this DSR were conducted: (1) understanding; (2) construction; (3) analysis;
and (4) evaluation.

The four DSR phases organize different approaches carried out by the research team in
various construction sites, named Case A, B, C and D. For that purpose, this research used
the case study [39] method as the primary research strategy, as case studies offer flexibility
for explorative and theory-building research in real-life contexts. During a case study, the
research scope can be re-addressed and complementary data sources can be acquired, and
the method serves several research objectives [40].

The present paper exclusively focuses on presenting the results of the first learning
cycle conducted in Case A. Among the number of options in carrying out case research,
the authors characterise the first study as an exploratory case study [39]. The authors
adopted the exploratory case study method because it enables the investigation of a given
phenomenon characterised by a lack of detailed preliminary research. The phenomenon
of the study comprised construction workers’ travelled distances and workers” locations
using smartwatches as a digital tool for collecting data. The lack of previous studies that
used smartwatches for this purpose marks this study as exploratory. The real-life context is
represented by the building project studied.

3.2. Case Study Description

The study was conducted on a building renovation project located in the city of Odense
in Denmark, named in this research work as Case A. The housing complex consists of two-
to four-story buildings with two apartments on each floor. There are a total of 587 housing
units. The buildings were first established in the early 1950s and were, at the time of this
research, undergoing comprehensive renovation. The renovation included replacing old
balconies, windows, kitchens, and bathroom interiors, adding insulation in walls, putting
up drywall partitioning walls, and turning some units into accessible housing units by
installing elevators in the stairwells. During the execution of the renovation project, tenants
were rehoused in the period when their apartment was being renovated, but they were
living in their apartment during the renovation of the neighbouring buildings. To minimise
the need for rehousing, only around 15% of the units were renovated at the same time. The
result of this agreement was that the contractor had a restricted area for the construction
work activities. For this reason, logistical challenges were significant in the project.

This project was chosen for two reasons. First, the possibility of utilising an existing
collaboration with the construction company for the development of this research. The
partnership allowed the researchers to access project-related documents, observation of
routine activities, as well as interact with team members during the data collection period
on the job site. Second, this type of building project represents the typical Danish social
housing buildings that have been or will be retrofitted in the upcoming years as part of the
Danish government’s strategy for energy renovation of the existing building stock [41,42].
Analysing a popular construction solution in a typical social housing building will allow
the authors to generalise case learnings to similar contexts about how and where workers
spend their working hours in renovation projects. Thus, the final goal of this exploratory
case study is the creation of hypotheses for further analysis [39] rather than quantitatively
stating statistical facts.
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The construction site layout can be seen in Figure 1. The site consisted of inhabited
buildings, buildings under renovation (Blocks 51, 53, 55, 57, 58, 59, 60, 62, 64, 66, and 68
in Figure 1), and two large warehouses for material storage. The rest of the job site was
allocated for other support activities, such as transport space, temporary storage space,
and hazard space. Vehicles, pieces of equipment, and workers shared the same paths for
transport activities. Tools and small pieces of equipment were stored in modular storage
containers along with the construction site. Office containers, break rooms, and changing
rooms were placed in a two-story complex located on the perimeter of the site.

55 ] . .
(a) ss401 ' T r ' Blocks 57-59 (b)
55.400 - ]
Storage containers
& 5
) Warehouse 2 1
3 S
= b
= Job site
<
— 55399 . 7

I ' Warehouse 1
Super Market l
55.398 - l .

1 2 1 " 1 L 1

10.340 10.341 10.342 10.343

Office containers |

Longitude

Figure 1. (a) Job site layout including geographic coordinates; (b) Blocks 57-59; (c) Storage containers
and Warehouse 2; and (d) Office containers.

3.3. Research Design

The research comprised six steps: (1) study preparation; (2) setup of smartwatches;
(3) gathering data; (4) data storing and transformation; (5) data cleaning; and (6) data analysis.

3.3.1. Study Preparation

The first stage of this exploratory study aimed to define the project goal and to select
the digital devices for collecting data. For that purpose, a meeting with field engineers and
managers was conducted at the job site in the beginning of June 2021, week 23. During
this meeting, the identification of the period of job site visits and the trade involved in the
study were defined.

The Garmin Forerunner 45 smartwatch (see Figure 2a) was chosen for this study due to
its technical features, such as: (1) the availability to use without a phone; (2) the availability
to transfer data from the smartwatch to the laptop using the Garmin Express app, and then
access historical activity through the Garmin Connect website; (3) the availability to export
data in multiple formats including the GPS Exchange Format (GPX), which allowed the
authors to transform the raw data from the website to a Comma-Separated Value (CSV)
format; and (4) the availability to create and customize activities, which allowed the authors
to manually enter an activity in accordance with the characteristics of the relevant process
using basic information.
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Figure 2. (a) Garmin Forerunner 45 adopted for the study; (b,c) two examples of carpenters wearing
the smartwatch.

Prior to the data collection period, the participants of the study were identified. The
carpenter trade was chosen as the subject of study because this trade is part of the same
company as the general contractor, and the general contractor was most interested in
understanding the time utilization of its own trade. Carpenter tasks include outdoor work
such as installing new balconies and windows (see Figure 2b,c), and indoor work in the
form of installing new partition walls, baseboards, and doors, and insulation of floors
and roofs. The number of study participants was limited to ten because of the maximum
number of available smartwatches. Hence, the participant sample for the study represents
45% of the population size of the carpenters’ trade (22 workers). The ten carpenters were
chosen randomly, independent of which task they were assigned to. All participants gave
their informed consent for inclusion before they participated in the study.

3.3.2. Setup of Smartwatches

The preparation of the smartwatches involved several aspects: (1) creating a user
account for each smartwatch; (2) creating a group of all user accounts; (3) setting up
preferences (e.g., notification settings, units of measure, GPS activation); and (4) adding
user information (height, weight, age). Personal data policies hindered the collection
of personal user information in this study. Consequently, general, average data for a
Danish male [43] was used as a substitute for the specific numbers. Table 2 summarises the
parameters adopted for the study.

Table 2. Parameters adopted for the study.

Activity Tracking User Settings
Sounds & Activity Activit M ¢
Alerts Type Tr:clljiln)é HR ea;;}l:lriet;nen Height Weight Gender Age
Setting All off Walking On Wrist Metric 182 cm 86 kg Male 41

3.3.3. Gathering Data

For gathering data at the construction site, ten weekdays of on-site data collection
(eight hours/day) during weeks 25 and 26 of 2021 were conducted. During this period,
the authors were able to observe all the activities involved in the renovation process of a
housing unit. Hence, the sample size of ten days made it possible to look for patterns in
the data and come up with a model to view this data. The first day of the data collection
period, named Day 0, was used to identify the carpenters’ tasks, and get familiar with using
the smartwatches. The subsequent nine days were used to collect data. Those days were
named Day 1 to Day 9. Day 0 was Monday of week 25 and Day 9 was Friday of week 26.
The data collection duration was the same as the workers” workhours from 06:30 to 14:30,
excluding a coffee break (09:00 to 09:15) and a lunch break (10:30 to 11:00). On Fridays
(Day 4 and Day 9 in this study), the workday was one hour shorter, i.e., 07:00 to 14:00.
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The data collection aimed to gather two kinds of data: (1) quantitative data regarding
the workers’ travelled distances and locations; and (2) qualitative data regarding workers’
perception of wearing a smartwatch while performing their work.

Smartwatches Delivered to Workers

The smartwatches were handed out to the carpenters each morning at the beginning
of the workday. The smartwatch activity (called “Walking” on the watch) was started by
one of the researchers before handing out the watch. The delivery mainly took place by a
material storage area close to warehouse 2 (see Figure 1). Some watches were also handed
out by the office containers (see Figure 1) because some carpenters went to the break room
to change clothes before starting their workday and then approached the researchers to pick
up a watch. At the end of the workday, the smartwatches were collected by the researchers
either at the locker room or at warehouse 1. Then, the researchers ended and saved the
smartwatch activity.

Workers’ Perception

On the last day of the job site visits, the authors collected feedback from eight of the
ten participants through a questionnaire. The remaining two participants did not wish to
answer the questionnaire. The questionnaire aimed to collect the carpenters’ perception
of wearing a smartwatch during their workday. It consisted of four questions using the
Likert scale and was carried out using a tablet as Computer-Assisted Personal Interviewing
(CAPI). The tablet allowed to record answers directly into the survey platform and ensured
the anonymity of participants.

