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Abstract: Air pollution has seriously hindered China’s sustainable development. The impact mecha-
nism of industrial upgrading on air pollution is still unclear, given the rapid digital economy. It is
necessary to analyze the impact of industrial structure upgrading on air pollution through the digital
economy. To investigate the impact of industrial upgrading and the digital economy on air pollution,
this paper selected the industrial advanced index and the digital economy index to construct a panel
regression model to explore the improvement effect of industrial upgrading on air pollution and
selected China’s three typical areas to construct a zonal regression model. The concentrations of
air pollutants showed a downward trend during 2013–2020. Among them, the SO2 concentration
decreased by 63%, which is lower than the PM2.5 and NO2 concentrations. The spatial pattern of air
pollutants is heavier in the north than in the south and heavier in the east than in the west, with the
North China Plain being the center of gravity. These air pollutants have significant spatial spillover
effects, while local spatial correlation is dominated by high-high and low-low clustering. Industrial
upgrading has a stronger suppressive effect on the PM2.5 concentration than the suppressive effect
on the SO2 and NO2 concentrations, while the digital economy has a stronger improvement effect on
the SO2 concentration than its improvement effect on the PM2.5 and NO2 concentrations. Industrial
upgrading has a stronger improvement effect on air pollution in the Yangtze River Delta urban
agglomeration than in Beijing–Tianjin–Hebei and its surrounding areas, while the improvement in
air pollution attributable to the digital economy in Beijing–Tianjin–Hebei and its surrounding areas is
stronger than in the Yangtze River Delta urban agglomeration. There are significant differences in the
effects of industrial upgrading and the digital economy on the various types of air pollutants.

Keywords: air pollution; industrial upgrading; digital economy; China

1. Introduction

Since the beginning of the 21st century, rapid industrialization and informatization
have contributed to the rapid growth of the regional economy [1]. However, rapid indus-
trialization has resulted not only in desired outputs, such as economic development but
also in undesired outputs, such as ecological pollution, especially air pollution [2]. Air
pollution exposure is the primary environmental risk factor for human health [3,4]. High
concentrations of air pollutants can be harmful to human health, for example, inducing
cardiovascular and cerebrovascular diseases [5] and damaging the human respiratory
system [5,6]. Studies have shown that the risks to human health have been increasing with
the increase in high concentrations of air pollutants, especially in-car PM2.5 exposure [4,6].
On 22 September 2021, the WHO released the Global Air Quality Guidelines (AQG2021),
which have stricter requirements for the concentration of various air pollutants, adjusting
the annual average target value of PM2.5 concentration from 10 µg/m3 to 5 µg/m3 and
the daily average target value to 15 µg/m3, the annual average target value of NO2 con-
centration from 40 µg/m3 to 10 µg/m3 and the daily average target value to 25 µg/m3,
and the daily average target value of SO2 concentration to 40 µg/m3. While injecting a
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new impetus for high-quality development, industrial upgrading and the digital economy
have also reduced air pollutant emissions, making a prominent contribution to winning the
battle for a blue sky and white clouds [7]. However, there may be pollution transfer in some
areas due to the transfer of existing heavy polluting enterprises as a result of industrial
upgrading [8]. Therefore, the ecological and environmental effects of industrial upgrading
need to be further studied. In the context of global carbon peaking and carbon neutrality,
accelerating industrial upgrading and promoting cleaner production technologies can make
a great contribution to protecting human health and mitigating global climate change [9].

Currently, a great deal of research has been conducted on regional air pollution, with
perspectives focusing on spatial-temporal evolution patterns and factors [10,11]. To broadly
explore the spatial-temporal evolution of air pollution, the perspectives include emission
inventories of air pollutants [12], source analysis of particulate matter [5], and spatial-
temporal evolution and prediction of air pollution from differentiated data sources [11,13].
The selected research objects include single air pollutants, such as SO2 [14,15], NO2 [16,17],
O3 [18,19], PM10 [20,21], and PM2.5 [22,23], and composite indices, such as API [24] and
AQI [25]. The spatial scales of the studies are mainly focused on the national scale [3],
provincial scale [26], urban clusters [11], and urban scale [27]. In addition, most of the
current studies focus on the factors of air pollution [10,28,29], pollution management, pre-
vention, and control policies [30]. Existing studies have shown that air pollution is formed
by a combination of natural environmental factors and socioeconomic factors, whose for-
mation, and transmission mechanisms are complex [29,31]. Natural environmental factors
mainly include precipitation [23], wind speed [19], and vegetation [32], directly affecting
the transport and degradation of air pollutants. However, socioeconomic factors are the
fundamental contributors to air pollution. Economic development [10], urbanization [11],
population density [33], FDI [7], energy structure [34], and land use [35] have been inves-
tigated in examining air pollution in current studies. Relevant research methods include
geographic probes [28], spatial econometric models [3,36], gray correlation models [37],
machine learning [13,38], and geographically weighted regression models [30].

In summary, existing studies mostly focus on single air pollutants or the spatial-
temporal characteristics of multiple air pollutants in a single year, and there are few
comprehensive studies that cover multiple air pollutants over a long period [19,39]. In
recent years, most of the relevant studies have focused on PM2.5, with few providing a
comparative analysis of the spatial-temporal patterns of multiple air pollutants and their
factors [40,41]. Regarding factor analysis, current studies mainly focus on socioeconomic
factors, such as economic development and urbanization, while few articles include natural
environmental factors [10,11]. Moreover, the impact of industrial structure transforma-
tion on air pollution has been explored by selecting the share of secondary industry in
GDP or the share of tertiary industry in GDP as the core explanatory variables [42,43].
However, with the rapid development of information technology and digitalization, the
digital economy can bring new energy to socioeconomic development, and thereby can
promote the evolution of the industrial structure in a more technologically advanced and
environmentally friendly way by decreasing the emission of air pollutants. There are
few studies investigating the impact of the digital economy on air pollution [7,44]. The
digital economy has given rise to new digital industries and enabled traditional industries
to accelerate industrial upgrading, thus leading to improved production efficiency and
reduced undesired outputs, such as air pollution [32].

