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Abstract: This paper represents a streamflow prediction model with the approach of ensemble
multi-GCM downscaling and system dynamics (SD) for the Aji-Chay watershed located in northwest
Iran. In this study, firstly, the precipitation and temperature projection for the future was assessed
according to the climate change impact using a statistical downscaling technique, i.e., Long Ashton
Research Station Weather Generator (LARS-WG); secondly, a rainfall-runoff model for future horizons
was developed according to artificial neural networks (ANN); finally, an SD model was developed
according to plausible reclamation scenarios, i.e., cloud seeding, increasing the irrigation efficiency
and reducing agricultural production, controlling policies on groundwater withdrawal as well as
environmental awareness, and cultivation to reduce domestic consumption to achieve sustainable
development. For downscaling purposes, the outputs of four general circulation models (GCMs)
including EC-EARTH, HadGEM2, MIROC5, MPI-ESM from Coupled Model Intercomparison Project
5 (CMIP5) were applied. The results of multi-GCM downscaling indicated an ascending trend of
0.1 ◦C to +1.3 ◦C for temperature and a descending trend of 17 to 23% for precipitation by 2040 under
representative concentration pathways (RCPs) of 4.5 and 8.5, respectively. Moreover, the results of
the SD model revealed that none of the individual reclamation scenarios were impressive on water
balance sustainable conditions; instead, the simultaneous implementation of all plausible scenarios
managed to meet the requirements of socio-environment aspects as well as sustainability approaches.

Keywords: LARS-WG; rainfall-runoff model; artificial neural network; system dynamics modeling;
reclamation scenarios

1. Introduction

In order to have accurate and integrated water-resource management, detailed and
precise models are vital to ensure the optimal allocation of water resources. With advances
in communities as well as population growth, meeting the increasing demand for water,
considering the limitation of resources, has come to the fore. In recent decades, the water
crisis has become a challenging issue in development planning, which most the communi-
ties, especially in arid regions, are grappling [1]. Integrated water-resource management
(IWRM), given the dynamical nature of the hydrological cycle, is a challenging aspect;
nevertheless, climate change imposes additional stress on this issue. Thus, in proper water-
resource management studies, both are regarded as inevitable steps to make adequate
decisions. The dominant factors including hydrological and climatic factors along with
principal physical, social, economic, and political aspects can be taken into consideration in
water-resource modeling. To address this issue, policymakers have recommended various
approaches with the aim of adoption and mitigation policies in responding to increased
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water stress, which is drastically on the rise [2,3]. Indeed, an optimal water-allocation
system inevitably involves impact prediction to find the best water governance [4].

To assess the future hydrologic condition of a study area, the data of general circulation
models (GCMs) seem to be the principal reliable choice available [5]. Considering the
large-scale spatial resolution of GCMs, downscaling techniques play a noteworthy role in
assessing local-scale future climatological data. Indeed, downscaling techniques are utilized
from low-resolution GCMs to achieve high-resolution local data, which are broadly divided
into two subcategories (i.e., dynamical and statistical techniques). Dynamical downscaling
as a procedure to acquire small-scale climate data over a limited zone, nested within
the coarser scale climatic data via a high-resolution regional climate model (RCM), [6].
Dynamical downscaling models require a high level of specialization and calculations that
are considered as the constraints of this method, which impedes the vast application of
dynamical downscaling models in developing countries. Moreover, statistical downscaling
models involve statistical links between coarse-scale predictors and local climate data
predictand [7]. Statistical downscaling models are categorized as follows: (i) weather
generator types, e.g., Long Ashton Research Station-Weather Generator (LARS-WG), [8];
(ii) linear regression-based models, e.g., statistical downscaling model (SDSM), [9]; (iii)
artificial intelligence (AI) models based on nonlinear regression, e.g., artificial neural
network (ANN) [10]. Since the preliminary goal of the current research is to apply LARS-
WG for climate projection, the technical review of downscaling models is focused on LARS-
WG. Numerous studies have been devoted to climate projections using the LARS-WG
model, due to its ability in simulating mean and severe climate parameters on a basin scale.
The authors of [11] used various statistical downscaling methods (i.e., ANN, SDSM and
LARS-WG) to assess the impact of climate change in northwest Iran. Their results indicated
a descending trend in precipitation for future horizons. In [12], the authors applied a
LARS-WG model for assessing the impact of climate change in Peninsular, Malaysia. Their
study revealed that the region would experience an ascending and descending trend for
temperature and precipitation predictands, respectively.

