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Abstract: In order to study the compression bearing capacity of concrete-filled rectangular stainless
steel tubular columns, the influence of the stainless steel tube thickness, relative eccentricity, and
slenderness ratio on the compression bearing capacity is analyzed, and then the calculation formula
of compression bearing capacity is proposed. The results show that the finite element model can
effectively simulate the compression bearing capacity, the mean of finite element calculations Nufem

to the test Nuexp is 0.985, and the variance is 0.000621. The slenderness ratio and relative eccentricity
have a great influence on the load–displacement curves. The thickness of the stainless steel tube has
little influence on the load–displacement curves. With the increase in slenderness ratio and relative
eccentricity, the compression bearing capacity decreases. With the increase in the slenderness ratio, the
failure model of the specimen gradually changes from plastic failure to elastoplastic failure and then
elastic failure. When the slenderness ratio is the same, if the relative eccentricity is larger, increasing
the thickness of the stainless steel tube will be more effective in improving the compression bearing
capacity. When the relative eccentricity is the same, if the slenderness ratio is smaller, increasing the
thickness of the stainless steel tube will be more effective for improving the compression bearing
capacity. The slenderness ratio and relative eccentricity have a great influence on the longitudinal
stress distribution in the cross-section. When the slenderness ratio and relative eccentricity are greater,
the longitudinal compressive stress in parts of the cross-section gradually becomes longitudinal
tensile stress. The proposed formula can effectively predict the compression bearing capacity of
concrete-filled rectangular stainless steel tubular columns. The mean of theoretical calculations to the
test and the finite element is 1.054, and the variance is 0.0247.

Keywords: concrete-filled stainless steel tubular column; finite element; compression bearing capacity;
slenderness ratio; relative eccentricity

1. Introduction

Concrete-filled steel tubes are widely used in engineering due to their full use of the
strength of their two constituent materials, such as in high-rise buildings, large ocean
platforms, and bridge construction. The steel tube of an ordinary concrete-filled steel tube
is exposed to the air, and with the progression of time, it is prone to corrosion, especially in
the Marine environment, so anti-corrosion treatment of the steel tube is required. Once steel
tube corrosion occurs, it will have an adverse impact on its bearing capacity, can reduce
the durability of the structure, and will produce high maintenance costs. In order to solve
the problem of the corrosion of ordinary steel tubes, scholars at home and abroad have
proposed concrete-filled stainless steel tubes. Due to the great difference in mechanical
properties between stainless steel tubes and ordinary carbon steel tubes, scholars at home
and abroad have carried out a series of studies on the mechanical properties of concrete-
filled stainless steel tubular columns, including experiment, finite element method and
numerical manifold method [1–4].
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Lam et al. [5] mainly studied the compression bearing capacity of concrete-filled
circular stainless steel tubular short columns, the influence of concrete strength on the com-
pression bearing capacity was analyzed, and the continuous strength method, which is ap-
plicable for calculating the compression bearing capacity was proposed. Uy et al. [6] mainly
studied the behavior of short and slender concrete-filled stainless steel tubular columns
with tests, and their results show that all of the codes are somewhat conservative in predict-
ing the load-carrying capacities of both short and slender columns. Ellobody et al. [7–9]
mainly studied fiber reinforced concrete-filled stainless steel tubular columns through
experimental investigation and finite element analysis, and their results show that Eu-
rocode 4 was quite conservative for predicting the ultimate loads of the eccentrically
loaded columns, the conservatism of the Eurocode 4 predictions is increased as the ec-
centricity increases. Tokgoz et al. [10] mainly studied the behavior of plain and steel fiber
concrete-filled stainless steel tubular columns under biaxial bending, and axial compres-
sion through experimental investigation and the effects of concrete compressive strength,
cross-section, load eccentricity, steel fiber material, and slenderness on the behavior of plain
and steel fiber concrete-filled stainless steel tubular columns were examined. Hassanein
M F et al. [11] mainly studied the flexural buckling of circular concrete-filled stainless
steel tubular (CFSST) slender columns through finite element analysis, and the results
show that the proposed design model is shown to predict the strengths of CFSST columns
well. Refat et al. [12] mainly studied the compressive strengths of stiffened and unstiff-
ened concrete-filled austenitic stainless steel tubular short columns through finite element
analysis, and the results show that the Eurocode 4 predictions appear to be suitable for
CFSST columns but conservative for concrete-filled stiffened stainless steel hollow tubular
(CFSSST) columns. Al-Mekhlafi et al. [13] mainly studied the behavior of eccentrically
loaded concrete-filled stainless steel tubular stub columns confined by carbon fiber rein-
forced polymer (CFRP) composites through experimental investigation and finite element
analysis, and the results show that the CFRP wrapping effectively improves the ultimate
strength of the CFRP-bonded CFSST stub columns and the analytical axial force-bending
moment interaction model provided conservative predictions when compared to the exper-
imental and FE results. Patel et al. [14] mainly studied the compression bearing capacity
of concrete-filled circular stainless steel tubular short columns with a nonlinear analysis
method, and the results show that the three-stage stress-strain relationship can simulate its
axial load-strain behavior. He et al. [15] mainly studied the compression bearing capacity
of concrete-filled circular stainless steel tubular short columns; the influence of concrete
strength, stainless steel tube size, and compression area were analyzed, and the results
show that the compression area and restraint effect coefficient are the key factors affecting
its bearing capacity. Tang et al. [16] mainly studied the axial compression bearing capacity
of concrete-filled circular stainless steel tubular short column and proposed the calculation
formula. Duan et al. [17] mainly studied the axial compression bearing capacity of recycled
concrete-filled circular stainless steel tubular short columns with the finite element analysis
method, and the results show that the steel ratio has an obvious influence on its bearing
capacity. Liao et al. [18] mainly studied the axial compression mechanical properties of
concrete-filled circular stainless steel tubular short columns and concrete-filled square
stainless steel tubular short columns, the influence of stainless steel tube thickness, section
shape, and concrete type on the axial compression performance was analyzed, and the
results show that stainless steel tubes have a strong constraint effect and that the calculation
of axial compression bearing capacity is conservative. Ding et al. [19] mainly studied the
constraint effect of concrete-filled square stainless steel tubular short columns, the results
show that the constraint effect of the stainless steel tube on core concrete is stronger than
that of an ordinary carbon steel tube, and the superposition method used to calculate its
compression bearing capacity has high accuracy. Dai et al. [20] mainly studied the axial
compression mechanical performance of concrete-filled square stainless steel tubular short
columns, the influence of steel tube thickness and concrete strength on its axial compression
mechanical performance was analyzed, and the results show that the steel tube thickness
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has a great influence on the axial compression bearing capacity and that the calculation
methods of bearing capacity in the norm are safe. In addition to the above scholars, some
scholars studied the axial compression and eccentrically compression mechanical perfor-
mance of concrete-filled rectangular stainless steel tubular short columns and the axial
compression mechanical performance of compound concrete-filled stainless steel tubular
short columns [21–24].