As the world’s largest developing country, China’s urbanization and industrialization
have led to a shift in its industrial structure from primary industry to secondary and
tertiary industry [32]. The digital economy is flourishing in China, and its economic
scale has expanded from CNY 2.6 trillion in 2005 to CNY 39.2 trillion in 2020. As the
first echelon of China’s digital economy, the digital economy in Beijing and Shanghai
already accounts for more than 50% of GDP, reaching 55.9% and 55.1%, respectively. In this
context of the rapid growth of the digital economy, the impact of empowering industrial
upgrading on air pollution mainly follows two paths, namely, digital industrialization
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and industrial digitization [45]. Digital industrialization can lead to the proliferation of
clean and nonpolluting enterprises through information technology, such as the internet,
which can gradually become a new growth pole for the regional economy [34]. Under
the pressure of the global COVID-19 pandemic and economic downturn, China’s digital
economy, which has become a key driver of emission reduction, grew 3.2 times faster than
GDP did in 2020. Under the guidance of emission reduction and high-quality development,
industrial upgrading and the digital economy have increasingly deepened in China in
recent years. The effectiveness of air pollution control in China is closely related to the
future goal of achieving carbon peaking and carbon neutrality [46,47]. By transforming the
economic growth mode and increasing the proportion of the digital industry in GDP, the
regional industrial structure can be optimized [45]. Industrial digitalization realizes low
consumption and low emissions mainly through the digitalization, intelligence, and clean
transformation of the original traditional industry, which directly reduces the emission of
air pollution and realizes the synergistic control of multiple pollutants in all aspects [48].
Therefore, it is necessary to improve air quality by accelerating industrial upgrading and
promoting the digital economy.

To investigate the changes in air pollution in China since the implementation of
the Ambient Air Quality Standard (GB3095-2012) and the Air Pollution Prevention and
Control Action Plan, this paper selected the remote sensing interpretation data of PM2.5
concentration, SO2 concentration, and NO2 concentration in China from 2013 to 2020 as the
research objects to analyze the spatial-temporal differences and spatial correlation evolution
characteristics of these pollutants. To explore the ecological effects of industrial upgrading,
this paper constructed a panel regression model to analyze the linkage effects and driving
mechanisms of industrial upgrading and the digital economy through these air pollutants.
Moreover, this paper explored the direction and influence degree of the dominant factors
of different air pollutant concentrations in combination with the environmental Kuznets
curve (EKC). Hopefully, the results will provide a theoretical reference for the formulation
and implementation of regional governance policies, such as the scientific management of
air pollution in each region, to achieve the dual goals of regional high-quality development
and ecological civilization construction.

2. Data and Methodology
2.1. Study Area and Data Sources

Considering the adjustment and change in administrative divisions and the unavail-
ability of equivalent economic data in some areas, this paper selected 286 cities above
the prefecture level in China as the study subjects. It is well known that the differences
in spatial-temporal patterns of air pollution are not only influenced by socioeconomic
conditions but also have a close relationship with natural conditions. Drawing on existing
studies [2,10], this paper chose PM2.5 concentration, SO2 concentration, and NO2 concen-
tration as indicators to characterize air pollution and selected the industrial advancement
index (Ind) and the digital economy index (Dige) as core explanatory variables. This paper
explored whether air pollution and economic development fit the EKC with GDP per capita
and its squared term. In addition, this paper selected human activity intensity (lnHAI),
population density (lnPD), population urbanization rate (lnPU), normalized vegetation
index (NDVI), average annual rainfall (lnPRCP), and ventilation coefficients (VC) as control
variables. The descriptive statistics of each variable are shown in Table 1. To prevent
pseudoregression in the regression process and to ensure the validity of the model results,
the Harris and Tzavalis (HT) test [49] was used to test the stationarity of the unit root of
each panel series. The results showed that the data passed the significance and stationarity
tests (Table 1).
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Table 1. Descriptive statistics and stationarity test of variables.

Variables Samples Mean Standard
Deviation

Minimum Maximum
HT Test

Conclusion
Statistic p

lnPM2.5 2288 3.641 0.365 1.153 4.690 0.167 0.000 smooth
lnSO2 2288 2.812 0.572 0.333 4.504 0.925 0.000 smooth
lnNO2 2288 3.219 0.372 0.339 3.986 0.976 0.017 smooth

Ind 2288 1.129 0.682 0.207 12.937 0.933 0.000 smooth
Dige 2288 0.101 0.055 0.017 0.820 −0.281 0.000 smooth

lnVGDP 2288 10.817 0.565 9.037 13.068 0.898 0.000 smooth
ln2 VGDP 2288 117.320 12.299 81.664 170.761 0.901 0.000 smooth

lnPU 2288 4.001 0.258 3.032 4.605 0.927 0.000 smooth
lnHAI 2288 10.188 0.976 7.713 13.104 0.166 0.000 smooth
lnPD 2288 5.732 0.942 1.773 8.249 0.007 0.000 smooth
NDVI 2288 0.717 0.152 0.066 0.905 −0.324 0.000 smooth

lnPRCP 2288 6.852 0.483 5.292 7.917 0.948 0.000 smooth
VC 2288 7.482 0.6407 0.000 8.812 0.909 0.000 smooth

The data used for the study were divided into three parts:

(1) Air pollution data. PM2.5 concentration data for the period 2013–2020 (V4.CH.03)
(https://sites.wustl.edu/acag/datasets/surface-pm2--5/#V4.CH.03) (accessed on
7 April 2021) come from the Atmospheric Composition Analysis Group (ACAG)
of Washington University in St. Louis, MO, USA. The SO2 concentration data
(https://zenodo.org/record/5765553#.YpYPwciEwi0) (accessed on 6 April 2021) and
NO2 concentration data (https://zenodo.org/record/5765561#.YpYPwciEwi0) (ac-
cessed on 6 April 2021) are derived from the China High Air Pollutants (CHAP)
dataset released by the University of Maryland, USA. It is generated from big data
(e.g., ground-based measurements, satellite remote sensing products, atmospheric
reanalysis, and model simulations) by considering the spatial-temporal heterogene-
ity of air pollution and using artificial intelligence. It has long-term, full coverage,
high-resolution, and high-quality characteristics.