According to the aforementioned points, to have a proper IWRM, it is necessary
to develop simultaneous insight into hydrological models impacted by climate change.
In this regard, various studies developed rainfall-runoff models, owing to the impact
of climate change on precipitation over the study area [13–15]. Among various rainfall-
runoff models, black-box models such as ANN-based modeling has been widely used by
hydrologists [16,17].

Since climate change alters the spatiotemporal distribution of water availability around
the world, climate change adaptation studies found prim importance in IWRM [18]. More
specifically, with an insight into an IWRM system considered, it is highly needed to assess
the water adequacy in a basin and see whether or not there is any water deficit in the
basin. It is then required to figure out the cause of water imbalance with a supply–demand
approach. This framework should comprise a holistic vision toward the watershed, where
both dynamics aspects, as well as explicit feedback of influential factors, are considered in
a water balance system. In this regard, system dynamics (SD), because of its dynamical
nature in assessing multi-alternative management strategies over time, has been extensively
used in IWRM approaches [19]. The SD is primarily developed to model and analyze large-
scale socio-economic systems to facilitate the perception of interactions between various
interconnected sub-systems [19]. In [20], the authors developed an SD model to take
advantage of various management scenarios in the Zayandeh-Rud river basin. The results
of their study revealed that the sustainable solution for proper water-resource management
was not merely based on the diversification of the trans-basin supply, having not abstracted
from groundwater resources and expanding capacity for water reservations aspects, but
even on the framework of specific approaches to demand management as well as controlling
the population. In [21], they simulated Urmia lake’s water level using SD. Their findings
manifested that climate change as well as excessive utilization of surface water resources
had the highest rate of influence on a descending trend of lake levels up to 65% impact, and
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dam construction and rainfall plunge affected up to 25% and 10%, respectively. In [22], they
compared the impact of restoration scenarios using an SD model under climate change on
Urmia Lake. The results demonstrated that by increasing irrigation productivity, changing
the crop pattern, and decreasing the cultivation area policies, the lake’s ecological level
could be restored. In [23], the authors analyzed various water-supply scenarios for Shiraz
metropolitan by utilizing SD with an emphasis on the city’s interior water recourses. They
concluded that the region could respond to water demands by executing a water treatment
plan instead of water transfer from outside resources. Additionally, they manifested that
water deficits are highly affected by irrigation efficiency. The authors of [24] utilized an SD
model for a Water–Energy–Food nexus simulation by quantifying the reclamation policies
on the Urmia Lake, Iran. The sets of applied criteria encompassed irrigation productivity,
interbasin transfer of water, cultivation pattern modification, and reclamation of portions of
the lake by focusing on natural resources and socio-economic aspects. Given their findings,
Urmia Lake’s ecological level is significantly dropped by climate change impacts. The
authors of [25] applied a prey–predator approach, having benefited from SD over Urmia
Lake. They claimed that the consumed water for the agriculture sector has the highest
impact on descending the ecological level of the lake, and also, the implementation of only
an individual scenario could not be beneficial in restoring the lake.

The current study area included the Aji-Chay watershed as the main supplier of Urmia
lake’s ecological recharge. In recent decades, the water crisis has drastically threatened
the region [14]. On the other hand, given the many factors that affect the status of water
resources, proper determination of effective variables to represent an appropriate reflection
of the variables and that can also portray the interactions with one another and the water
resource is of great demand. Thus, investigating the future water condition under the
impact of climate change on the region is of great importance. Hence, in this study, water-
balance modeling of this vital sub-basin of Urmia Lake under the impact of climate change
was assessed.

Therefore, firstly, by applying LARS-WG, precipitation and temperature projection
was obtained for the future over the region. Afterward, a rainfall-runoff model using
ANN was developed based on the results of the weather-generator model. Finally, an SD
model was proposed as a policymaking approach to achieve optimal and precise water-
resource management in the study area owing to the impact of climate change. Generally, in
simulating ecosystems, human aspects and/or hydrological processes are being considered
separately and climate change impacts are being ignored, or vice versa. Thus, using a
holistic attitude toward all these factors, appropriate designs can be proposed to overcome
this inefficiency and take suitable actions to provide water security, which is the scope of
the current study.