3.3.4. Data Storing and Transformation

The data was acquired by connecting and synchronising the Garmin smartwatch to
the Garmin Express laptop app using a USB cable. To prevent loss of data due to empty
batteries or technical errors, the smartwatches were charged every night and synchronized
after each day of data collection.

The files with activity recordings from the smartwatches were organised into folders
named “Day 1” to “Day 9”. Each folder contained ten subfolders with the data from each
smartwatch, resulting in a total of 90 possible activity recordings. Unfortunately, despite
the above-mentioned precautionary measures, during the data collection, different issues
prevented data from being collected for 26 of the activities. In 18 cases, the problem was
the absence of the participating carpenters due to, e.g., illness or education leave. The
remaining eight unusable activities were either due to the activity accidentally being ended
by the carpenter before the workday ended, not being saved correctly, or the wrong kind
of activity being used (for instance, using “Indoor walking” as activity would mean GPS
coordinates were not recorded).

Table 3 summarises the file status from the smartwatches, using the following legend:
(1) Yes represents the files that were saved correctly; (2) No corresponds to smartwatches
that were not used during that day due to absence of workers involved in the study; (3) Not
Saved (NS) corresponds to files, which were not usable for any of the reasons mentioned
above. As shown in Table 3, the days with the lowest number of activities saved were Day 1
and Day 9, with five files each day. Day 5 represents the day with most files saved, namely
nine files. As the smartwatches were randomly distributed among the carpenters each
day, there is no pattern in which watches were used on which days. A total of 64 usable
activities with GPS coordinates were recorded, which gives an average of seven watches
from each day of data collection.

Hence, on each of the nine days of data collection, between five and nine of the ten
smartwatches were in use. To organise this data, the authors generated a single XLSX-file
including the data from the 64 usable files.
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Table 3. Status of files from smartwatches.

SWo1 SW02 SWo3 SWo4 SWo05 SWo06 SWo7 SWo8 SW09 SW10 Total
Day 1 No Yes Yes Yes Yes NS No No No Yes 5
Day 2 Yes Yes Yes Yes NS No Yes Yes Yes NS 7
Day 3 Yes Yes NS Yes No No No Yes Yes Yes 6
Day 4 Yes Yes Yes Yes No Yes No Yes Yes Yes 8
Day 5 Yes Yes Yes Yes Yes Yes Yes Yes No Yes 9
Day 6 No Yes NS Yes Yes Yes Yes Yes Yes Yes 8
Day 7 NS Yes No Yes Yes Yes Yes Yes Yes Yes 8
Day 8 No Yes Yes Yes Yes No Yes Yes Yes Yes 8
Day 9 No NS No Yes Yes No NS Yes Yes Yes 5
Total 4 8 5 9 6 4 5 8 7 8 64

As previously mentioned, the data came from the Garmin website in a GPX-format.
It was transformed to a CSV-format using Python programming. Python is a general-
purpose programming language [44]. The features identified for each data point are:
(1) Unix time, consisting of the number of seconds that have elapsed since the Unix Epoch
(1 January 1970); (2) the time, day, and hour (3) latitude (4) longitude; (5) altitude; and
(6) the accumulative distance; These features were organised in a Microsoft Excel
Worksheet (XLSX).

3.3.5. Data Aggregation and Cleaning

The data was aggregated and expressed in a summary according to the smartwatches
used (e.g., SWO01) and the day of the data collection (e.g., Day01 or D1) for further analysis,
see Table 4. The data was cleaned considering three assumptions to improve the validity and
achieve the required accuracy of the smartwatch data according to the purpose of this study.

First, to ensure comparability, all activities lacking data from more than one continuous
hour of the workday were excluded from the study. Hence, the activity duration of each
activity saved considered valid for the analysis was 8 h & 30 min for all days, except
for Fridays (Day 5 and Day 9) where it was 7 h + 30 min. The excluded activities are
highlighted in Table 4. Excluding these ten activities resulted in a total of 54 activities to be
analysed, totalizing 194,549 data points. That is, around 3600 data points per smartwatch.

Second, all data collected during the lunch break (i.e., 10:30-11:00 every day) was
removed, since the breaks are not part of the paid worktime. For the same reason, data
collected outside the daily workhours was removed as well.

Third, the data was cleaned according to the speed of walking. If the speed from
travelling from two consecutive coordinates was lower than 0.5 m/s it was assumed the
worker was standing, thus this should not be considered a travelled distance. If the speed
exceeded 1.48 m/s the worker was considered to be running. Data points indicating a speed
much higher than 1.48 m/s could also be caused by GPS errors [19], e.g., due to work tasks
being carried out inside a building. Since the data of interest only considered movement at
walking speed, data points below and above the described limits were removed. The data
cleaning according to speed reduced the size of the stored data to approximately one third,
resulting in a reduction from 194,549 to 63,145 data points.

3.3.6. Data Analysis

The analysis of data collected and cleaned (see Table 5) aimed to identify and analyse
the distance travelled by the carpenters and their location on the job site. For interpret-
ing the distance, the authors studied three kinds of results: (1) total travelled distance;
(2) cumulative travelled distance; and (3) average travelled distance. The analysis of the
indexes focused on discussing how this information could be useful for the existing pro-
duction planning systems. The data of each smartwatch was binned into 30-min intervals
to facilitate comparison among all days. Using an interval size of 30 min made it possible
to exclude the lunch break from the analyses.
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Table 4. Duration of saved activities [hh:mm:ss].

Device Activit Startin, . . Device Activit Startin . .

Name Duratio}rll Time s Ending Time Name Duratio}rll Time 8 Ending Time
D1-SW02 08:01:07 06:38:06 14:39:13 D6-SW02 07:38:01 06:37:06 14:15:07
D1-SW03 07:53:01 06:36:30 14:29:32 D6-SW04 07:46:01 06:38:40 14:24:41
D1-SW04 08:00:44 06:27:25 14:28:09 D6-SW05 07:21:57 06:36:23 13:58:20
D1-SW05 07:48:51 06:44:57 14:33:48 D6-SW06 07:48:04 06:35:07 14:23:11
D1-SW10 07:57:09 06:32:14 14:29:23 D6-SW07 07:54:38 06:35:03 14:29:41
D2-SW01 07:44:44 06:37:00 14:21:44 D6-SW08 07:49.07 06:35:36 14:24:43
D2-SW02 07:54:16 06:33:44 14:28:00 D6-SW09 05:05:22 06:36:51 11:42:13
D2-SW03 07:44:26 06:31:29 14:15:55 D6-SW10 07:54:37 06:35:18 14:29:55
D2-SW04 07:50:07 06:33:20 14:23:27 D7-SW02 07:57:35 06:29:39 14:27:14
D2-SW07 07:55:37 06:31:41 14:27:18 D7-SW04 07:52:20 06:30:06 14:22:26
D2-SW08 08:00:23 06:27:18 14:27:41 D7-SW05 07:37:31 06:35:16 14:12:47
D2-SW09 07:49:57 06:31:53 14:21:50 D7-SW06 07:33:31 06:35:41 14:09:12
D3-SW01 07:02:06 07:19:45 14:21:51 D7-SW07 07:32:51 06:35:28 14:08:19
D3-SW02 07:51:41 06:33:07 14:24:48 D7-SW08 07:49:33 06:29:27 14:19:00
D3-SW04 07:49:02 06:32:40 14:21:42 D7-SW09 07:45:46 06:35:27 14:21:13
D3-SW08 07:50:52 06:31:25 14:22:17 D7-SW10 07:56:09 06:33:10 14:29:19
D3-SW09 07:49:43 06:31:50 14:21:33 D8-SW02 07:49:01 06:34:37 14:23:38
D3-SW10 06:56:01 06:32:52 13:28:53 D8-SW03 07:47:59 06:36:01 14:24:00
D4-SW01 06:41:21 07:09:48 13:51:09 D8-SW04 07:55:24 06:30:45 14:26:09
D4-SW02 06:59:07 07:00:20 13:59:27 D8-SW05 07:17:38 07:05:49 14:23:27
D4-SW03 06:38:58 07:15:49 13:54:47 D8-SW07 07:47:51 06:40:12 14:28:03
D4-SW04 03:44:52 07:07:40 10:52:32 D8-SW08 07:39:13 06:34:37 14:13:50
D4-SW06 06:21:34 07:33:21 13:54:55 D8-SW09 07:45:17 06:34:45 14:20:02
D4-SW08 06:49:59 07:14:18 14:04:17 D8-SW10 07:45:13 06:34:53 14:20:06
D4-SW09 06:57:29 07:00:09 13:57:38 D9-SW04 06:48:53 07:08:57 13:57:50
D4-SW10 06:59:12 07:00:20 13:59:32 D9-SWO05 06:57:13 07:08:30 14:05:43
D5-SW01 07:49:11 06:34:39 14:23:50 D9-SW08 06:29:32 07:27:46 13:57:18
D5-SW02 07:27:49 06:37:53 14:05:42 D9-SW09 06:44:14 07:06:06 13:50:20
D5-SW03 07:47:44 06:37:10 14:24:54 D9-SW10 06:45:42 07:04:32 13:50:14
D5-SW04 07:47:25 06:38:19 14:25:44
D5-SW05 07:52:56 06:34:00 14:26:56
D5-SW06 07:52:38 06:33:45 14:26:23
D5-SW07 07:52:23 06:33:42 14:26:05
D5-SW08 07:50:21 06:33:47 14:24:08
D5-SW10 07:49:14 06:34:47 14:24:01