(2) Socioeconomic data. As core explanatory variables, the index of industrial sophistica-
tion (the ratio of tertiary industry to secondary industry) is calculated using the output
value of the secondary industry and the output value of the tertiary industry provided
in the statistical yearbooks of China’s provinces and cities. Considering the availability
of relevant data at the city level, the digital economy index is constructed to measure
the comprehensive development level of the digital economy in terms of both internet
development and digital financial inclusion. The number of broadband internet ac-
cess users per 100 persons, the proportion of computer service and software industry
employees to urban employees, the total amount of telecommunication services per
capita, and the number of cell phone users per 100 persons are selected from the China
Urban Statistical Yearbook (2014–2021) to characterize the internet penetration rate,
related employment, related output, and cell phone penetration rate, respectively.
For digital finance development, the China Digital Inclusive Finance Index, which is
jointly compiled by the Digital Finance Research Center of Peking University and Ant
Financial Services Group, is used. This paper calculated these five indicators using the
entropy value method [50] to obtain a comprehensive digital economy development
index [51], denoted as Dige. Data on GDP per capita, population urbanization rate, and
population density were obtained from the China Urban Statistical Yearbook (2014–2021).
Because of the close relationship between nighttime lighting image data and urban
population density, total GDP, energy consumption, and residents’ lifestyles, this
paper selected the sum of raster grayscale values within the scope of prefecture-level
administrative units to comprehensively measure the intensity of human socioeco-
nomic activities in the studied cities. This paper selected nighttime light data from the
global 500 m resolution “NPP-VIIRS-like” nighttime light dataset produced using a

https://sites.wustl.edu/acag/datasets/surface-pm2--5/#V4.CH.03
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deep learning model (https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:
10.7910/DVN/YGIVCD) (accessed on 5 April 2021) [52].

(3) Natural environmental data. Existing studies show that, in addition to socioeconomic
factors, natural environmental factors have significant effects on air quality, especially
on PM2.5 concentrations. This paper selected the normalized difference vegetation
index (NDVI), annual average precipitation, and airflow coefficient as influencing
factors. The NDVI was obtained from the National Aeronautics and Space Adminis-
tration (NASA) (https://search.earthdata.nasa.gov/search/granules?p=C1621135848-
LPDAAC_ECS&pg[0][v]=f&pg[0][gsk]=-start_date&q=Vegetation%20Indices%2016-Day%
20L3%20Global%20500m&tl=1651319558!3!!&lat=31.21875&long=50.484375) (accessed on
7 April 2021). The annual precipitation and the mean wind speed and atmospheric
boundary data were obtained from the latitude and longitude raster meteorolog-
ical data published by the ECMWF (https://cds.climate.copernicus.eu/cdsapp#!/
dataset/reanalysis-era5-single-levels-monthlymeans?tab=form ) (accessed on 7 April
2021), and the ventilation coefficients (VC) were calculated by referring to the study
by Hering [53].

2.2. Research Methodology
2.2.1. Spatial Autocorrelation

Spatial autocorrelation is used to characterize the spatial correlation of an indicator in a
region [54] and is divided into global autocorrelation, which is used to study the correlation
and dependence of a research unit within a spatial region with research units in neighboring
regions, and local autocorrelation, which is used to study the clustering of high and low
values within a spatial region and the spatial distribution of hot and cold spots [55]. Global
Moran’s I and local Moran’s I were selected to measure the spatial clustering phenomenon
of air pollution in China. According to the category of local spatial autocorrelation, all cities
can be classified into “high-high”, “low-low”, “high-low”, and “low-high” categories. In
the “high-high” cluster, air pollution in the area and neighboring areas is relatively high.
In the “low-low” cluster, air pollution in the area and its neighboring areas is relatively
low. The “high-low” outlier reflects areas with higher air pollution surrounded by lower
areas, while the “low-high” outlier reflects areas with lower air pollution surrounded by
higher areas.

2.2.2. Entropy Value Method

The entropy value method is an objective weight calculation method and can effec-
tively overcome information superposition among indicators [50]. After standardizing
the number of broadband internet access users, the proportion of urban employees in the
computer services and software industry, the total number of telecommunication services
per capita, and the number of cell phone subscribers per 100 persons and considering the
China Digital Inclusive Finance Index, the entropy value method was used to calculate
the weights of each indicator. Then, the calculated index was used to characterize the
development level of the digital economy in cities.

2.2.3. Multiple Panel Regression Model

This paper constructed regression models to investigate the differences in the effects
of industrial upgrading on different air pollutants with PM2.5 concentration, SO2 concen-
tration, and NO2 concentration as explanatory variables. To enhance the robustness of
the regression results, this paper selected the industrial upgrading index (Ind) and the
digital economy index (Dige) as the core explanatory variables. This paper also included
the squared term of GDP per capita in the econometric model to show whether each type of
air pollutant fits the typical Kuznets curve. The respective regression models are as follows.

ln (PM2.5)it =

{
α1 Indit + ∑ λiXit + β + ε

α2Digeit + ∑ λiXit + β + ε

https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/YGIVCD
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/YGIVCD
https://search.earthdata.nasa.gov/search/granules?p=C1621135848-LPDAAC_ECS&pg[0][v]=f&pg[0][gsk]=-start_date&q=Vegetation%20Indices%2016-Day%20L3%20Global%20500m&tl=1651319558!3!!&lat=31.21875&long=50.484375
https://search.earthdata.nasa.gov/search/granules?p=C1621135848-LPDAAC_ECS&pg[0][v]=f&pg[0][gsk]=-start_date&q=Vegetation%20Indices%2016-Day%20L3%20Global%20500m&tl=1651319558!3!!&lat=31.21875&long=50.484375
https://search.earthdata.nasa.gov/search/granules?p=C1621135848-LPDAAC_ECS&pg[0][v]=f&pg[0][gsk]=-start_date&q=Vegetation%20Indices%2016-Day%20L3%20Global%20500m&tl=1651319558!3!!&lat=31.21875&long=50.484375
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels-monthlymeans?tab=form
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels-monthlymeans?tab=form
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ln (SO2)it =