Regarding the fact that no significant studies have been undertaken to focus on the
process of integrated water-resource management overshadowed by the supply–demand
aspect, a three-step IWRM approach was used in this study to investigate whether the
reclamation scenarios under a changing climate coupled with a development plan can meet
the response to increasing water demand for a future twenty-year horizon over the study
area or not.

2. Methods and Materials
2.1. Study Area and Data
2.1.1. Study Area

The Aji-Chay watershed encompasses a mountainous region in north-western Iran.
The study area is situated on latitude 37◦4′ to 38◦6′ N and longitude 45◦5′ to 47◦75′ E.
The mean temperature and annual precipitation are 12.5 ◦C and 250 mm, respectively.
The Aji-Chay River with a 0.003 slope stretches nearly 276 Km2 to the Urmia Lake delta,
containing 13,853 Km2 of its basin. Urmia Lake catchment encompasses twelve sub-basins,
which are vividly depicted in Figure 1. Tabriz metropolis, as an industrial pole at the heart
of the Aji-Chay watershed, as a result of its rapid population growth, now has massive
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water demands. To overcome the water deficits of both domestic and industrial sectors,
a water transfer plan from outside resources with a 180 million cubic meters (MCM) per
year potential was implemented, which in its second phase developed into 200 (MCM)
per year, by which the water demands of approximately 5 million residents has been
met. The water-transfer aspect imposes additional sensitivity on proper water governance
over this vital region, which follows disadvantages including water conflicts, dependency,
and the incitement of social disputes, which would result in chaotic conditions among
provinces. In this regard, meeting future water demands for this vital watershed should
be at the forefront of water-sector policymakers’ minds. The region’s water demand is
being supplied from resource contributions (e.g., outside resources, runoff, wells, and
underground water withdrawal).
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Figure 1. Location of the Aji-Chay watershed.

2.1.2. Dataset

To evaluate the impacts of climate change, four synoptic stations were picked out to
represent the spatial variations of the climate (see Table 1).

Table 1. The position of the synoptic stations and the observed climate data.

Station Code Station Name Longitude
(◦N)

Latitude
(◦E)

Altitude
(m)

Mean
Temperature

(◦C)

Cumulative
Precipitation

(mm)

40706 Tabriz 46◦17′ 38◦08′ 1364 12.2 251.8
40704 Sahand 47◦04′ 38◦26′ 1391 10.8 288.2
40416 Sarab 37◦93′ 38◦47′ 1682 8.9 237.3
40435 Bostan Abad 46◦51′ 37◦51′ 1750 8.0 320.0
40571 Heris 47◦06′ 38◦15′ 1950 8.5 315.2
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Stations’ daily observed data (i.e., precipitation, minimum, and maximum tem-
peratures, solar radiation) were revitalized from the Iran meteorological office (http:
//www.irimo.ir/, accessed on 1 December 2021) for the period 1961–2019, and daily
GCM predictors for the same time interval based on Coupled Model Intercomparison
Project 5 (i.e., CMIP5) were retrieved from the Intergovernmental Panel on Climate Change
(IPCC) data distribution center for the period 1961–2040 under representative concentra-
tion pathways (RCP 4.5 and 8.5) scenarios. Each RCP reveals different emission scenario
pathways, according to distinct plausible perspectives regarding probable anthropogenic
behavior. RCPs 8.5 and 4.5, respectively, manifest the high and intermediate emission
scenarios used in this study.

In addition, to have the future climate condition predicted, periods of 2021–2040,
2041–2060, and 2061–2080 are considered to meet the objectives of climate projection.

The predictors were retrieved from EC-EARTH, HadCM2, MIROC, MPI-ESM, and
GCMs presented by research centers in Europe, UK, Japan, and Germany, respectively. The
applied GCMs in accordance with their centers’ nomination and resolution have been listed
in Table 2. To develop a downscaling model, an ensemble multi-GCM approach was used
since prior studies approved the efficacy of applying an ensemble of climate models [6–26].
The periods of 1961–2005 and 2021–2040 as the baseline and simulation period were utilized,
respectively. Afterward, for rainfall-runoff modeling, the runoff data of hydrometric
stations were extracted from Iran’s Ministry of Energy (http://news.moe.gov.ir/, accessed
on 1 December 2021). Finally, the required data for the simulation of the SD model such as
water consumption rate relevant to various sectors (e.g., agriculture, industrial, domestic,
livestock, and green spaces) were achieved from the Iran Water Resources Management
Company as well as the national statistics portal of Iran (https://www.amar.org.ir, accessed
on 1 December 2021).