From the above research, it can be seen that the research on the mechanical perfor-
mance of concrete-filled rectangular stainless steel tubular columns is less common and
mainly focuses on the mechanical properties of short columns and the axial compression
performance. When a concrete-filled rectangular stainless steel tubular column is applied
in practical engineering, in addition to the axial load, there is also the eccentric axial load.
Thus, it is particularly important to study the axial compression and eccentric compres-
sion behavior of concrete-filled rectangular stainless steel tubular short and long columns.
Based on the experimental research in [21], the compression bearing capacity of rectangular
stainless steel tubular concrete columns is studied in depth. Firstly, the influence of stain-
less steel tube thickness, relative eccentricity, and slenderness ratio on the compression
bearing capacity is analyzed. Then, the longitudinal stress distribution of the stainless steel
tube and core concrete is further analyzed. Finally, based on the experimental and finite
element calculations, the formula of compression bearing capacity considering the effect of
slenderness ratio and relative eccentricity is proposed by using theoretical analysis.

2. Experiment Overview

The specimens were designed to mainly consider the influence of section form and
steel tube thickness, and a total of 7 specimens were examined [21]. The schematic diagram
of a specimen is shown in Figure 1, and the parameters are shown in Table 1. The steel plates
are welded with the outer stainless steel tube. The steel tubes of specimens were austenitic
304 seamless stainless steel tubes with thicknesses 4 mm, 5 mm, and 6 mm, and the average
yield strength f y was 534.3 MPa, 572.3 MPa, and 598.0 MPa, respectively. The core concrete
in specimens was C40, the average cubic compressive strength f cu was 43.96 MPa, and the
axial compressive strength f c was 29.48 MPa. The Eurocode 4, Eurocode 3, and Chinese
code [25–30] were followed.
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Table 1. Parameters of specimens.

Specimen Number Length of Steel
Tube a/mm

Width of Steel
Tube b/mm

Thickness of
Steel Tube t/mm

Length of
Specimen L/mm

Compression Bearing
Capacity Nuexp/kN

S1 120 60 4 360 1261
S2 120 60 5 360 1632
S3 120 80 4 360 1362
S4 120 80 5 360 1732
S5 120 120 4 360 1814
S6 120 120 5 360 2224
S7 120 120 6 360 2913

The test used a 300-ton electrohydraulic servo-long-column press machine with a
displacement-controlled loading rate of 0.01 mm/s. A total of 2 LVDT displacement meters
were arranged on the top of the two adjacent sides of the specimen to measure the axial
deformation of the specimen, and 12 strain gauges were arranged on the upper, middle,
and lower parts of the two adjacent sides of the specimen to measure the longitudinal and
hoop strain of the specimen. The arrangement of strain gauges and LVDT displacement
meters is shown in Figure 2. The test was terminated if the load dropped to 75% of the
peak load or the axial displacement of the specimen was 5% of the length of the specimen.
The Eurocode 4 and Chinese code [25,31] was followed.
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Through the test, the axial compression bearing capacity and the typical failure mode
of specimens were obtained. The axial compression bearing capacity is shown in Table 1,
and the typical failure mode is shown in Figure 3. It can be seen from Figure 3 that the
typical failure mode of rectangular stainless steel tube concrete short column under axial
load is localized outward buckling deformation of the specimens. The stainless steel tube
was subjected to both vertical stress and hoop stress, and the hoop stress mainly came from
the transverse deformation of core concrete.
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3. Finite Element Analysis
3.1. Finite Element Model