{
α1 Indit + ∑ λiXit + β + ε

α2Digeit + ∑ λiXit + β + ε

ln (NO2)it =

{
α1 Indit + ∑ λiXit + β + ε

α2Digeit + ∑ λiXit + β + ε

where (PM2.5)it, (SO2)it, and (NO2)it represent the annual average concentrations of PM2.5,
SO2, and NO2 in each city, i denotes the city, t denotes the year, Ind is the industrial
advanced index, and Dige is the digital economy index. Xit are the factors affecting PM2.5
concentration, SO2 concentration, and NO2 concentration, such as economic development
and population urbanization level, which are the control variables. β is the constant
term, and ε is the random error term. α1, α2, and λi are the estimated coefficients of the
corresponding independent variables.

3. Results
3.1. Spatial-Temporal Distribution of Air Pollution

With the promulgation of the Action Plan for the Prevention and Control of Air
Pollution (Atmospheric Ten) in 2013, the Chinese government strengthened the monitoring
of various air pollutants. From 2013 to 2020, the concentrations of PM2.5, SO2, and NO2
in China’s cities showed a decreasing trend (Figure 1). Among them, the annual average
concentration of SO2 decreased by approximately 62.18%, showing the most significant
decrease, and for the first time in 2016, the annual average concentration of SO2 was
lower than the annual average primary limit value (20 µg/m3) of SO2 concentration in the
Ambient Air Quality Standards (GB3095-2012). The PM2.5 concentration also showed a
decreasing trend, with a decrease of 35.97% after 2018, which was lower than the secondary
limit value (35 µg/m3) of the PM2.5 concentration in the Ambient Air Quality Standard
(GB3095-2012) but was still higher than the primary limit value (15 µg/m3). Compared
with the first two air pollutants, the NO2 concentration remained relatively stable, in the
range of 22.27–25.82 µg/m3, showing a small fluctuating decrease.
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To explore the differences in the spatial-temporal patterns of different air pollutants,
this paper used ArcGIS10.8 to spatially visualize the spatial-temporal distribution patterns
of the mean PM2.5 concentration, SO2 concentration, and NO2 concentration in China
during 2013–2020. This paper found that there were significant differences in the patterns
of different air pollutants in various regions (Figure 2). Overall, the concentrations of all
three air pollutants were significantly reduced. The spatial pattern of these three pollutants
is heavier in the north than in the south and heavier in the east than in the west, with the
North China Plain as the center of gravity. In particular, the spatial distribution pattern
of the three types of pollutants in the “2 + 26” cities in Beijing–Tianjin–Hebei and the
surrounding areas has a certain coupling. The national PM2.5 concentration has improved,
especially in China’s southern region. The annual average PM2.5 concentration in 261 cities
was over 35 µg/m3 in 2013, while only 103 cities presented concentrations exceeding
35 µg/m3 in 2020, with significantly fewer areas of high concentration. Moreover, the PM2.5
concentration weakened significantly, with the highest annual average pollution concentra-
tion (108.87 µg/m3) in Xingtai in 2013 and in Kunyu (83.50 µg/m3) in 2020. The original
double-peak pattern of PM2.5 concentration in South China and the Beijing–Tianjin–Hebei
region gradually evolved into a sporadic distribution, with individual cities presenting high
concentrations. Areas with high SO2 concentrations were mainly distributed in resource-
based petrochemical and coal cities, such as Zibo, Zaozhuang, Dongying, Yangquan, and
other cities, in 2013. The development and utilization of mineral resources produce a large
amount of SO2, resulting in air quality deterioration. The annual average SO2 concentra-
tion in 18 cities exceeded the secondary limit (60 µg/m3) in 2013, while that in 243 cities
exceeded the primary limit (20 µg/m3). The annual average concentration of SO2 was re-
duced in 2020, with only three cities, namely, Shuozhou, Wuhai, and Shizuishan, exceeding
the primary limit (20 µg/m3). Compared to 2013, an overall decrease in NO2 concentration
emerged in 2020, while the overall spatial change in areas with high NO2 concentration was
not significant. The areas with relatively high NO2 concentration were mainly located in
the Beijing–Tianjin–Hebei urban agglomeration, Shandong Peninsula urban agglomeration,
and Central Plains urban agglomeration. In 2020, the NO2 concentration limit (40 µg/m3)
was exceeded only in Tianjin, Shijiazhuang, and Taiyuan Langfang, which are densely
populated and have a high intensity of socioeconomic activities. With the promulgation
of the Atmospheric Ten in 2013, the number of cities with high air pollution gradually
decreased, showing a trend of spatial convergence.

3.2. Spatial Correlation Characteristics of Air Pollution

This paper calculated the global Moran’s I estimates of the average concentration of
the three types of air pollutants for each city in China from 2013 to 2020 with GeoDa1.16
(Table 2) and found that the global Moran’s I estimates of the average concentration of the
three air pollutants were all greater than 0 at the significance level of 0.1%. Among them, the
global Moran’s I of the PM2.5 concentration was between 0.775 and 0.827, with an overall
fluctuating decreasing trend, while the global Moran’s I of the SO2 concentration decreased
greatly year by year, from 0.878 in 2013 to 0.713 in 2020. The global Moran’s I of the
NO2 concentration ranged from 0.798 to 0.815, with a small overall change, and remained
relatively stable. Overall, the air pollutant concentration in China had significant positive
spatial clustering and dependence characteristics from 2013 to 2020. Compared with PM2.5
and NO2, the SO2 concentration presented weakening clustering characteristics, and the
pollution characteristics of high-high clustering and low-low clustering were weaker.
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Table 2. Global Moran’s I of air pollution during 2013–2020.