Table 5. Summary of the collected data used for analysis, after cleaning.
Participants i:;;;;fj Dé:ilsFliZlZSOf Dur:(t)it(?rll [h] Sample Size Variables of Each Data Point
2 Identifiers (ID, timestamp)
10 54 19.6 MB 413.5h 63,145 points 3 Location (Latitude & longitude & altitude)

1 Distance (Accumulative distance)

To analyse workers’ locations, the authors examined the distribution of data points
and their density within the job site. For this, the data extracted from the smartwatches
was visualised using the Veusz program, which is a scientific plotting and graphing pro-
gram [45]. This allowed the researchers to plot the data using a graphical 2D user interface.
The authors collected the coordinates of the job site facilities and buildings using the
smartwatch and converted them to a visual layout using the RouteConverter program.
RouteConverter is a GPS tool used to display, edit, and convert routes from several dif-
ferent file formats [46]. The list of data coordinates obtained from the RouteConverter
was exported into a Microsoft Excel Open XML Spreadsheet (XLSX), converted into a CSV
format, and then imported to Veusz. Hence, Veusz allowed visualising the location of each
data point and the job site layout.
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Still in this phase, the authors analysed the results of the questionnaire applied to
workers about their perception of using smartwatches. The main contribution of this paper,
however, is the presentation of a list of lessons learned from the adoption of smartwatches
for understanding how and where workers spend their worktime. As a part of this, the
authors analyse how the data cleaning and data analysis conducted in this study could
have influenced the results obtained and explain each lesson learned.

4. Findings

The results of using smartwatches for tracking workers” walked distances are pre-
sented in this section using three types of analysis conducted with the data gathered during
the present exploratory case study: (1) workers” travelled distance; (2) workers” location on
the job site; and (3) workers’ perception of wearing a smartwatch.

4.1. Workers’ Travelled Distance
4.1.1. Total Travelled Distance (TTD) along the Day

The travelled distances logged each day of the data collection are summarised in
Figure 3. Each column in the diagrams represents a smartwatch, and the data are binned per
30 min of the workday from 06:30-14:30. The line shows the average distance considering
all watches in use on that day. Figure 3 makes it possible to visually compare the data
from the different days. The lines fluctuate to a varying degree; however, there is a general
pattern of movement throughout the workday; the lowest average distances are 30 min
after the beginning of the day and at the end of the day, and the highest averages are in
the first 30 min of the day and after the lunch break, which was at 10:30-11:00 (excluded
from the graphs). The distances vary from 0.00 km (Day 1, SW04 at 12:30-13:00; Day 3,
SWO02 at 08:00-08:30) to 0.94 km (Day 5, SW06 at 07:30-08:00; Day 9, SW09 at 09:00-09:30)
walked in 30 min. The mean varies from 0.12 km (Day 6, at 07:30-08:00) to 0.66 km (Day 9,
at 11:00-11:30) walked in 30 min.
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Figure 3. Travelled Distances per 30-min interval for each SW on each data collection days.
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The data from the smartwatches have been further summarised in Table 6. The
time interval with the longest average distance travelled is right after the lunch break at
11:00-11:30 with 0.66 km, closely followed by the time interval right before the break,
10:00-10:30, where the average distance was 0.63 km. This is probably due to the lunchroom
being placed far from where the carpenters carried out their tasks, cf. Figure 1. The time
interval with the shortest average distance travelled, which was 0.10 km, is at 07:30-08:00.
The mean, m, varies from 0.23 km (at 14:00-14:30) to 0.46 km (at 11:00-11:30), and the
standard deviation, o, has a range between 0.05 km (at 06:30-07:00 and 14:00-14:30) and
0.14 km (at 07:30-08:00). Similar analyses could be carried out for each individual day of the
data collection.

Table 6. Average distance [km] per 30 min of considering all days of data collection.

Time Maximum [km]  Minimum [km] Mean, m [km] St. dev., o [km]
06:30-07:00 0.45 0.29 0.36 0.05
07:00-07:30 0.34 0.13 0.26 0.07
07:30-08:00 0.58 0.10 0.27 0.14
08:00-08:30 0.38 0.17 0.26 0.07
08:30-09:00 0.39 0.17 0.26 0.08
09:00-09:30 0.59 0.17 0.36 0.12
09:30-10:00 0.48 0.18 0.36 0.09
10:00-10:30 0.63 0.28 0.41 0.10
11:00-11:30 0.66 0.33 0.46 0.09
11:30-12:00 0.41 0.17 0.30 0.08
12:00-12:30 0.43 0.20 0.31 0.07
12:30-13:00 0.55 0.14 0.31 0.11
13:00-13:30 0.39 0.20 0.28 0.07
13:30-14:00 0.42 0.17 0.25 0.09
14:00-14:30 0.32 0.19 0.23 0.05

4.1.2. Cumulative Travelled Distance

In addition to analysing the distribution of travelled distance along the workdays, the
collected data can be depicted as the cumulative distance travelled, as shown in Figure 4.
The total travelled distance (TTD) for all 54 activities recorded by the smartwatches can be
seen in Figure 4. Cumulative travelled distances per 30-min interval for each SW on each
of the data collection days.

Table 7, the shortest distance travelled in one day was 1.07 km (SW07 on Day 6), and
the longest distance was 10.10 km (SW06 on Day 5). Both the shortest and the longest
average travelled distance in one day occurs on a Friday, where the workday is one hour
shorter than the rest of the weekdays: 3.48 km on Day 4 and 5.69 km on Day 9. The
remaining seven days, the average varies less than 1 km, namely between 4.03 km (Day 8)
and 4.96 km (Day 2).

Table 7. The total travelled distance (TTD) recorded for each smartwatch each day of data collection.

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Day 9
SWo1 - 5.15 - 6.08 4.07 - - - -
SW02 6.66 6.42 2.20 2.25 - 5.70 5.63 6.00 -
SWO03 3.18 5.00 - 2.71 6.69 - - 8.58 -
SW04 3.00 7.82 7.58 - 5.93 6.28 6.80 3.03 4.36
SWo05 3.25 - - - 2.63 - 4.43 - 3.86
SWO06 - - - - 10.10 4.22 3.34 - -
SWo07 - 2.06 - - 3.21 1.07 2.36 2.77 -
SWO08 - 2.68 3.51 4.34 1.46 4.26 4.59 2.63 -
SW09 - 5.57 4.62 2.04 - - 1.93 4.07 8.31
SW10 7.71 - - - 4.62 2.63 6.10 3.05 6.23
Average 4.76 4.96 4.48 3.48 4.84 4.03 4.40 4.30 5.69
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Figure 4. Cumulative travelled distances per 30-min interval for each SW on each of the data
collection days.

4.1.3. Average Travelled Distance [km]

The averages from all nine days of data collection shown in Figure 4 are compiled in
Figure 5a. The mean, m, of the nine averages, which vary as described in the section above,
is 4.55 km. Figure 5b illustrates the evolvement of the standard deviation, o, for each of the
averages along the day. The standard deviation, o, varies from 1.71 km on Day 4 to 2.72 km
on Day 5, a difference of 45.6%. Further quantitative measures regarding the TTD on the
nine days of data collection are listed in Table 8. The longest TTD in one day varies from
6.08 km on Day 4, which was a Friday, to 10.10 km on Day 5. The shortest TTD in one day
varies from 1.07 km on Day 6 to 3.86 km on Day 9, which was also a Friday.

Table 8. Statistical measures regarding the TTD [km] considering all days of data collection.