The finite element program ABAQUS was used to numerically simulate the specimens.
The 3D solid element was used to simulate stainless steel tube, core concrete, and steel
plate, and the type of element is C3D8I (An 8-node linear brick with incompatible modes).
The plastic model was used to simulate the constitutive relation of the stainless steel tubes,
and the stress-strain curve is a bi-fold line model. The concrete damage plasticity model is
used to simulate the constitutive relation of the core concrete, and the compression and
tensile stress-strain relation is a bi-curve model [32]. The constitutive models of stainless
steel and core concrete are shown in Figure 4. The interactions between the steel plate and
the main body were identified as “Tie”. Face–face interaction is used between the stainless
steel tube and core concrete, and the friction coefficient is 0.25 [2]. The steel plate at each
end of specimens was coupled to reference points RP1 and RP2, respectively. The freedom
of longitudinal displacement was released at the reference point RP1 at the upper steel
plate, and the freedoms in other directions were all constrained. All DOFs of the reference
point RP2 at the lower steel plate were constrained and set to the fully constrained end.
Displacement-controlled loading was used in finite element analysis. In order to ensure the
calculation accuracy and reduce the computational time, the approximate mesh size of the
stainless steel tube was 20 mm, and the core concrete was 15 mm. The initial imperfections
and residual stress were ignored when using the finite element model to simulate the
specimens [1]. The finite element model is shown in Figure 5, and the finite element model
parameters are shown in Table 2.
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Table 2. Parameters of finite element models.

Finite Element
Model Type

Length of
Steel Tube

a/mm
Width of Steel

Tube b/mm
Thickness of

Steel Tube
t/mm

Yield Strength
of Steel Tube

f y/MPa

Axial
Compressive
Strength of

Concrete f c/MPa

Slenderness
Ratio λ

Relative
Eccentricity e

FEM 1 120 60 4 534.3 29.48 6~48 0~2.667
FEM 2 120 60 5 572.3 29.48 6~48 0~2.667
FEM 3 120 80 4 534.3 29.48 6~48 0~2
FEM 4 120 80 5 572.3 29.48 6~48 0~2
FEM 5 120 120 4 534.3 29.48 3~96 0~1.333
FEM 6 120 120 5 572.3 29.48 3~48 0~1.333
FEM 7 120 120 6 598.0 29.48 3~48 0~1.333

3.2. Finite Element Model Verification

In order to verify the FEM, seven test specimens in [21] were simulated, and the
typical failure mode and load–displacement curves of FEM were compared with the test,
which are shown in Figures 6 and 7. It can be seen from Figure 6a that the ring drum
appears at the upper and lower ends for rectangular specimens, which is similar to the
test. It can be seen from Figure 6b that the ring drum occurs in the stainless steel tube
along the length for square specimens, which is also similar to the test. It can be seen from
Figure 7 that the load–displacement curves are mainly divided into a straight ascending
segment, a curved ascending segment, and a curved descending segment, which are in
good agreement with the test. The mean of finite element calculations Nufem to the test
Nuexp is 0.985, and the variance is 0.000621. Then it also can be seen from Figure 7 that there
is a variance between the displacements with peak load by the finite element method and
the test, and in the straight ascending segment period, the load by FEM is always greater
than the test. It is because the steel tube and concrete poured in the test specimen are
uneven, the compactness of the concrete is less than that of the finite element model, and
the stiffness of the finite element model is greater than that of the test specimen. Overall, it
is effective to use the FEM to calculate the compression bearing capacity of concrete-filled
rectangular stainless steel tubular columns.

3.3. Analysis of Finite Element Calculation

In view of the effectiveness of the above finite element model, more parameters of
concrete-filled rectangular stainless steel tubular columns were considered, and 337 speci-
mens were calculated. The main parameters are the thickness of the stainless steel tube, the
relative eccentricity, and the slenderness ratio, among which the thickness of stainless steel
tubes t is 4 mm~6 mm, the relative eccentricity e is 0~2.667, and the slenderness ratio λ is
3~96.
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Figure 6. Failure mode comparison between finite element and test. (a) Rectangular specimen S2. (b)
Square specimen S7.
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Figure 7. Comparison of load–displacement curves for the finite element model and test. (a) S1.
(b) S2. (c) S3. (d) S4. (e) S5. (f) S6. (g) S7.

3.3.1. Analysis of Load–Displacement Curves

A comparison of the load–displacement curves subject to different parameters is
shown in Figure 8, and 120604C40720 indicates that the length of the stainless steel tube a
is 120 mm, the width of the stainless steel tube b is 60 mm, the thickness of steel tube t is
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4 mm, the concrete strength is C40, and the length of the specimen L is 720 mm. The other
parameters are similar and will not be repeated.
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Figure 8. Comparison of load–displacement curves subject to different parameters. (a) 120604C40720.
(b) 120604C402880. (c) 120605C40720. (d) 120605C402880. (e) 1201206C40720. (f) 1201206C405760.

It can be seen from Figure 8 that when the thickness of the stainless steel tube and
relative eccentricity of the specimen are the same, with an increase in the slenderness ratio,
the slope of the ascending segment of the load–displacement curves gradually decreases after
reaching the ultimate load, and the compression bearing capacity of specimens decreases
more significantly. When the slenderness ratio is the same, with the increase in relative
eccentricity, the load–displacement curves gradually change from ascending and descending
segments to ascending and approximate horizontal segments. Meanwhile, with the increase
in relative eccentricity, the slope of the ascending segment of the load–displacement curves
is shallower. When the slenderness ratio and relative eccentricity are the same, the thickness
of the stainless steel tube has little influence on the load–displacement curve. It also can be
seen from Figure 8 that when the thickness of the steel tube is the same, with the increase in
slenderness ratio, the displacement of the specimen is greater when the peak load is reached.
When the thickness of the stainless steel tube and slenderness ratio is the same, with an
increase in relative eccentricity, the displacement of the specimen is greater when the peak
load is reached. When the slenderness ratio and relative eccentricity are the same, with the
increase in stainless steel tube thickness, the displacement changes very little when the peak
load is reached. This shows that the change in slenderness ratio and relative eccentricity
have a greater influence on the change in load–displacement curves.