Year
PM2.5 Concentration SO2 Concentration NO2 Concentration

Moran’s I z Value p Value Moran’s I z Value p Value Moran’s I z Value p Value

2013 0.820 24.031 0.001 0.878 26.128 0.001 0.815 24.052 0.001
2014 0.792 23.096 0.001 0.872 25.887 0.001 0.806 23.855 0.001
2015 0.827 23.897 0.001 0.851 25.229 0.001 0.805 23.838 0.001
2016 0.805 24.080 0.001 0.839 25.110 0.001 0.804 23.570 0.001
2017 0.809 23.347 0.001 0.809 24.080 0.001 0.805 23.726 0.001
2018 0.782 22.905 0.001 0.771 22.833 0.001 0.810 23.891 0.001
2019 0.815 24.902 0.001 0.750 21.776 0.001 0.798 23.796 0.001
2020 0.775 23.571 0.001 0.713 20.504 0.001 0.809 23.931 0.001
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To further study the degree of clustering and spatial distribution of air pollutants in
China, LISA maps were selected to characterize four types of local spatial correlations of
high-high, low-low, low-high, and high-low PM2.5 concentration, SO2 concentration, and
NO2 concentration (Figure 3). Overall, the local spatial correlations of the three types of air
pollutants were dominated by high-high and low-low clusters during 2013–2020, whereas
the high-low outliers, as well as the low-low clusters, showed sporadic distributions around
high-high and low-low clusters. The high-high clusters of PM2.5 concentration were mainly
distributed in the North China Plain and the middle and lower reaches of the Yangtze River
Plain, and their range gradually expanded over most of Xinjiang. The areas with low-low
clustering of PM2.5 concentration were gradually reduced, while the local clustering in
areas in Guangxi, Inner Mongolia, and Heilongjiang disappeared.
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Compared with the cases of PM2.5 and NO2, the agglomeration range of SO2 concentra-
tion has an obvious dividing line and very obvious changes. The high-high agglomeration
area of SO2 concentration is mainly distributed in the middle and lower reaches of the
Yellow River north of the Qinling–Huaihe line and the Beijing–Tianjin–Hebei area in 2013.
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By 2020, the high-high agglomeration area of SO2 concentration gradually expanded to
most of the Yellow River Basin and the Bohai Sea region, while the low-low agglomeration
area of SO2 concentration presented a shrinking trend. The southwestern region, Xinjiang,
and Heilongjiang gradually dropped out of the low-low agglomeration area of SO2 concen-
tration. The low-low agglomeration area of SO2 concentration was mainly concentrated in
the Yangtze River Delta urban agglomeration and the west coast of the West Taiwan Strait
urban agglomeration in 2020. The NO2 concentration and the PM2.5 concentration had a
certain coupling in terms of the distribution pattern. The high-high agglomeration areas of
the NO2 concentration were relatively stable in the “2 + 26” cities in Beijing–Tianjin–Hebei
and its surrounding areas, Yangtze River Delta urban agglomeration, and Fenwei Plain,
and China’s other key monitoring areas. The low-low agglomeration range of the NO2
concentration gradually shrank, while areas such as Tibet and Sichuan dropped out.

3.3. Driving Relationship between Industrial Upgrading and Air Pollution

Industrial upgrading involves industrial internal restructuring, industrial transfer, and
industrial digitalization and informatization [56]. To fully consider the impact of industrial
upgrading on air pollution, this paper selected the advanced index of industrial structure
and the development index of the digital economy as the core explanatory variables to
explore their influence mechanisms. This paper performed panel regression analysis
(Table 3) with a random effect model and a fixed effect model (individual, time, and two-
way), respectively, and identified the optimal model using the Hausman test [57]. The
Hausman results show that the individual fixed effect model has better explanatory power
than other models, so this paper chooses the individual fixed effect model to analyze the
influence mechanism of industrial upgrading on air pollution.

Table 3. Fixed effect regression results of industrial upgrading effects on air pollution.

Variables

Ind as a Core Explanatory Variable Dige as a Core Explanatory Variable

PM2.5
Concentration

SO2
Concentration

NO2
Concentration

PM2.5
Concentration

SO2
Concentration

NO2
Concentration

Ind −0.039 ***
(0.006)

−0.033 ***
(0.013)

−0.014 ***
(0.005) - - -

Dige - - - −1.362 ***
(0.073)

−3.071 ***
(0.167)

−0.387 **
(0.054)

lnVGDP 0.458 **
(0.165)

1.045 ***
(0.378)

0.540 ***
(0.150)

0.342 **
(0.154)

0.689 **
(0.350)

0.371 ***
(0.112)

ln2 VGDP
−0.024 ***

(0.008)
−0.054 ***

(0.017)
−0.024 ***

(0.007)
−0.018 ***

(0.007)
−0.036 **

(0.016)
−0.016 ***

(0.005)

lnPU −0.374 ***
(0.033)

−1.006 ***
(0.075)

−0.086 ***
(0.023)

−0.323 ***
(0.030)

−0.835 ***
(0.069)

−0.069 ***
(0.022)

lnHAI −0.390 ***
(0.012)

−0.977 ***
(0.028)

−0.073 ***
(0.009)

−0.328 ***
(0.012)

−0.811 ***
(0.028)

−0.058 ***
(0.008)

lnPD −0.036 **
(0.016)

−0.125 ***
(0.036)

0.027 **
(0.012)

−0.001
(0.014)

−0.040
(0.033)

0.039 ***
(0.010)

NDVI 0.346 ***
(0.031)

0.491 ***
(0.071)

0.246 ***
(0.022)

0.270 ***
(0.029)

0.269 ***
(0.066)