Maximum [km]  Minimum [km] Mean, m [km] St. dev., o [km]
Day 1 7.71 3.00 4.76 2.25
Day 2 7.82 2.06 4.96 2.01
Day 3 7.58 2.20 4.48 2.29
Day 4 6.08 2.04 3.48 1.71
Day 5 10.10 1.46 4.84 2.72
Day 6 6.28 1.07 4.03 1.93
Day 7 6.80 1.93 440 1.76
Day 8 8.58 2.63 4.30 2.22

Day 9 8.31 3.86 5.69 2.02
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Figure 5. (a) Cumulative average total distance from the 9 days of data collection; (b) Standard

deviation of each day.

4.2. Workers” Locations on the Job Site

The location of all 63,145 data points collected along the nine days of data collection
are shown in Figure 6. The different grey colours indicate each smartwatch, that is, each
participating worker of the carpenter trade. It is clear from the charts that the carpenters
spent the majority of their time working in the north-western corner of the construction
site, i.e., in and around blocks 55, 57, 59, 62, 64, 66, and 68 (see block numbers in Figure 1).
On Day 4 and 7, some workers also spent time in blocks 53 and 51.
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Figure 6. Workers’ locations on the job site on each of the data collection days.
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Additionally, the charts show the most frequently used path for traveling as a straight
line along the northern buildings from the building blocks in the northwest, through the
gap between block 42 and 18 and down to the offices and break rooms in the most eastern
part of the site. The first part of this path is also used to reach the warehouse placed inside
the rhomboid shaped yard between the buildings. On all days except Day 1, some of the
carpenters visited the supermarket south of the main working area on their way to or from
the break room. The data points indicate that more time was spent in the break room on
Day 5,7, 8, and 9 than on the remaining days.

The distribution of data points in Figure 6 shows that several data points were identi-
fied far away from the job site. This can, among other reasons, indicate GPS errors when
workers conduct activities inside the buildings. This implies that the workers’ locations
may lack accuracy in detail when zooming in on each geographical point. However, the
general distribution can still provide sufficient information for further analysis.

4.3. Carpenters’ Perception

The authors collected workers’ perceptions about the use of smartwatches during
their working hours by applying a questionnaire. The answers to the questionnaire are
illustrated in Figure 7. Overall, the answers were positive to a large degree. The first
question concerned the information presented to the research project participants. Three
out of the eight respondents ‘strongly agreed’ that they had received instructions about
the project, and the remaining five respondents ‘agreed’. The other three questions in the
questionnaire were focused on the smartwatches. Six out of eight respondents ‘strongly
disagreed’ that the watch prolonged their daily tasks or interfered with their work, and two
‘disagreed” with these statements. To the last question regarding the carpenters” attitude
towards wearing a watch again for future studies, four ‘strongly agreed” and three ‘agreed’
that they would not mind this. One respondent stood out, as he ‘strongly disagreed’ to
wear a watch again. However, this was likely a misunderstanding of the question, because
this respondent added a comment to his answers saying; “It was fine wearing the watch”.

0% 20% 40% 60% 80%  100%

I received instructions about the research project 3
concerning the use of smart-watches at construction sites

Wearing the smart watch made my daily tasks take 0 5
longer

Wearing the watch interfered with my work () 2 6

I do not mind wearing a smart watch for future, similar
research studies

m Strongly agree ™ Agree ™ Neither agree nor disagree = Disagree = Strongly disagree

Figure 7. The carpenters’ perception of wearing a smartwatch while performing their work tasks (1 = 8).

5. Guidelines for the Adoption of Smartwatches to Track Workers

The practical contribution of this study consists of proposing a set of guidelines for fu-
ture application of smartwatches to collect workers’ travelled distances and locations under
the umbrella of five categories of lessons learned. The guidelines focus on how researchers
and construction practitioners can adopt smartwatches to gather information. Thus,
the lessons learned summarise practical recommendations for: (1) selecting participants;
(2) smartwatch set up process; (3) data collection; (4) data cleaning; and (5) data analysis.
In this section, the authors present some analyses based on the data of the case study to
justify and exemplify each lesson learned. For each guideline there is a description, the
limitation in the present study, the justification for the adoption of the guideline, and an
example of adopting the guideline using the data from the present study.
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5.1. Guideline 1: Adopt a Stratified Sampling Approach for Selecting the Workers Involved

according to Their Tasks Conducted

e  Guideline description: During the first step—selecting participants, the authors con-
sidered a stratified sampling the most suitable approach because knowing workers’
roles can provide helpful information for the analysis phase (e.g., workers in charge
of installing windows; workers in charge of installing drywall). Stratified sampling
is a method of sampling that involves dividing a population into sub-groups, called
strata, based on shared characteristics [47]. Thus, one way to get a better assessment
of the workers’ duties during the process would be to stratify the sample by type of
task conducted.

e Limitation: This paper adopted a random sampling approach for the selection of the
participants. As previously described, in this study, all watches were handed out
randomly to ensure anonymity, and thus it was not possible to associate the TTD and
workers’ locations according to their tasks.

e  Justification: A justification for the adoption of stratified random sampling can be
explained based on the analysis of TTD of this study. It was observed that the foreman
spent significantly more time walking than the other carpenters due to the different
nature of his tasks. The foreman attended meetings and discussed with management
in the office containers and then walked to the different teams of carpenters on site
to deliver information and instructions. For this reason, including the foreman in
the study when measuring travelled distance could have a distorting impact on
the results.

e  Exemplifying the justification: To show the impact of including data from the foreman
in the analyses, the data from the present study was cleaned of data from the assumed
foreman on each day of data collection. Since the foreman was observed walking
significantly more than the other participants in the study, in this example, he is
assumed to be the one with the longest distance recorded each day. An example from
Day 5 of data collection, including and excluding the assumed foreman, respectively,
is depicted in Figure 8. The overall shape of the line showing the average distance
does not change when excluding the foreman. The average and median distances
decrease from 4.84 km to 4.09 km and from 4.35 km to 4.07 km, respectively, but the
most significant change is in the standard deviation, o, which is reduced from 2.72 km

to 1.83 km.
100 T e Mean = 4.84 km 090 1 Mean = 4.84 km
0.90 1 Median = 4.35 km 0.80 1 Median = 4.35 km
0.80 T St.dev. =2.72 km 070 + St.dev. =2.72 km
: 0.46 km
070 + 0.47 kn) 0.60 + |
T I | ER
= 0.60 = 0.50
g S 040 0.12km
a 8 030
0.20
0.10

S o R R R QSRS S D SN S DSOS S
UG SO A S S S SO U S SAEAELSS LA AN S S S
S s S T T e e T T e e S S T S e T e s T e
O TSN FTITD SN S S OO NI N SN I RN SN SN
SENEENEEN N NN AN N N R R IR NSNS N SENEE SN NN AN A I
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Figure 8. TTD per 30-min interval of Day 5, (a) Including the assumed foreman in the analysis;
(b) Excluding the assumed foreman from the analysis.

Assuming the foreman to be the person walking most in one day means eliminating
one of the extremes in the data set, which consequently leads to a reduction in the standard
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deviation, o, as shown in Table 9. The reduction varies from 7.77% on Day 6 to 47.16%
on Day 3. The significant size of the reduction in standard deviation, 28.19% on average,
signifies a considerable difference in travelled distance by the assumed foreman and the
rest of the carpenters. Thus, the foreman'’s tasks and the main duty of each worker should
be collected during the first step. Thus, a stratified random sample would have provided a
better representation of the TTD according to the role of each worker.

Table 9. Change in statistical measures for TTD when excluding the assumed foreman.