3.3.2. Analysis of Compression Bearing Capacity

A comparison of the variation of compression bearing capacity with relative eccentric-
ity under different slenderness ratios is shown in Figure 9, and 120604C40 indicates that
the length of the stainless steel tube a is 120 mm, the width of the stainless steel tube b is
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60 mm, the thickness of the stainless steel tube t is 4 mm, the concrete strength is C40. The
other parameters are similar and will not be repeated.
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Figure 9. Comparison of variation of the compression bearing capacity with relative eccentricity
under different slenderness ratios. (a) 120604C40. (b) 120605C40. (c) 120804C40. (d) 120805C40.
(e) 1201204C40. (f) 1201205C40. (g) 1201206C40.

It can be seen from Figure 9a,b that when the specimen is subjected to an axial
compression load, the slenderness ratio increases from 8 to 48, and the compression bearing
capacity of the specimen decreases by 31.43% and 25.81%, respectively, which shows
that, the greater the thickness of the stainless steel tube, the smaller the decrease in the
compression bearing capacity. When the specimen is subjected to an eccentric compression
load, with the increase in relative eccentricity, the compression bearing capacity shows a
decreasing trend under the same slenderness ratio, and the trend is large to small. When
the slenderness ratio is eight, the relative eccentricity increases from 0 to 2.67, and the
compression bearing capacity decreases by 60.97% and 60.12%, respectively. When the
slenderness ratio is 48, the relative eccentricity increases from 0 to 2.67, and the compression
bearing capacity decreases by 73.64% and 76.69%, respectively. This indicates that the larger
the slenderness ratio and the greater the relative eccentricity, the larger the decrease in the
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compression bearing capacity. When the relative eccentricity is the same, with the increase
in the slenderness ratio, the compression bearing capacity also shows a decreasing trend
gradually from large to small to large. For Figure 9a, when the relative eccentricity is one,
the slenderness ratio gradually increases from 8 to 48, and the compression bearing capacity
decreases by 16.95%, 12.49%, 4.99%and 38.31%, respectively. When the relative eccentricity
is 0.167, 1, and 2.67, the slenderness ratio increases from 8 to 48, and the compression
bearing capacity decreases by 59.16%, 57.40%, and 53.70%, respectively. For Figure 9b,
when the relative eccentricity is one, the slenderness ratio gradually increases from 8 to
48, and the compression bearing capacity decreases by 18.69%, 11.80%, 6.79%, and 40.62%,
respectively. When the relative eccentricity is 0.167, 1, and 2.67, the slenderness ratio
increases from 8 to 48, and the compression bearing capacity decreases by 63.03%, 60.30%,
and 56.63%, respectively.

Comparing Figure 9a,b, when the slenderness ratio is eight and the relative eccentricity
is 0.167 and 2.67, respectively, the thickness of the stainless steel tube increases from 4 mm to
5 mm, and the compression bearing capacity increases by 21.29% and 25.11%, respectively.
When the slenderness ratio is 48 and the relative eccentricity is 0.167 and 2.67, respectively,
the thickness of the stainless steel tube increases from 4 mm to 5 mm, and the compression
bearing capacity increases by 9.81% and 17.18%, respectively. This indicates that increasing
the thickness of the stainless steel tube is more effective at improving the compression
bearing capacity at a larger relative eccentricity. When the relative eccentricity is the same,
the smaller the slenderness ratio, the more effective the increase in the thickness of the
stainless steel tube is in improving the compression bearing capacity. The thickness of
the stainless steel tube has little influence on the variation trend of compression bearing
capacity with relative eccentricity under the same slenderness ratio.

It can be seen from Figure 9c,d that when the width of the stainless steel tube b is
80 mm, the variation of the compression bearing capacity with relative eccentricity under
different slenderness ratios is similar to that in Figure 8a,b. When the slenderness ratio is
six, the relative eccentricity increases from 0 to 2, and the compression bearing capacity
decreases by 54.46% and 54.56%, respectively. When the slenderness ratio is 48, the relative
eccentricity increases from 0 to 2, and the compression bearing capacity decreases by 74.25%
and 78.15%, respectively. Comparing Figure 8c,d, when the slenderness ratio is six and the
relative eccentricity is one, the thickness of the stainless steel tube increases from 4 mm to
5 mm, and the compression bearing capacity increases by 18.18%. When the slenderness
ratio is 48 and the relative eccentricity is one, the thickness of the stainless steel tube
increases from 4 mm to 5 mm, and the compression bearing capacity increases by 17.44%.

It can be seen from Figure 9e–g that when the width of the stainless steel tube b is
120 mm, the decreasing trend of the compression bearing capacity is reduced; the smaller
the slenderness ratio, the smaller the decreasing trend, and the variation is similar to
the above. When the slenderness ratio is four, the relative eccentricity increases from 0
to 1.33, and the compression bearing capacity decreases by 47.04%, 44.40%, and 44.78%,
respectively. When the slenderness ratio is 48, the relative eccentricity increases from 0
to 1.33, and the compression bearing capacity decreases by 77.06%, 66.90%, and 67.47%,
respectively. When the relative eccentricity is 0, the slenderness ratio increases from 4
to 48, and the compression bearing capacity decreases by 11.42%, 36.73%, and 36.08%,
respectively. When the relative eccentricity is 1.33, the slenderness ratio increases from
4 to 48, and the compression bearing capacity decreases by 61.64%, 62.33%, and 62.34%,
respectively. Comparing Figure 8e–g, when the slenderness ratio is four and the relative
eccentricity is one, the thickness of the stainless steel tube increases from 4 mm to 5 mm
and then from 5 mm to 6 mm, and the compression bearing capacity increases by 24.61%
and 7.41%, respectively. When the slenderness ratio is 48 and the relative eccentricity is
one, the thickness of the steel tube increases from 4 mm to 5 mm and then from 5 mm to
6 mm, and the compression bearing capacity increases by 25.56% and 6.05%, respectively.