0.229 ***
(0.021)

lnPRCP −0.203 ***
(0.017)

−0.148 ***
(0.039)

−0.117 ***
(0.012)

−0.206 ***
(0.016)

−0.154 ***
(0.036)

−0.117 ***
(0.012)

VC −0.029 ***
(0.009)

−0.130 ***
(0.021)

−0.036 ***
(0.006)

−0.021 ***
(0.008)

−0.084 ***
(0.019)

−0.030 ***
(0.006)

cons 8.645 ***
(0.865)

14.220 ***
(1.982)

1.991 **
(0.851)

8.235 ***
(0.810)

13.193 ***
(1.835)

2.589 ***
(0.592)

R2 0.713 0.712 0.264 0.748 0.754 0.282
F statistic 44.32 28.13 127.78 48.54 31.06 137.12

N 2288 2288 2288 2288 2288 2288

Note: Standard errors are in parentheses; “**”, and “***” indicate significance at the levels of 0.05, and 0.01,
respectively; “-” indicates no item.
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Regional industrial upgrading is a fundamental way to combat air pollution [7].
Since the beginning of the 21st century, the accelerated growth of the digital economy has
promoted the upgrading and transformation of industrial enterprises, such as those related
to digitalization, informatization, and decarbonization. According to the measurement
results, this paper found that industrial upgrading has a negative effect on the concentration
of all three types of air pollutants, while it has a stronger effect on PM2.5 concentration than
on SO2 and NO2. The regression results show that the digital economy has a catalytic effect
on the improvement in air pollution, with regression coefficients of −1.362, −3.071, and
−0.387, which all pass the 1% significance test (Table 3) and have a significant effect on the
improvement in SO2 concentration.

The impact of economic development on air pollution has obvious stage characteristics.
The panel regression model shows that GDP per capita and its quadratic pass the 1%
significance test, and the coefficient of the quadratic term is negative. The relationship
between the three types of air pollutants and the economic development level is also
consistent with the classical EKC theory. There is an inverted U-shaped relationship, while
there is a difference in the inflection point between the three types of air pollutants and
the economic development level. Combined with the regression results, this paper found
that the inflection point of the PM2.5 concentration appears when per capita GDP reaches
CNY 13,360–13,928, and the inflection point of the SO2 concentration appears when per
capita GDP reaches CNY 14,320–15,929. It is obvious that the per capita GDP level of most
Chinese cities has exceeded the inflection point, and that the annual average concentration
of PM2.5 and SO2 have gradually decreased. This is consistent with the spatial-temporal
evolution results in previous findings. However, the inflection point of NO2 concentration
appears when per capita GDP reaches CNY 76,880–108,418. At present, most cities still
cannot reach this level, so the improvement in NO2 concentration is relatively slow.

3.4. Heterogeneity of Influencing Factors of Air Pollution Based on Industrial Upgrading

As the region with the fastest industrial upgrading and the highest level of digital
economy in China, the effect of industrial upgrading on air pollution in the Yangtze
River Delta urban agglomeration and the “2 + 26” cities in Beijing–Tianjin–Hebei and its
surrounding areas is obvious. Therefore, this paper chooses the PM2.5 concentration as the
explanatory variable to characterize air quality and construct regression models for the
Yangtze River Delta urban agglomeration and the “2 + 26” cities in Beijing–Tianjin–Hebei
and its surrounding areas. Since 2013, the government has successively issued the China
New Urbanization Plan, the Overall Plan for the Reform of the Ecological Civilization
System, and various local environmental plans to strengthen the control of environmental
pollution in China’s key areas. Therefore, this paper also built regression models according
to China’s 168 key cities which are identified in the State Council’s “Three-Year Action Plan
for Winning the Blue Sky Defense”. Subsequently, this paper compared whether industrial
upgrading in key areas with strong environmental regulations has a more significant impact
on the improvement in air pollution.

Industrial upgrading in the “2 + 26” cities in Beijing–Tianjin–Hebei and its surrounding
areas, the Yangtze River Delta urban agglomeration, and China’s key cities with environ-
mental protection focus has a significant negative impact on air pollution, passing the
significance test at the 1% level. The regression coefficients are −0.101, −0.188, and −0.064,
respectively (Table 4). The effects of industrial upgrading in all three types of areas are
higher than those on the PM2.5 concentration in the overall model. The impact of the
digital economy on air pollution in the “2 + 26” cities in Beijing–Tianjin–Hebei and its
surrounding areas, the Yangtze River Delta urban agglomeration, and China’s key cities
with environmental protection focus is significantly negative, and all coefficients pass the
significance test at the 1% level, with the regression coefficients at −1.164, −1.003, and
−1.119, respectively (Table 4). This indicates that the digital economy has the strongest
improvement effect on air pollution in Beijing–Tianjin–Hebei and its surrounding areas,
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which is better than the Yangtze River Delta urban agglomeration and China’s key cities
with a focus on environmental protection.

Table 4. Fixed effect regression results of the impact of industrial upgrading on air pollution in
different regions.

Variables

Key Cities of Environmental
Protection Yangtze River Delta

“2 + 26” Cities in
Beijing–Tianjin–Hebei and Its

Surrounding Areas

Ind as a Core
Explanatory

Variable

Dige as a Core
Explanatory

Variable

Ind as a Core
Explanatory

Variable

Dige as a Core
Explanatory

Variable

Ind as a Core
Explanatory

Variable

Dige as a Core
Explanatory

Variable

Ind −0.064 ***
(0.011) - −0.188 ***

(0.032) - −0.101 ***
(0.024) -

Dige - −1.119 ***
(0.082) - −1.003 ***

(0.163) - −1.164 ***
(0.054)

lnVGDP 0.622 ***
(0.221)

0.563 ***
(0.378)

4.113 ***
(0.411)

3.161 ***
(0.439)

1.085 ***
(0.446)