Description Maximum [km] Minimum [km] Mean, m [km] St. dev,, o [km]

Day 1 All 7.71 3.00 4.76 2.25
Without foreman 6.66 3.00 4.02 1.76

Delta —13.62% - —15.55% —21.78%
Day 2 All 7.82 2.06 4.96 2.01
Without foreman 6.42 2.06 4.48 1.72

Delta —17.90% - —9.68% —14.43%
Day 3 All 7.58 2.20 4.48 2.29
Without foreman 4.62 2.20 3.45 1.21

Delta —39.05% - —22.99% —47.16%
Day 4 All 6.08 2.04 3.48 1.71
Without foreman 4.34 2.04 2.83 1.04

Delta —28.62% - —18.68% —39.18%
Day 5 All 10.10 1.46 4.84 2.72
Without foreman 6.69 1.46 4.09 1.83

Delta —33.86% - —15.50% —32.72%
Day 6 All 6.28 1.07 4.03 1.93
Without foreman 5.70 1.07 3.58 1.78

Delta —9:24% - —-11.17% —7.77%
Day 7 All 6.80 1.93 4.40 1.76
Without foreman 6.10 1.93 4.05 1.58

Delta —10.29% - —7.95% —10.23%
Day 8 All 8.58 2.63 4.30 2.22
Without foreman 6.00 2.63 3.59 1.28

Delta —30.07% - —16.51% —42.34%
Day 9 All 8.31 3.86 5.69 2.02
Without foreman 6.23 3.86 4.82 1.25

Delta —25.03% - —15.29% —38.12%

Average o o o

change (delta) —23.08% —13.33% —28.19%
All 5.69 3.48 4.55 0.62
Total averages Without foreman 4.82 2.83 3.88 0.59

Delta —15.29% —18.68% —14.73% —5.14%

5.2. Guideline 2:

Set Up the Smartwatches Considering Workers” Physical Features

e  Guideline description: During the second step-set up smartwatches, as much as

possible, the authors suggest collecting participants’ features (e.g., height, weight,
gender and age) to add this information to the smartwatch profile, as this will influence
the results.

Limitation: This study adopted average data for a Danish male instead of the personal
features of each worker to maintain the anonymity of the smartwatch user.
Justification: Personal features have an impact on the accuracy of the recorded training
data of smartwatches. Height impacts the stride length used to calculate the number
of steps taken, and age affects the heart rate zones used to calculate the number of
calories burned.

Exemplifying the justification: The average male walking step length is 75 cm. How-
ever, the stride length varied from 63.5 cm for a male of 152 cm to 82.3 cm for a male
of 198 cm.
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5.3. Guideline 3: Carefully Consider the Job Site Location for Delivering and Collecting the

Smartwatch to Workers

e  Guideline description: During the third step—data collection process, the place to
deliver and collect the smartwacthes should be always the same at the job site.

e Limitation: The delivery and collection points for the smartwatches were not consis-
tent, as previously described. This inconsistency had an impact on the recorded total
travelled distance.

e  Justification: All watches should be delivered and collected at the same place (e.g., the
offices or the material storage workspace) to include all travelling necessary for the
carpenters to perform their work.

e  Exemplifying the justification: The TTDs previously presented in Figure 4 are pre-
sented again in Table 10, considering the hypothetical scenario of having delivered
and collected the smartwatches at the same place. To understand how the delivery
point could have impacted the findings, the distance between Warehouse 2 and the
office room (300 m) was included in the cases where the delivered and collected points
were different. With this information, the impact of not delivering and collecting the
smartwatches by the changing rooms can be measured as the change in TTD. The
change in TTD varies between a 4.31% increase and a 35.93% increase.

Table 10. Change in TTD when including the distance from the office to the material storage area on site.

E 3 E s A 3 g £ sE a
=) = = o S =1 = =
£ 2 - £ = o BE 3
a)] o E B~ g A o] E = 6
D1-SW02 Site Office 6.66 6.96 4.31% D6-SW02 Site Site 5.70 6.30 9.52%
D1-SW03 Site Site 3.18 3.78 15.87% D6-SW04 Site Site 6.28 6.88 8.72%
D1-SW04 Office Site 3.00 3.30 9.10% D6-SW06 Site Site 422 4.82 12.45%
D1-SW05 Site Office 3.25 3.55 8.45% D6-SW07 Site Site 1.07 1.67 35.93%
D1-SW10 Halfway Site 7.71 8.16 5.51% D6-SW08 Site Site 4.26 4.86 12.35%
D2-SWo01 Site Site 5.15 5.75 10.44% D6-SW10 Site Site 2.63 3.23 18.58%
D2-SW02 Site Site 6.42 7.02 8.55% D7-SW02  Office Site 5.63 5.93 5.06%
D2-SW03 Site Site 5.00 5.60 10.71% D7-SW04 Office Site 6.80 7.10 4.23%
D2-SW04 Site Site 7.82 8.42 7.12% D7-SW05 Site Site 443 5.03 11.93%
D2-SW07 Site Site 2.06 2.66 22.53%  D7-SW06 Site Site 3.34 3.94 15.23%
D2-SW08 Site Site 2.68 3.28 18.31% D7-SW07 Site Site 2.36 2.96 20.27%
D2-SW09 Site Site 5.57 6.17 9.73% D7-SW08 Office Site 459 4.89 6.13%
D3-SW02 Site Site 2.20 2.80 21.43% D7-SW09 Site Site 1.93 2.53 23.72%
D3-SW04 Site Site 7.58 8.18 7.33% D7-SW10 Halfway Site 6.10 6.55 6.87%
D3-SW08 Site Site 3.51 411 14.60% D8-SW02 Site Site 6.00 6.60 9.09%
D3-SW09 Site Site 4.62 5.22 11.49% D8-SW03 Site Site 8.58 9.18 6.54%
D4-SW01 Site Site 6.08 6.68 8.98% D8-SW04 Office Site 3.03 3.33 9.01%
D4-SW02 Office Site 2.25 2.55 11.76% D8-SW07 Site Site 2.77 3.37 17.80%
D4-SW03 Site Site 2.71 3.31 18.13% D8-SW08 Site Site 2.63 3.23 18.58%
D4-SW08 Site Office 4.34 4.64 6.47% D8-SW09 Site Site 4.07 4.67 12.85%
D4-SW09 Office Site 2.04 2.34 12.82% D8-SW10 Site Site 3.05 3.65 16.44%
D5-SW01 Site Site 4.07 4.67 12.85% D9-SW04 Site Site 4.36 4.96 12.10%
D5-SW03 Site Site 6.69 7.28 8.24% D9-SW05 Site Office 3.86 4.16 7.21%
D5-SW04 Site Site 5.93 6.53 9.19% D9-SW09 Site Site 8.31 8.91 6.73%
D5-SW05 Site Site 2.63 3.23 18.58% D9-SW10 Site Site 6.23 6.83 8.78%
D5-SW06 Site Site 10.10 10.70 5.61%
g::gwg; gi’:: gﬁz i’ié igé ;gﬁ"z Distance from office to material storage area on site = 300 m.

D5-SW10 Site Site 4.62 5.22 11.49%
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5.4. Guideline 4: Establish Assumptions for the Data Cleaning Process Regarding Construction

Project Features and the Study’s Goal

e  Guideline description: During the fourth step—data cleaning process, the authors sug-
gest determining the necessary assumptions for each step to clean the data according
to the construction project features. After deciding the best assumptions and steps,
researchers should formalize the process for future studies.

e Limitation: The authors of this study adopted three assumptions during the data
cleaning process: (1) removing short activities; (2) removing data outside the working
hours; and (3) removing data according to the speed of the workers’ path. According
to the analysis, the third assumption was the only one that did not help clean the data.

e Justification: Establishing and formalizing the premises can be used as a roadmap to
follow. Researchers will work inconsistently without formalizing the assumptions
adopted according to the construction project features.

e  Exemplifying the justification: If the study’s goal in adopting smartwatches is to
understand how the job site layout influences how much time workers travel, break
times should be considered during the analysis. However, if the interest consists of
understanding where workers spent their time during the working hours, the break
times should be excluded from the study. The following sub-sections present how
each of these assumptions could influence the findings.

5.4.1. Removing Activities with a Shorter Duration Than the Workday

The first data cleaning assumption aimed to remove data that did not fit in the dataset
regarding the duration of the activities. When the distance travelled by each worker from
each smartwatch are compared, the length of the activities should be as close as possible to
the working hours length (e.g., eight-hour duration +30 min). For example, if the interest
is to analyse data regarding cumulative distance, but the dataset includes shorter activities
(e.g., five-hour duration activities), the researcher must decide to remove or keep these
observations. The shorter activities can be considered outliers. So, the researchers need to
examine whether the outlier affects the results of the analysis.

In this way, the authors of this paper consider that the first assumption adopted
during the cleaning process that reduces the sample size of the study from 64 to 54 activities
(see Section 3.3.5) provided a more realistic sample and minimised distraction from the
primary target (e.g., to calculate the average cumulative distance by workers during their
working hours).

5.4.2. Removing Data Outside Working Hours

The second assumption during the data cleaning aimed to remove data from outside
the working hours (i.e., the break times and before and after work). As the scope of this
research is limited to the hours of the workdays of the carpenter trade on the renovation
project, all data outside of the timeframe for the work hours was removed. For future
projects, if the research goal is to understand how the job site logistics influence the travelled
distance in a broader way, the dataset should include all necessary walking activities that
might take place before and after the paid workhours. Figure 9 provides an example of a
visual representation of the GPS coordinates recorded of Day 5 before and after removing
the break times from one smartwatch.