The variation of compression bearing capacity with slenderness ratio under axial com-
pression load and eccentric axial compression load is shown in Figure 10, and 1201204C40-0
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indicates that the length of the stainless steel tube a is 120 mm, the width of the stainless
steel tube b is 120 mm, the thickness of the stainless steel tube t is 4 mm, the concrete
strength is C40, the relative eccentricity e is 0. It can be seen from Figure 10 that the varia-
tion of compression bearing capacity with the slenderness ratio under axial compression
load is divided into three stages: a shallow slope descent, a steep slope (nearly vertical)
descent, and moderate slope descent. When the slenderness ratio is lower than 48, with
the increase in slenderness ratio, the compression bearing capacity is reduced to a certain
extent, and the reduction trend is relatively gentle. When the slenderness ratio increases
from 4 to 48, the compression bearing capacity decreases by 11.42%. When the slenderness
ratio exceeds 48, with the increase in slenderness ratio, the compression bearing capacity is
greatly reduced; when the slenderness ratio increases from 48 to 48.375, the reduction in the
compression bearing capacity reaches 52.97%. When the slenderness ratio exceeds 48.375,
with the increase in slenderness ratio, the decreasing trend of compression bearing capacity
increases compared with the first stage, and the decreasing trend of the compression bear-
ing capacity decreases significantly compared with the second stage. When the slenderness
ratio increases from 48.375 to 96, the compression bearing capacity is reduced by 78.19%. It
can also be seen from Figure 10 that the variation of compression bearing capacity with
the slenderness ratio under eccentric compression load is obviously different from that
under axial compression load. It has only one stage: moderate slope descent. Those show
that, with the increase in the slenderness ratio, the failure model of the specimen gradually
changes from plastic failure to elastoplastic failure and then elastic failure.
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Figure 10. Variation of the compression bearing capacity with slenderness ratio under axial compres-
sion load and eccentric axial compression load.

3.3.3. Analysis of Longitudinal Stress Distribution in the Central Cross-Section

1. Analysis of longitudinal stress distribution of the stainless steel tubes in the central
cross-section

The longitudinal stress distribution of the stainless steel tube in the central cross-section
when the ultimate bearing capacity is reached is shown in Figure 11, and 120604C40-0-8
indicates that the length of the stainless steel tube a is 120 mm, the width of the stainless
steel tube b is 60 mm, the thickness of the stainless steel tube t is 4 mm, the concrete strength
is C40, the relative eccentricity e is 0, the slenderness ratio λ is eight. The other parameters
are similar and will not be repeated.

For rectangular specimens, we take specimen 120604C40 as an example. It can be
seen from Figure 11a–c that when the specimen is under axial compression load and the
slenderness ratio is eight, the longitudinal stress of the stainless steel tube has uniform
distribution in the cross-section, and the longitudinal compressive stress exceeds the f y,
which is the yield strength of the stainless steel tube, at up to 1.020 f y. When the specimen is
under an eccentric compression load, the longitudinal stress of the stainless steel tube does
not have a uniform distribution in the cross-section. When the relative eccentricity is one,
the maximum longitudinal compressive stress and the minimum longitudinal compressive
stress of the stainless steel tube are 0.961 f y and 0.430 f y, respectively. With the increase in
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relative eccentricity, the neutralization axis gradually moves upward along the y-axis, and
the longitudinal stress in parts of the cross-section gradually changes from compressive
stress to tensile stress. When the relative eccentricity is 2.67, the maximum longitudinal
compressive stress and the maximum longitudinal tensile stress do not exceed f y, and the
maximum longitudinal compressive stress and the maximum longitudinal tensile stress are
0.72 f y and 0.463 f y, respectively.
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It can be seen from Figure 11d–f that when the slenderness ratio is 48, the longitudinal
stress of the stainless steel tube is not uniformly distributed in the cross-section regardless
of the axial compression state or eccentric compression state. With the increase in relative
eccentricity, the neutralization axis gradually moves upward along the y-axis, and the
upward displacement of the neutralization axis is significantly greater than that when the
slenderness ratio is eight. Meanwhile, the tensile stress occurs in parts of the cross-section.
When the relative eccentricity is 0, the maximum longitudinal compressive stress and
minimum longitudinal compressive stress do not exceed f y and are 0.819 f y and 0.602 f y,
respectively. When the relative eccentricity is one, the longitudinal stress of the stainless
steel tube is divided into compressive stress and tensile stress on the cross-section, and the
maximum longitudinal compressive stress and the maximum longitudinal tensile stress do
not exceed f y, at 0.810 f y and 0.281 f y, respectively. When the relative eccentricity is 2.67,
the maximum longitudinal compressive stress and the maximum longitudinal tensile stress
of the stainless steel tube are 0.727 f y and 0.497 f y, respectively.