Table 2. Applied GCMs characteristics.

No Centre Global Climate
Model Centre Acronym Country Grid Size

(Approximately)

1 Numerical weather prediction EC-EARTH ESM Europe 1.1◦ × 1.1◦

2 UK Met. Office HadGEM2 UKMO UK 1.4◦ × 1.9◦

3 Met Research Institute, Japan MIROC5 NIES Japan 1.2◦ × 2.5◦

4 Max-Planck Met Institute MPI-ESM MPI-M Germany 1.9◦ × 1.9◦

2.1.3. Proposed Methodology

This study encompasses three steps. Firstly, statistical downscaling of GCM data using
the LARS-WG model benefited from the ensemble multi-GCM approach for future climate
projection. Afterward, an ANN framework of rainfall-runoff modeling was developed to
link future climate change with surface runoff. Eventually, for the purpose of integrated
water-resource management and to gain a profound understanding of the impact of human–
environment factors on the water balance, an SD model was employed based on the supply–
demand approach. The SD model outcomes would be helpful in taking preventative
actions against water bankruptcy for future horizons. The comprehensive procedure of the
proposed methodology is depicted in Figure 2. The in-depth illustration of each step is
described in the following sub-categories.

http://www.irimo.ir/
http://www.irimo.ir/
http://news.moe.gov.ir/
https://www.amar.org.ir
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First Step (Climate Projection)

To assess the climatic fluctuations for the future horizon, the LARS-WG statistical
downscaling method was utilized. The most influential predictands in the cycle of hydrol-
ogy including minimum and maximum temperatures, precipitation, and evaporation were
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used. Moreover, to overcome the uncertainty and weaknesses of using an individual GCM
model, four GCMs (i.e., EC-EARTH, HadGEM2, MIROC5, GFDL, and MPI-ESM) provided
strong outputs for the study area [10]. In this step, an ensemble multi-GCMs downscaling
approach was utilized. Indeed, the ensemble multi-GCM downscaling approach was
utilized to gain a deeper understanding of the data and using the hidden feature of GCM
data would result in superior performance [27]. Regarding this, all the NOAA stations
within the region (i.e., Tabriz, Sahand, Sarab, Bostan Abad, and Heris) have been used for
this purpose (see Figure 1). The baseline and validation period was set to 1961–1990 and
1991–2005, respectively.

Second Step (ANN-Based Rainfall-Runoff Model)

Secondly, to simulate runoff in future climate change conditions, the downscaled
predictands (i.e., precipitation and temperature) of the ensemble multi-GCM model under
RCPs 4.5 and 8.5 from step one fed into the ANN to develop a rainfall-runoff model.

For this purpose, the projected predictands (i.e., temperature and precipitation) were
imposed as input variables to ANN to model runoff. After calibrating the ANN model
using predictands (as inputs) and local runoff (as target) data for the baseline, the calibrated
models were used to project future runoff under RCPs 4.5 and 8.5 scenarios as inputs of the
ANN model. In this way, two steps of runoff with pessimist and median vision to future
climate change were achieved. The data were divided into 70–15–15% as the calibration,
verification, and cross-validation series, respectively. The three-layer feed-forward neural
network with the Levenberg–Marquardt-based backpropagation (BP) algorithm was used
to develop the rainfall-runoff model.

Third Step (System Dynamic Model)

Finally, to have a comprehensive vision toward the impact of influential factors on the
water balance system, and also identifying the dynamic changes through time coupled with
the inter-connection between the variables, the SD model was developed. In order to make
policies toward the future water conditions, to achieve water security reclamation scenarios,
i.e., cloud seeding, increasing irrigation efficiency and reducing agricultural production,
controlling policies on groundwater withdrawal as well as environmental awareness,
cultivation for reducing domestic consumption, and the simultaneous implementation of
scenarios were proposed.