In the present study, removing data from the lunch break did not have a significant
impact on the results, as can be seen in Table 11. The maximum travelled distance average
is reduced by 2.98% or less, and the change in minimum TTD average is between 1.00%
and 13.01%. The mean changes with between 0.93% and 3.18%. For six of the days
(Day 2-5,7, and 9), removing data from the break results in an increased standard deviation.
For Day 1 and Day 6, the standard deviation decreases, and for Day 8, there is no change
in the standard deviation. None of these changes are significant, as the largest change in
standard deviation is 3.11% on Day 1.
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Figure 9. Example of job site locations of one single worker on Day 5; (a) before removing the break

times; (b) after removing the break times.

Table 11. Change in statistical measures for TTD when including data from the lunch break.

Description Maximum [km] Minimum [km] Mean, m [km] St. dev,, o [km]
Day 1 Without data from break 7.71 3.00 476 2.25
Including data from break 7.94 3.03 4.89 2.32
Delta —2.98% —1.00% —2.73% —3.11%
Day 2 Without data from break 7.82 2.06 4.96 2.01
Including data from break 7.96 2.30 5.09 1.98
Delta —1.79% —11.65% —2.62% 1.49%
Day 3 Without data from break 7.58 22 4.48 2.29
Including data from break 7.6 2.31 4.55 2.24
Delta —0.26% —5.00% —1.56% 2.18%
Day 4 Without data from break 6.08 2.04 3.48 1.71
Including data from break 6.09 2.15 3.57 1.68
Delta —0.16% —5.39% —2.59% 1.75%
Day 5 Without data from break 10.1 1.46 4.84 2.72
Including data from break 10.25 1.65 497 2.69
Delta —1.49% —13.01% —2.69% 1.10%
Day 6 Without data from break 6.28 1.07 4.03 1.93
Including data from break 6.46 1.09 4.13 1.97
Delta —2.87% —1.87% —2.48% —2.07%
Day 7 Without data from break 6.8 1.93 44 1.76
Including data from break 6.91 2.08 4.54 1.72
Delta —1.62% —7.77% —3.18% 2.27%
Day 8 Without data from break 8.58 2.63 4.3 2.22
Including data from break 8.64 2.72 4.34 2.22
Delta —0.70% —3.42% —0.93% 0.00%
Day 9 Without data from break 8.31 3.86 5.69 2.02
Including data from break 8.38 3.95 5.79 1.99
Delta —0.84% —2.33% —-1.76% 1.49%
Total Without data from break 5.69 3.48 4.55 0.622
averages Including data from break 5.79 3.57 4.65 0.64
8 Delta —1.76% —2.59% —2.20% —2.89%
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5.4.3. Removing Data according to Workers” Speed

The last assumption aimed to clean the collected data from possible GPS errors and
data not relevant to this study. An assumption regarding walking speed of workers was
applied as described earlier in Section 3.3.5. Figure 10 gives a visual representation of
an example of the GPS coordinates recorded during Day 5 for one of the smartwatches
before and after the cleaning process using the third assumption. From Figure 10 it can be
concluded that this kind of data cleaning has not removed GPS errors completely since
there are still some datapoints left outside the job site, where the worker could not have
been. Moreover, possible correct datapoints from inside the job site have been removed,
which could affect the analyses of the data. For this reason, the authors of this paper suggest
not using this assumption in future studies.

Day 5
55.401 . T T T

55401 . . . :

ssao0b 55400 -

Latitude
Latitude

553001 55309 -

35308 55.398

10.340 10341 10342 10343 10344 10340 10341 10342 10343 10344

Longitude Longitude
(a) (b)

Figure 10. Example of job site locations of one single worker on Day 5; (a) before removing points
regarding speed assumption; (b) after removing points regarding speed assumption.

Removing speed below the threshold of 0.5 m/s and removing erroneous data points
due to high velocity (>1.48 m/s) resulted in an overall reduction in the number of data
points from 194,549 to 63,145, a reduction of 67.54%. This information is shown in Table 12,
together with information on each of the 54 usable, recorded activities regarding the number
of data points and TTD before and after the cleaning for velocity. The decrease in TTD is
substantial, ranging between 46.16% and 69.09%. On average, the total travelled distance is
more than halved when applying the speed thresholds; more precisely, it is decreased by
55.40%. This assumption could have impacted the results. However, as this study mainly
focuses on presenting the possible analysis that can be conducted with the data gathered
rather than providing statistical analysis, the authors considered it reasonable to main the
assumption to discuss its impacts.

Table 12. Variation in TTD when cleaning data according to speed.
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DI-SW02 4465 1842 1237 666 571 —4618 D6-SW02 4184 1500 1384 570 814 -—5882
D1-SW03 3375 862 835 318 517 —6191 D6-SW04 4322 1558 1533 628 9.06 —59.07
D1-SW04 2964 776 633 300 333 —5267 D6-SW06 3715 1155 1260 422 838 —6649
DI-SW05 3645 897 705 325 380 —5390 D6-SW07 2024 211 266 107 160 —59.93
D1-SW10 3546 1630 1682 771 911 -—5417 D6-SW0S 4060 1255 909 426 483 —5311
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Table 12. Cont.
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D2-SW01 4081 1375 10.25 5.15 5.10 —49.78 D6-SW10 3461 678 6.14 2.63 3.52 —57.26
D2-SW02 4172 1612 14.19 6.42 7.77 —5476 D7-SW02 3802 1418 13.41 5.63 7.77 —57.99
D2-SW03 4534 1290 9.60 5.00 4.60 —47.89 D7-SW04 4410 1743 12.96 6.80 6.16 —47.55
D2-SW04 4399 1824 17.32 7.82 9.49 —54.82 D7-SWO05 3776 1139 11.50 443 7.08 —61.52
D2-SW07 2928 519 6.42 2.06 4.36 —67.86 D7-SWO06 3221 870 7.93 3.34 4.58 —57.82
D2-SW08 2919 616 8.67 2.68 5.99 —69.13 D7-SW07 3211 644 5.92 2.36 3.56 —60.19
D2-SW09 3894 1457 12.56 5.57 6.99 —55.68 D7-SWO08 2640 1196 11.54 459 6.95 —60.22
D3-SW02 2587 532 5.87 2.20 3.66 —62.42 D7-SW09 2539 484 4.38 1.93 2.45 —55.94
D3-SWo04 4823 1972 14.67 7.58 7.09 —48.35 D7-SW10 3851 1421 15.47 6.10 9.37 —60.57
D3-SW08 3628 955 8.71 3.51 5.19 —59.65 D8-SW02 4122 1602 12.23 6.00 6.23 —50.95
D3-SW09 4336 1242 9.29 4.62 4.64 —4994 D8-SWO03 5247 2383 17.93 8.58 9.35 —52.16
D4-SW01 4233 1712 12.11 6.08 6.04 —49.84 D8-SW04 3691 877 7.32 3.03 4.29 —58.60
D4-SW02 1221 487 5.42 2.25 3.17 —58.53 DS8-SW07 3025 650 6.22 2.77 3.45 —55.48
D4-SW03 3407 770 7.37 2.71 4.67 —63.31 DS8-SW08 2982 725 7.22 2.63 4.58 —63.49
D4-SW08 3566 1158 8.77 4.34 4.43 —50.50 D8-SW09 3082 961 7.80 4.07 3.73 —47.79
D4-SW09 2324 434 4.36 2.04 2.32 —53.20 DS8-SW10 3790 822 7.64 3.05 4.59 —60.12
D5-SW01 3920 1070 9.49 4.07 5.42 —57.11 D9-SW04 3281 1119 8.68 4.36 4.32 —49.79
D5-SW03 4821 1834 13.65 6.69 6.96 —51.02 D9-SWO05 3484 1097 8.28 3.86 4.42 —53.37
D5-SW04 3385 1367 12.76 5.93 6.84 —53.56 D9-SW09 4266 2141 17.77 8.31 9.46 —53.25
D5-SW05 2874 640 7.35 2.63 4.73 —64.26 D9-SW10 3814 1627 13.76 6.23 7.53 —54.73
D5-SWo06 5467 2629 20.01 10.10 9.91 —49.52 Total 194,549 63,145 548.77 244.77
D5-SW07 2930 862 8.47 3.21 5.25 —62.05 Average 3603 1169 10.16 455 5.61 —55.2
D5-SW08 2282 339 3.58 1.46 2.11 —59.12
D5-SW10 3823 1166 9.34 4.62 5.71 —46.18

5.5. Guideline 5: Use Individual Participant Data in the Analysis according to Each Participant’s
Characteristics and Role

Guideline description: During the fifth step—data analysis, the adoption of individual
participant data (IPD) can provide a more appropriate analysis according to each
participant’s characteristics and role. This approach requires the ability to identify
which participant uses each smartwatch each day, preferably by delivering the same
smartwatch to the same participant every day during the study period. For this, the
product identification number of the smartwatch could be associated with the name
or the role of each worker. This way, when the study ends, the names can be deleted
to ensure the anonymity of the workers without the loss of data.