0.989 **
(0.447)

ln2 VGDP
−0.032 ***

(0.010)
−0.029 ***

(0.009)
−0.188 ***

(0.019)
−0.145 ***

(0.020)
−0.050 ***

(0.020)
−0.045 **

(0.020)

lnPU −0.318 ***
(0.049)

−0.332 ***
(0.045)

−0.479 ***
(0.124)

−0.435 ***
(0.124)

−0.507 ***
(0.141)

−0.560 ***
(0.138)

lnHAI −0.422 ***
(0.019)

−0.364 ***
(0.018)

−0.419 ***
(0.043)

−0.420 ***
(0.043)

−0.323 ***
(0.041)

−0.303 ***
(0.042)

lnPD −0.053 ***
(0.019)

−0.025
(0.018)

−0.134 ***
(0.044)

−0.102 **
(0.045)

−0.102
(0.082)

0.013
(0.088)

NDVI 0.299 ***
(0.043)

0.220 ***
(0.041)

0.426 ***
(0.099)

0.305 ***
(0.101)

0.505 ***
(0.105)

0.423 ***
(0.021)

lnPRCP −0.210 ***
(0.022)

−0.205 ***
(0.021)

−0.194 ***
(0.043)

−0.205 ***
(0.043)

−0.035
(0.058)

−0.159
(0.057)

VC 0.007
(0.010)

−0.020**
(0.010)

−0.087
(0.056)

−0.046
(0.057)

−0.179 ***
(0.033)

−0.142 ***
(0.034)

cons 8.177 ***
(1.145)

8.034 ***
(1.064)

−9.337 ***
(0.851)

−4.649 **
(2.254)

5.821 **
(2.557)

5.488 ***
(2.528)

R2 0.745 0.786 0.816 0.818 0.861 0.863
F statistic 32.93 43.91 31.29 37.53 29.62 26.14

N 1344 1344 328 328 224 224

Note: Standard errors are in parentheses; “**”, and “***” indicate significance at the levels of 0.05, and 0.01,
respectively; “-” indicates no item.

4. Discussion
4.1. Mechanism Analysis of the Impact of Industrial Upgrading on Air Pollution

Industrial emissions, which are the main point source of air pollution [58], are full of
pollutants, such as SO2 and NO2 [59]. The large amount of industrial pollutant emissions
and industrial energy consumption are the main factors contributing to air pollution. Exist-
ing studies confirm that industrial upgrading is effective in improving air quality [60,61].
This paper found that there are significant differences in the effects of industrial upgrading
on the concentration of various air pollutants in China, with industrial upgrading improv-
ing the PM2.5 concentration more strongly than improvement in SO2 and NO2. Since the
promulgation of the Atmospheric Ten in 2013, air quality has improved significantly in key
regions, achieving air pollution control, especially with regard to the PM2.5 concentration
through source emission reduction. Many enterprises with excessive pollution have been
shut down and transformed, while the point sources of various types of air pollutants
have been gradually reduced [62]. Meanwhile, the Chinese government has strengthened
industrial and environmental access standards, accelerated the elimination of backward
production capacity, and gradually upgraded high energy-consuming and high-polluting
enterprises [61]. According to the Blue Sky Defense Plan and other policies, future efforts
in China’s air pollution prevention and control will focus on reducing emissions and pre-
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venting pollution directly at the source by adjusting the industrial structure and energy
structure [63]. Environmental control emphasizes a strategic shift from total control to
quality improvement and from single-pollutant control to multipollutant synergistic con-
trol [64]. Therefore, it is urgent to control multiple air pollutants in an integrated manner
through industrial upgrading. Since the Reform and Opening-up, China’s manufacturing
industry has developed rapidly and achieved a historical transformation [23]. However,
China’s manufacturing industry has followed a crude development model characterized
by high input, high consumption, and high emissions for a long period [65], which has
brought about high energy and resource consumption and pollutant emissions. Resource
shortages, environmental pollution, and ecological damage have become bottlenecks to
the sustainable development of China’s manufacturing industry [32] and have restricted
air environment prevention and control [66]. Coal combustion by industrial enterprises is
the main source of SO2 in the atmosphere. In the context of the rapid development of the
digital economy, the upgrading of coal combustion technologies and the use of low-sulfur
fuels effectively reduces SO2 and NOx emissions [16,58]. Moreover, the digital economy em-
powers the overall control of clean transportation in terms of exhaust gases and empowers
the digitalization, informatization, and intelligence of environmental management, which
have a positive impact on pollutant emission monitoring and intelligent point-to-point
management [67]. The digital economy has led to digital and intelligent innovation in
clean production technologies [62]. Governments and enterprises are paying increasing
attention to improving energy conservation and emission reduction and promoting green
transformation. Therefore, industrial upgrading and green transformation have become a
way to improve air pollution and a necessary path for enterprise development.

After 2013, given the implementation of environmental regulations, such as the At-
mospheric Ten, and the urgent requirement to achieve high-quality development, a “push-
back” mechanism was formed, resulting in the original high-energy-consuming and high-
polluting enterprises’ gradual shutdown and relocation [58]. Moreover, early economic
development has led to the accumulation of capital, which provides financial support
for the optimization and upgrading of industries [68]. In addition, industrial digitization
has been deeply promoted by the digital economy, which made the penetration rate of
the digital economy in China’s industries as high as 8.9%, 21.0%, and 40.7% in 2020. The
innovation of clean production technology enabled by the digital economy has led to the
gradual reduction in air pollutants generated by manufacturing industries and tertiary
industries, resulting in a downward trend of various air pollutant concentrations [34].