For square specimens, we take specimen 1201206C40 as an example. It can be seen from
Figure 11g–i that when the specimen is under axial compression load, and the slenderness
ratio is 4, the longitudinal stress of the stainless steel tube is relatively uniformly distributed
in the cross-section, and the longitudinal compressive stress is 1.029 f y. When the specimen
is under an eccentric compression load, the longitudinal stress of the stainless steel tube in
the cross-section is not uniformly distributed. With the increase in relative eccentricity, the
longitudinal stress in parts of the cross-section changes from compressive stress to tensile
stress. When the relative eccentricity is one, the maximum longitudinal compressive stress
and the minimum longitudinal compressive stress of the stainless steel tube are 1.078 f y
and 0.258 f y, respectively. When the relative eccentricity is 1.33, the maximum longitudinal
compressive stress and the maximum longitudinal tensile stress of the stainless steel tube
are 0.890 f y and 0.129 f y, respectively.
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It can be seen from Figure 11j–l that when the slenderness ratio is 48, the longitudinal
stress of the stainless steel tube is not uniformly distributed in the cross-section. When
the relative eccentricity is 0, the maximum longitudinal compressive stress and the mini-
mum longitudinal compressive stress of the stainless steel tube are 0.831 f y and 0.321 f y,
respectively. When the relative eccentricity is one, the maximum longitudinal compressive
stress and the maximum longitudinal tensile stresses of the stainless steel tube are 0.642 f y
and 0.496 f y, respectively. When the relative eccentricity is one, the maximum longitudinal
compressive stress and the maximum longitudinal tensile stresses of the stainless steel tube
are 0.622 f y and 0.462 f y, respectively.

2. Analysis of longitudinal stress distribution of core concrete in the central cross-section

The longitudinal stress distribution of core concrete in the central cross-section when the
ultimate bearing capacity is reached is shown in Figure 12. As can be seen from Figure 12a–c,
when the specimen is under axial compression load and the slenderness ratio is eight, the
longitudinal stress distribution of the core concrete also has a uniform distribution. However,
with the increase in relative eccentricity, the longitudinal stress distribution is not uniformly
distributed. When the relative eccentricity is 0, the maximum longitudinal stress of the core
concrete obviously exceeds f c, which is the axial compressive strength of the core concrete, at
up to 2.021 f c. When the relative eccentricity is one, the maximum longitudinal compressive
stress and the minimum longitudinal compressive stress of the core concrete are 1.379 f c
and 0.782 f c, respectively. When the relative eccentricity is 2.67, the maximum longitudinal
compressive stress and the minimum longitudinal compressive stress of the core concrete are
1.349 f c and 0.307 f c, respectively.

It can be seen from Figure 12d–f that, when the slenderness ratio is 48, with the increase
in relative eccentricity, the neutralization axis moves gradually upward along the y-axis, the
core concrete experiences obvious tensile stress in the cross-section, and the tensile stress
area increases significantly. When the relative eccentricity is 0, the maximum longitudinal
compressive stress of core concrete is 1.328 f c. When the relative eccentricity is one, the
maximum longitudinal compressive stress and the maximum longitudinal tensile stress of
core concrete are 0.89 f c and 0.138 f t, respectively. When the relative eccentricity is 2.67, the
maximum longitudinal compressive stress and the maximum longitudinal tensile stress of
core concrete are 0.865 f c and 0.951 f t, respectively.

It can be seen from Figure 12g–i that when the specimen is under axial compression
load and the slenderness ratio is four, the longitudinal stress of core concrete is symmet-
rically distributed in the cross-section. The longitudinal compressive stress in the central
area and the corner area is larger, and the maximum longitudinal compressive stress is
2.017 f c. With the increase in relative eccentricity, the longitudinal stress distribution status
also changes significantly. When the relative eccentricity is one, the maximum longitudinal
compressive stress of the core concrete is 2.061 f c, and it is mainly located in the two corner
areas. When the relative eccentricity is 1.33, the longitudinal stress in more areas of the
cross-section of the core concrete is smaller. It can be seen from Figure 12j–l that when
the slenderness ratio is 48, the longitudinal stress distribution of the core concrete in the
cross-section is similar to that of the specimen 120604C40 under the same slenderness ratio.
When the relative eccentricity is 0, the maximum longitudinal compressive stress and the
minimum longitudinal compressive stress of the core concrete are 1.529 f c and 0.653 f c,
respectively. When the relative eccentricity is one, the maximum longitudinal compressive
stress and the maximum longitudinal tensile stress of the core concrete are 1.124 f c and
0.933 f t, respectively. When the relative eccentricity is 1.33, the maximum longitudinal
compression stress and the maximum longitudinal tensile stress of the core concrete are
1.049 f c and 0.942 f t, respectively.
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4. Calculation Formula of Compression Bearing Capacity
4.1. Failure Mode Analysis

According to the analysis in Section 3.3.3 and other model analysis results, the longitu-
dinal stress distribution in the cross-section of the middle part of a specimen is obviously
different when the ultimate bearing capacity is reached under different slenderness ratios
and relative eccentricities, and the position of the neutralization axis is also obviously differ-
ent. The failure mode is related to the tensile (compressive) failure of the stainless steel tube,
the compressive (tensile) failure of core concrete, and the position of the neutralization axis,
as shown in Table 3.

Table 3. Failure modes of specimens.