Limitation: This study presented the results using an aggregated data approach based
on the whole body of the collected data. The data aggregation process classified the
data collected using the smartwatches according to the day of data collection and the
smartwatch used (e.g., D1-SW01). The random delivery of each smartwatch to protect
the anonymity of the workers prevented the adoption of an IPD approach.
Justification: The major advantage of an IPD analysis compared to the adopted ag-
gregated data approach is that it allows detailed participant-level exploration of
effectiveness in relation to individual characteristics such as role (e.g., foreman, crew
member) or construction task conducted (e.g., workers in charge of installing windows;
workers in charge of installing drywall).

Exemplifying the justification: The same example used in the Guideline 1 can be used
for justifying the adoption of IPD. An IPD would have provided a better representation
of the TTD and the locations on the job site according to the role of each worker.
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6. Discussion

This study presents several contributions in the discipline in which it is applied. The
study explores the adoption of location-based sensor technology from a smartwatch to
understand how and where construction workers spend their working time. The present
study focuses on, mainly, workers” travelled distance; and workers’ location on the job
site, as a new approach for tracking workers. Applying smartwatch to track workers lacks
previous research attention.

The first managerial contribution consists of identifying workers’s travelled distance.
The results presented in Section 4.1 illustrate approaches to understanding total travelled
distance, cumulative travelled distance, and average travelled distance. These approaches
can provide several useful insights to construction site management for further analysis.

Firstly, the representation of the total travelled distance grouped in 30-min intervals
will support the identification of which hour of the day the workers are most likely to travel.
This kind of analysis can be useful for site managers to check workers’ travel patterns along
the day, and plan and adjust resources accordingly. The total travelled distance index can
also be used to compare site layouts between construction sites. By using a formula like
“travelled distances/construction site area (m?)” or “travelled distances/construction site
volume (m?®)”, managers can get numbers which allow comparisons between projects. In
both indexes, a high number might indicate low worker efficiency, which might be due to
workspace conflicts or inefficient construction site layout planning. Therefore, the total
travelled distance index, in combination with other construction site size measurements,
can be used as an indicator for workspace management.

Another interesting insight can be drawn from the cumulative distance travelled by
workers to understand workers” performance. As the higher distance travelled, the less
time is spent in the same location. The cumulative distance travelled by each worker can be
an indicator of actual time spent in value-adding activities. For instance, if in a construction
project, the travelled distance on the job site of different trades presents a high distance,
this indicator could raise alarms to notice potential logistic issues. Therefore, further
studies can use this indicator to calculate the presence in work zones and, consequently,
the performance of workers.

Lastly, the average travelled distance analysis will support understanding the nature
of different construction activities. It is well known that construction processes using
prefabricated and off-site methods present a smaller share of time on direct work on the job
site. Consequently, the implementation of prefabrication components on the job site will
increase, among other factors, the time spent in preparation and transportation activities.
Thus, the average distance measurement can be useful to understand the standard deviation
among the distance travelled by workers regarding the nature of the construction processes
that they are involved in.

The second managerial contribution is the identification of workers” outdoor loca-
tions. The results shown in Section 4.2 indicated how this information could be useful for
construction management.

Firstly, the density of points throughout the different days can provide the identifi-
cation of where the carpenter trade’s activities were executed during the period of the
observations. Using this 2D representation to see where construction workers on the job
site are located can be used during planning meetings with contractors to see the location
of possible problems, thus forming the starting point for discussion. This way, objective
data presented in visual form can be a joint base for learning. By discussing the variation
of worker’s locations during the week, each trade can explain to the others what causes
changes of locations in their workflow, and this way, all trades obtain a greater overview of
the renovation process. So, the illustrations can allow trade supervisors and managers to
solve minor problems and coordinate their work schedules, thus preventing minor issues
from growing.

A second analysis regarding the density of points of workers’ locations consists of
developing heat maps for logistic purposes. The distributions of points along the job site
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presented in this study were limited to visualise the location rather than to understand
the density of points on each location. Construction managers can use the aggregated
visualisation of workers” locations to discover job site usage patterns and make data-
informed optimisations to improve workers’ distribution and avoid congestion areas. In
addition, heat maps with hourly intervals using the timestamp of each point can be useful
to identify and manage high density locations along the workday.

A third analysis can be regarding dividing the job site into workspaces. This analysis
will support identifying workers’ presence in different workspaces. For this, the distribution
of points can be classified into different workspaces categories according to the goal of
the specific study (e.g., production workspace, storage workspace, preparation workspace,
and transportation workspace). To conduct this analysis, the geographical coordinates
of each workspace can be used to define workspace areas. Then, using a programming
language, each geographical point collected with the smartwatch can be loaded, analysed,
plotted, and reported according to the workspace taxonomy adopted. With this approach,
the distribution of workers’ presence in workspaces can be used to understand workers’
performance based on where workers spend their time on construction sites. Thus, workers’
presence could be used to correlate with value-adding time.

The workspace analysis could also include the distribution of workers’ locations with
hourly intervals. As presented in the Section 4.1.1. regarding the total travel distance, the
workers’ locations on the job site can be discussed regarding the hour of the day. The
workers’ location movements throughout the working hours could provide further insights
regarding workspace presence in different hours.

Moreover, the literature review of previous studies that adopted technologies for mea-
suring construction workers’ performance and the discussion above allowed the authors of
this paper to establish the hypothesis that workers” efficiency can be measured indirectly
by their travelled distances and locations.

6.1. Future Steps

The present paper presents the first learning cycle of an ongoing research project
which aims to automate monitoring of workers’ activities. The case study conducted in the
first learning cycle served as the starting point for defining the DSR problem. The problem
came from the literature review with the identification of the knowledge gap about how to
use location-based technologies, specifically wristband sensors, for tracking workers and
from the first case study.

Based on the results of the first case study, a practical solution with a theoretical
contribution will be developed as the artifact of this DSR. The main goal of this phase was
to understand which types of information smartwatches can collect and how this data
can be employed for measuring workers’ efficiency. The current study identified a set of
potential uses of travelled distances and locations of workers.

In the next steps of this research, the artifact will be developed, tested, and evaluated
in Cycles 2, 3 and 4 in Case B, C and D, respectively. The present authors will conduct three
new case studies on other construction projects, applying the lessons learned from this
study. The authors will conduct the next studies in projects with the same characteristics
as Case A. The next three case studies will be selected considering the following features:
(1) renovation projects of multi-story buildings; (2) use of scaffolding for conducting ex-
ternal activities; and (3) limited use of equipment for conducting transportation activities.
In addition, the authors will choose the renovation projects considering that the carpenter
trade conducts most of the renovation activities. The reasons for limiting the study appli-
cation to the carpenter trade are: (1) to be able to compare the data among construction
projects with the same characteristics conducted by the same kind of workers; and (2) the
tangible nature of the activities performed by carpenters.

During the construction phase in Cycle 2 in Case B, the authors will develop the
artifact. A different carpenter trade will be selected for the use of the smartwatches during
their working hours. In the second case study, the Work Sampling (WS) technique will be



Sustainability 2022, 14, 8875

29 of 33

applied to identify how workers spent their time. For this purpose, the random observations
collected during the WS application will be classified into value-adding activities and non-
value-adding activities. Consequently, this technique will allow the authors to measure
workers’ efficiency based on the time spent on value-adding activities. Data gathered from
the smartwatches will be analysed to determine where the activities were carried out. As in
the present study, the smartwatches will provide two indexes: workers’ travelled distance
and workers’ location. Then, the following analyses will be conducted: (1) the relationship
between workers’ locations and workers’ travelled distances; (2) the relationship between
workers” locations and time spent on value-adding activities; (3) the relationship between
travelled distance and worker’s efficiency.