4.2. The Differential Impacts of Industrial Upgrading on Air Pollution

China’s digital economy, as the core driver of new and old kinetic energy, has already
made outstanding contributions to industrial upgrading and air quality improvement [61].
In terms of total volume, the digital economy scale in 13 eastern provinces, including
Guangdong, Jiangsu, Shandong, and Zhejiang, exceeded CNY 1 trillion in 2020. There are
significant differences in the digital economy and the intensity of industrial upgrading in
China’s different regions, so there are similar differences in the improvement in air quality.
Currently, using the effective allocation of resources [69], the majority of China’s polluting
enterprises are transforming their production models to achieve diversified agglomeration
in the industry [70], resulting in an increasing degree of coupling between factor input
and output structures. Under the strong impact of environmental policies, the positive
externality brought by the rational use of resources is strengthened so that industrial
upgrading provides favorable factors for air quality improvement [61]. Enhanced industrial
upgrading in cities focusing on the environment can make outstanding contributions to
air quality improvement [71]. This paper found that industrial upgrading has a stronger
impact on air pollution improvement in key environmental cities than in the country as
a whole. This is mainly because the rational implementation of environmental policies
can optimize and upgrade regional low-end industries with high pollution, high energy
consumption, and high emissions to high-end industries with zero pollution, low energy
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consumption, and zero emissions [62]. This not only creates space for the cultivation
of industries, such as strategic emerging industries and high-end service industries but
also achieves the purpose of improving air quality [30]. The regression results show that
industrial upgrading in the Yangtze River Delta region improves air pollution significantly
more than in Beijing–Tianjin–Hebei and its surrounding areas. With regional economic
growth being the main focus, major cities such as Beijing, Shanghai, and Tianjin have given
full play to their leading advantages in high-tech industries, gradually eliminating high
energy-consuming and high-polluting enterprises and gradually expanding technology
exports [72]. At present, Hebei, Jiangsu, and other areas are attracting many high-tech
industries, new energy industries, energy conservation, and environmental protection
industries through park cooperation, industrial transfer, technical support, and other
means, fundamentally reducing the generation of air pollutants [63].

As a converging economy, the digital economy has become a driving force for high-
quality development and a new engine to promote industrial structure upgrading [48].
Beijing–Tianjin–Hebei and the Yangtze River Delta are currently the fastest growing digital
economy regions in China, where the digital economy has an important impact on pro-
moting industrial upgrading, technological innovation, and improved resource allocation
efficiency [72], thus making an important contribution to improving air quality. This paper
found that the digital economy has a stronger impact on air pollution in Beijing–Tianjin–
Hebei and its surrounding areas than in the Yangtze River Delta. This is mainly because the
initial PM2.5 concentration in Beijing–Tianjin–Hebei was much higher than that in the rest
of China. The digital economy can promote faster industrial upgrading and transformation
and directly reduce pollution point sources [30].

Many new industries, such as big data, cloud computing, the internet of things, and
artificial intelligence, have been developed based on previous capital accumulation and
technical support in large and medium-sized cities, such as Beijing and Tianjin. These indus-
tries have become the economic growth point for a new round of industrial upgrading [73],
and most of them are clean and nonpolluting industries, thus reducing the emission of air
pollutants [10]. The digital economy effectively promotes the deep integration of informa-
tion technology and traditional industries [70], which in turn promotes the transformation
and upgrading of the original high-energy-consuming and high-polluting enterprises and
fundamentally reduces the emission of air pollutants. The main cause of environmental
pollution lies in the sloppy development of industrial production and inefficient use of
resources [33]. As a green, sustainable, and high-quality economic paradigm, the digital
economy optimizes resource allocation and helps reduce undesired output [70], which in
turn reduces air pollution.

4.3. Research Limitations and Future Research Directions

The greatest innovation of this paper is a new research perspective on the impact of
industrial upgrading on air pollution through the digital economy. These findings can help
future scholars better understand the underlying mechanisms of the relationship between
industrial upgrading and air pollution, and help local governments better guide their air
pollution prevention and control efforts. Despite some achievements, this paper also has
various limitations. The digital economy development index coverage is not sufficiently
comprehensive due to the limitation of data acquisition from prefecture-level cities. This
paper explored industrial upgrading using only the industrial advanced index and the
digital economy development index, which may not cover the comprehensive impact on
air pollution. In addition, due to the time limitation of remote sensing data, this paper
studied the impact of industrial upgrading on air pollution only after the promulgation of
the Atmospheric Ten in 2013 and failed to select the pre-promulgation period as a control
group for the study. The regression models of Beijing–Tianjin–Hebei, the Yangtze River
Delta, and China’s key cities which focus on environmental protection are mainly focused
on the developed eastern regions; hence, this paper did not address how to use industrial
upgrading in the central and western regions to alleviate air pollution and improve air
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quality. These aspects need to be further explored. There are significant differences in the
leading industries of regional economic development, and they drive economic growth in
various ways. The next step is to study the heterogeneity of the impact on air pollution in
the upgrading of different leading industries and to tailor the general patterns and driving
mechanisms of the impact of industrial upgrading on air pollution to local conditions.

5. Conclusions

To investigate the effects of industrial upgrading on air pollution, China’s different
regions were studied. The main conclusions are as follows. All air pollutants in China
show a decreasing trend from 2013 to 2020. There are significant differences in the pat-
terns presented by different air pollutants in different regions. In particular, the spatial
distribution pattern of these three pollutants in the “2 + 26” cities in Beijing–Tianjin–Hebei
and its surrounding areas has a certain coupling. The three air pollutants show significant
spillover effects. The local spatial correlation of the three air pollutants is dominated by
high-high and low-low clusters, with high-low outliers and low-low clusters showing spo-
radic distributions around high-high and low-low clustering areas. Industrial upgrading
has a negative effect on all three air pollutants, and it has a stronger effect on the PM2.5
concentration than on the SO2 and NO2 concentrations. The digital economy also has a
catalytic effect on the improvement in air pollution, and the resulting improvement in
SO2 concentration is stronger than the improvement in the PM2.5 and NO2 concentrations.
Industrial upgrading and the digital economy have a significant negative effect on air
pollution in the “2 + 26” cities in Beijing–Tianjin–Hebei and its surrounding areas, the
Yangtze River Delta city cluster, and key cities with environmental protection focus, and
the effect of industrial upgrading in all three typical regions is higher than the effect of
industrial upgrading on the PM2.5 concentration in the overall model.
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