Failure Mode Neutralization Axis Tensile Area of the
Stainless Steel Tube

Compressive Area
of the Stainless

Steel Tube
Tensile Area of

the Core Concrete
Compressive Area of the

Core Concrete

1 Not through the
cross-section No tensile area

All are under
compression, which

is yielding
No tensile area

All are under compression,
which has reached the ultimate

compressive strength

2 Not through the
cross-section No tensile area

All are under
compression, which

is not yielding
No tensile area

All are under compression,
some areas have reached the

ultimate compressive strength,
while other areas have not

reached it

3 Not through the
cross-section No tensile area

All are under
compression, but

some areas are
yielding and other

areas are not yielding

No tensile area

All are under compression,
some areas have reached the

ultimate compressive strength,
while other areas have not

reached it

4 Through the
cross-section

There are tensile
areas, which are

not yielding

There are tensile
areas, which are

not yielding
No tensile area

All are under compression,
some areas have reached the

ultimate compressive strength,
while other areas have not

reached it

5 Through the
cross-section

There are tensile
areas, which are

not yielding

There are tensile
areas, which are

not yielding

There are tensile
areas, which
have reached
the ultimate

tensile strength

There are compression areas,
which have not reached the

ultimate compressive strength
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Table 3. Cont.

Failure Mode Neutralization Axis Tensile Area of the
Stainless Steel Tube

Compressive Area
of the Stainless

Steel Tube
Tensile Area of

the Core Concrete
Compressive Area of the

Core Concrete

6 Through the
cross-section

There are tensile
areas, which are

not yielding

There are tensile
areas, which are

not yielding

There are tensile
areas, which
have reached
the ultimate

tensile strength

There are compression areas,
which have reached the

ultimate compressive strength

7 Through the
cross-section

There are tensile
areas, which
are yielding

There are tensile
areas, which
are yielding

There are tensile
areas, which
have reached
the ultimate

tensile strength

There are compression areas,
which have reached the

ultimate compressive strength

4.2. Calculation Method of Compression Bearing Capacity
4.2.1. Calculation Formula of Compression Bearing Capacity of Short Column under Axial
Compression Load

For the short column under an axial compression load, the failure mode is mainly the
failure mode one. The superposition method is used to calculate the compression bearing
capacity of the cross-section, which is divided into the compression bearing capacity of
the stainless steel tube and the compression bearing capacity of the core concrete. When
considering the interaction influence of stainless steel tube and core concrete [33], the
calculation formula is shown in Formulas (1)~(3).

Nsu = Nss + Ncc = α fy Ass + β fc Acc (1)

α = 0.00447ξ + 1.00854 (0.65 ≤ ξ ≤ 6.06) (2)

β = 0.01944ξ + 1.78799 (0.65 ≤ ξ ≤ 6.06) (3)

In Formulas (1)~(3), Nsu is the compression bearing capacity of the short column;
Nss is the compression bearing capacity of the stainless steel tube; Ncc is the compression
bearing capacity of the core concrete; α is the yield strength improvement coefficient of
the stainless steel tube; β is the compression strength improvement coefficient of the core
concrete; Ass is the cross-sectional area of the stainless steel tube; Acc is the cross-sectional
area of the core concrete; ξ is the constraint effect coefficient, and the calculation method is
shown in [34].

4.2.2. Calculation Formula of Compression Bearing Capacity of Long Column under Axial
Compression Load

According to the analysis in Section 3.3.2, it is known that the slenderness ratio has
a great influence on the compression bearing capacity of a long column, and the larger
the slenderness ratio, the lower the compression bearing capacity. Therefore, on the basis
of the compression bearing capacity of a short column, considering the influence of the
slenderness ratio [33], the calculation formula is shown in Formulas (4) and (5).

Nlsu = ϕNsu (4)

ϕ =


1 3 ≤ λ<6
−0.00213λ + 0.97796 6 ≤ λ ≤ 48
−1.05644λ + 51.53573 48<λ ≤ 48.375
−0.00569λ + 0.63387 48.375<λ ≤ 96

(5)

In Formulas (4) and (5), Nlsu is the compression bearing capacity of the long column,
and ϕ is the stability coefficient.
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4.2.3. Calculation Formula of Compression Bearing Capacity of Eccentric Column

According to the analysis in Section 3.3.2, it is known that the relative eccentricity and
slenderness ratio has a great influence on the compression bearing capacity of an eccentric
column. The larger the relative eccentricity and slenderness ratio, the lower the compression
bearing capacity. Meanwhile, the influence of the compression bearing capacity is different
under different slenderness ratios when the relative eccentricity is changed, and the failure
modes are mainly failure modes 2~7. The calculation method of compression bearing
capacity of eccentric columns is generally expressed in the form of implicit axial force and
moment equation, which is not conducive to direct engineering application. Therefore, in
order to facilitate engineering application, considering the influence coefficient η of relative
eccentricity, the explicit expression of compression bearing capacity of eccentric columns is
used to analyze the compression bearing capacity [22,35]. The calculation formula is shown
in Formula (6).

Npsu =


ηϕNsu

(
ex = 0, ey 6= 0; ex 6= 0, ey = 0

)

0.5
min{ex , ey}
max{ex , ey}

[
−1.116max

{
ex, ey

}
+ 1.558

]
ηϕNsu

(
ex 6= 0, ey 6= 0

) (6)

In Formula (6), Npsu is the compression bearing capacity of the eccentric column; ex
is the relative eccentricity in the x-axis; ey is the relative eccentricity in the y-axis; η is the
relative eccentricity influence coefficient’s correlation with the slenderness ratio, and the
calculation formula is shown in Table 4, where e is the relative eccentricity.