The authors will test and improve the artifact in Cycle 3 in Case C. In this third
case study, the WS technique will be applied, as in Case B, to identify the time spent by
workers in value-adding and non-value-adding work categories, classified as productive,
contributory and non-contributory. Still, in this case, the data gathered from smartwatches
will be analysed to determine the time spent in different workspaces. So, in Case C, instead
of using the data provided by the smartwatches to measure workers’ travelled distances
and location, the data will be used to identify the distribution of time in different work areas
characterized as productive workspace; contributory workspace; and non-contributory
workspace. In this cycle, the authors will conduct the following analysis: (1) the relationship
between workers’ travelled distance and time spent in workspaces; and (2) the relationship
between workers’ efficiency and time spent in each workspace.

In Cycle 4, the last version of the artifact will be evaluated. The evaluation phase will
concern the theoretical contribution that emerges from the research process. The main
output of the DSR will be a method for understanding workers’ efficiency indirectly by
measuring workers’ travelled distances and workers’ locations collected by smartwatches.
During Cycle 4, several criteria will be chosen to assess the evaluation of the method
developed. Lastly, the utility and usefulness of the method will be evaluated in a fourth
case study, named in this research as Case D. The feedback of this evaluation will lead to a
refinement of the proposed method.

6.2. Limitations

In addition to multiple benefits, the present study presented several limitations. One
of the main limitations of this exploratory case study may be described as the study prepa-
ration step, previously discussed during the guideline proposition. Othermain limitations
were: (1) the random sampling approach during the selection of the participants did
not allow to associate the results with the nature of the activity conducted by the user;
(2) the physical features of each individual worker were not set up on the devices, and
the lack of this information could have influenced the value of the distance travelled;
(3) the inconsistency of the delivery and collected places of the smartwatches to workers
impacted on the recorded total travelled distance; (4) the assumptions adopted during the
data cleaning process consisting of removing data according to the speed of the workers’
path impacted the findings; and (5) the adoption of aggregated data approach based on the
whole body of the collected data prevented the association between travelled distance and
workers’ positions according to the workers’ tasks.

Another limitation is that, at this time, the proposed approach is only able to be
used for outdoor activities due to the technological constraints of the GPS used by the
smartwatches. However, it was observed during the case study development that some
workers conducted some tasks inside the buildings under renovation. This might have
impacted the results obtained in the total travelled distance and workers’ locations. Besides,
the error range of the total travelled distance can be larger than focusing the workers’
locations themselves. Considering that each smartwatch gathered around 3600 data points
during 8 working hours, and a few of the data points were wrongly located. The workers’
locations are still good enough to provide a general idea of the workers’ distribution of
time on the job site. However, as the total travelled distance is the accumulative distance
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measured between two consecutive points, if one of those points has a wrong position due
to GNSS errors, the impact on the result will be bigger. Hence, in future studies, the authors
will choose workers that exclusively conduct their tasks from outside the buildings.

Lastly, in the first case study, the data points collected from smartwatches were
analysed to exclusively identify travelled distance and workers’ locations. Such analyses
aim at the calculation of workers” efficiency. However, smartwatches can collect other sorts
of information such as Heart Rate and Skin Temperature. If more types of data are collected,
more indexes can be calculated. Consequently, workers’ efficiency could be measured as
the combination of several indicators.

6.3. Recommendations for Future Research

This research raised topics to be examined in greater depth in future research efforts.
These are summarized below.

This study presents the first step of a research project that aims to propose a method
for adopting smartwatches to measure workers’ efficiency based on workers’ travelled
distances and locations. Although the method is being built based on the results of case
studies on building renovation projects, future studies should adopt the smartwatches
in different construction projects to evaluate their utility in other projects where workers
spend most of their time outdoor. Some examples of other construction projects can be:
(1) infrastructure projects, such as highways, streets, and roads; (2) rail projects; and
(3) airport projects.

Another topic for future investigation is to further explore the relationships between
workers’ travelled distance and workers’ locations and other indexes collected by smart-
watches, such as Heart Rate and Skin Temperature Indexes, as previously described. This
research aimed to measure workers’ efficiency based exclusively on the location-based
sensors in the smartwatches. Further research can explore the indexes collected by other
sensors embedded in the devices.

An interesting approach for future studies will be comparing the workers” loca-
tions collected by smartwatches and by other digital technologies. Smartphones can
present several advantages to identifying the device’s location, as those devices combine
GNSS information with other sources of data, such as the internet connection and mobile
data connection.

7. Conclusions

This paper presents the first step of a novel approach to measuring workers’ efficiency
automatically. In the last decades, the existing literature regarding the adoption of tools
to automate monitoring workers” activities indicated growing attention to using sensors,
more precisely wristband-type activity trackers. The literature pointed out the difficulty
of adopting more sophisticated approaches by practitioners due to the necessity of ex-
tensive data training and extended data period analysis. For this reason, this research
adopted smartwatches.

Based on the finding of previous studies that adopted smartwatches, the main features
and advantages of using a smartwatch as a research tool are: (1) they represent a non-
invasive and non-subjective measurement of user physiological parameters in a mobile
environment [27]; (2) they consist of flexible approaches to evaluate the mental state of
users [25]; (3) they provide a collection of geolocation information via GNSS to understand
user mobility patterns [15]; they do not interfere in the mobility of the user [48]; (4) they
are easy to access due to the commercial availability of different models and brands in
the market [14]; (5) they represent a low implementation and low maintenance cost [33];
(6) they are energy efficient because their low-power consumption as much of the time the
device is in ultra-low power standby-mode [49] The smartwatch used in this study was
the Garmin Forerunner 45; however, other devices with similar features can be used in
future studies.
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The research strategy adopted was Design Science Research (DSR), considering the
real problem and the necessity to build a solution for it. The solution is represented by
the artifact of this research project, which consists of a method for understanding workers’
efficiency indirectly by measuring workers’ travelled distances and workers’ locations
collected by smartwatches. The method is being designed and evaluated over four learning
cycles. This paper exclusively focuses on presenting the results of the first learning cycle.
Cycle 1 was a relevant cycle for understanding which types of information smartwatches
can collect and how this data can be employed for measuring workers’ efficiency. The
outcome analysis of Cycle 1, based on results from Case Study A, contributed to answering
the two research questions. Those were addressed as follows:

e How can smartwatches be adopted to facilitate understanding workers’ travelled
distances and job site location?

The exploratory case study conducted as Case A allowed the authors to understand
the possible analyses with the adoption of smartwatches to track workers. The findings of
the study lead the authors to provide a generic set of five recommendations for collecting
workers’ travelled distance and workers’ location using smartwatches. The guidelines
are: (1) adopt a stratified sampling approach for selecting the workers involved according
to their tasks conducted; (2) set up the smartwatches considering workers’ physical fea-
tures; (3) carefully consider the job site location for delivering the smartwatch to workers;
(4) establish assumptions for the data cleaning process regarding construction project fea-
tures and the study’s goal; and (5) use individual participant data in the analysis according
to each participant’s characteristics and role.

e How can the data gathered using smartwatches be helpful in measuring workers’
efficiency?

Based on this question, the second contribution focuses on identifying the possible
analyses that can be conducted from the workers’ travelled distances and the workers’
locations. The analysis of the travelled distance by workers during working hours allowed
the authors to identify possible uses of this data: (1) the identification of which hour of the
day the workers are most likely to travel; (2) the measurement of workers’ performance
(i.e., time spent in value-adding activities) based on the amount of travel along the day; and
(3) the understanding of the nature of different construction activities using as a basis the
workers’ time spent travelling. The distribution of workers’ locations within the job site can
also provide interesting analyses: (1) the identification of where the workers’ activities are
being conducted to see where potential problems are and identify possible congested areas
on the job site; (2) the measurement of workers’ presence in different workspaces; (3); the
distribution of workers’ locations with hour interval using the timestamp of geographical
location; and (4) the development of heat maps to understand the density of points on
each location.

The main novelty of this research lies in an innovative way of obtaining workers’
travelled distance and job site location using smartwatches. While previous studies that
adopted wristworn sensors to facilitate automatic monitoring of workers” movements,
those approaches have been generally tested in simulated scenarios and, when tested in
job sites, have been limited to a reduced number of previously labelled activities. While
other methods for identifying workers” locations can be very cumbersome to apply by
practitioners on the job site, the use of an affordable smartwatch has a huge potential
of applicability for outdoor activities. Smartwatches offer researchers the benefit of data
collection in an objective and non-invasive way. The questionnaire answers of the workers
involved in this study revealed that they did not feel the use of a smartwatch interfered
with their work.
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