Table 4. The formula of the influence coefficient η of relative eccentricity.

Slenderness Ratio λ The Formula of η Scope of Application

λ ≤ 4 η = 0.07487e3 − 0.04403e2 − 0.41727e + 1.00409

0 < e ≤ 2.667
e = max{ex, ey}

4 < λ ≤ 6 η = −0.03224e3 + 0.24713e2 − 0.63878e + 1.00018

6 < λ ≤ 8 η = −0.03193e3 + 0.19992e2 − 0.53382e + 1.00317

8 < λ ≤ 13.5 η = −0.06516e3 + 0.37696e2 − 0.80405e + 0.99221

13.5 < λ ≤ 18 η = −0.07015e3 + 0.39878e2 − 0.83841e + 0.97895

18 < λ ≤ 24 η = −0.10133e3 + 0.52723e2 − 0.95313e + 0.95699

24 < λ ≤ 36 η = −0.12129e3 + 0.60338e2 − 1.01076e + 0.83234

36 < λ ≤ 48 η = −0.19951e3 + 0.90127e2 − 1.20665e + 0.78439

4.2.4. Verification of the Proposed Formula of Compression Bearing Capacity

The compression bearing capacity of the 39 test specimens in [20–22] and the 337 finite
element specimens in this paper were calculated using the proposed formula for compres-
sion bearing capacity, and the verification of the proposed formula for the compression
bearing capacity is shown in Figure 13. The compression bearing capacity of the 39 test
specimens in [20–22] is shown in Table 5. It can be seen from Figure 13 that- the theoretical
calculations Nucal are in good agreement with the test Nuexp and finite element Nufem, and
the mean of theoretical calculations to the test and the finite element is 1.054, while the vari-
ance is 0.0247. It is shown that the proposed formula of compression bearing capacity can
effectively predict the compression bearing capacity of concrete-filled rectangular stainless
steel tubular columns. The application range of the proposed formula for the compression
bearing capacity is for concrete-filled rectangular stainless steel tubular columns, and the
constraint effect coefficient ξ is from 0.65 to 6.06, the slenderness ratio λ is from 3 to 96, the
relative eccentricity e is from 0 to 2.667.
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Figure 13. Verification of the proposed formula of compression bearing capacity. (a) Comparison
between theoretical calculation and the test [20–22]. (b) Comparison between theoretical calculation
and the finite element model.

Table 5. The compression bearing capacity of the 39 test specimens in [20–22].

Specimen
Number

Compression Bearing
Capacity Nuexp/kN Data Sources Specimen

Number
Compression Bearing

Capacity Nuexp/kN Data Sources

304-t8C50 6290

Reference [20]

120 × 60 × 4 1261

Reference [21]

304-t10C50 7113 120 × 60 × 5 1632
304-t12C50 7924 120 × 80 × 4 1362
304-t8C70 6743 120 × 80 × 5 1732
304-t10C70 7947 120 × 120 × 4 1814
304-t12C70 8575 120 × 120 × 5 2224
304-t8C80 7436 120 × 120 × 6 2913

304-t10C80 8430 r-0-0-a 1542

Reference [22]

304-t12C80 9257 r-0-0-b 1498
2205-t8C50 8771 r-0.50-0.50-a 734

2205-t10C50 10,111 r-0.50-0.50-b 716
2205-t12C50 12,472 r-0.75-0.75-a 485
2205-t8C70 9686 r-0.75-0.75-b 497

2205-t10C70 10,820 rc1-0.5-0.5-a 533
2205-t12C70 12,560 rc1-0.5-0.5-b 524
2205-t8C80 9962 rc2-0.5-0.5-a 824

2205-t10C80 11,728 rc2-0.5-0.5-b 814
2205-t12C80 13,272 rl1-0.5-0.5-a 795

– – rl1-0.5-0.5-b 778
– – rl2-0.5-0.5-a 562
– – rl2-0.5-0.5-b 564

5. Conclusions

Based on the experimental research in [21], the compression bearing capacity of
concrete-filled rectangular stainless steel tubular columns is studied in depth by using
finite element software and theoretical analysis in this paper. The main conclusions are
as follows:

(1) The finite element model can effectively simulate the compression bearing capacity;
the mean of finite element calculations Nufem to the test Nuexp is 0.985, and the variance
is 0.000621.

(2) The slenderness ratio and relative eccentricity have a great influence on the load–
displacement curves. The thickness of the stainless steel tube has little influence on
the load–displacement curves. With the increase in slenderness ratio and relative
eccentricity, the compression bearing capacity decreases.
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(3) With the increase in the slenderness ratio, the failure model of the specimen gradually
changes from plastic failure to elastoplastic failure and then elastic failure.

(4) When the slenderness ratio is the same, if the relative eccentricity is larger, increas-
ing the thickness of the stainless steel tube will be more effective in improving the
compression bearing capacity. When the relative eccentricity is the same, if the slen-
derness ratio is smaller, increasing the thickness of the stainless steel tube will be more
effective in improving the compression bearing capacity.

(5) The slenderness ratio and relative eccentricity have a great influence on the longitudi-
nal stress distribution in the cross-section. When the slenderness ratio and relative
eccentricity are larger, the longitudinal compressive stress in parts of the cross-section
gradually becomes the longitudinal tensile stress.

(6) The proposed formula can effectively predict the compression bearing capacity of
concrete-filled rectangular stainless steel tubular columns. The mean of theoretical
calculations to the test and the finite element is 1.054, and the variance is 0.0247.
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