2.2. Materials
2.2.1. LARS-WG

The LARS-WG statistical downscaling model develops a daily timescale synthetic
time series of climatic parameters including minimum and maximum temperatures, pre-
cipitation, and solar radiation [28]. The standard deviations and means of daily parameter
distributions are attained by fitting the Fourier series to the means and standard deviations
of the historical evidence. Additionally, to consider the conditioned precipitation, finite
Fourier transform of order 3 is utilized to fit wet and dry days. Moreover, to determine the
status of predictands (i.e., precipitation and solar radiation), a semi-empirical distribution
overshadowed by the lengths of alternate dry and wet sequences was fitted to the historical
data [27].

2.2.2. Artificial Neural Networks (ANNs)

ANN is a nonlinear computational methodology composed of various inter-connected
layers of processing units (i.e., neurons); data circulate across the network by transforming
inputs into output. The neurons manifested the nodes, and synapses describe the linking
connections. The synaptic capabilities of signal transmission are overshadowed by the
strength of the interactions as regards weighting factors from previous nodes. The essence
of the ANN contributed to three layers, namely input, hidden, and output. The input
neurons are entered into an activation mechanism after the weighing process. The further
the number of layers rise, the more complicated the networks become. Indeed, the topology
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of the ANN makes them distinctive, as the multi-layer perceptron (MLP) is presumably the
most prevalent neural network. The MLP, by benefiting from distributed adaptive weights,
creates a fortified linkage among the layers [28].

The ANN structure is presented as Equation (1):

ŷ .
k
= f0

[
MN

∑
j=1

ωkj
· fh

(
NN

∑
i=1

ωjixi + ωj0

)
+ ωk0

]
(1)

where i, j, and k reveal the neurons of layers (i.e., input, hidden, and output), respectively.
The weight contributed to the hidden layer is demonstrated by ωji, which links the input
layer’s ith neuron to the hidden layer’s jth neuron; ωkj

and fh are the bias for the jth hidden
neuron and activation function related to the hidden neuron, respectively. Furthermore,
the weight in the output layer is represented as ωkj

, which links the input layer ith neuron
to the hidden layer jth neuron; the bias for the kth output neuron indicated by ωk0 and also,
f0 manifests the output neuron’s activation function.

Additionally, xi and ŷ .
k

denote the ith input data and evaluated outputs, respectively.
NN and MN represent the neuron numbers dependent on input and hidden layers.

2.2.3. System Dynamics

SD simulation encompasses the following determining steps: first, a statement of the
problem as well as determining the boundaries of the system were determined; second, a
conceptual design and/or system causal loop diagram (CLD) were planned and created.
Third, the simulation model was built by developing a supply–demand approach. Finally,
the model efficiency and plausible scenarios as the policy-making step were assessed. The
system’s CLD reflects the profound vision of the system outline, comprising an increasing–
decreasing causal interconnection between defined factors, which would result in the
formation of balancing and reinforcing feedback loops. Therefore, the supply–demand
approach is developed to evaluate the inflows and outflows [29]. Indeed, SD simulation pro-
vides a profound assessment of interactions between different but interlinked subsystems
which affected the system behavior through time [30,31].

The explicit expression for the content of central stock with a supply–demand approach
is given by Equation (2).

Stock(t) =
tn∫

t0

[Supply(t)− Demand(t)]dt + Stock(t0) (2)

where Stock(t), Supply(t), Demand(t), and Stock(t0) indicate the stock storage in time t, supply
in time t, demand in time, and stock storage in time t0, respectively.

In this regard, Aji-Chay’s available water can be analyzed at any time by Equation (3):

Available Water (t) = TWt + GWt + Rt− TDt− EVt + AWt0 (3)

where TWt is the imported water thereby transferring the water plan in time t; GWt is the
supplied water from groundwater resources (i.e., wells, fountains, and flumes) in time t;
Rt is the runoff in time t; TDt is the total water demand in time t; EVt is the evaporation
amount in time t, and AWt0 is the primary available water.

Key Variables for SD Model Development

The nexus is characterized by synergies (both positive and negative) and trade-offs
between various sectors. In negative synergies, a downturn in one sector contributes to a
downturn in another, whereas in positive synergies, improvements in one sector reinforce
improvements in another. In trade-offs, improvements in one sector are achieved at the
expense of a downturn in another [31].



Sustainability 2022, 14, 9411 9 of 20

The CLD of the Aji-Chay model comprises the water balance stock as well as its
subsystems (i.e., population, groundwater, and demands of various sectors), which are
depicted in Figure 3.
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Figure 3. Causal loop diagram of the Aji-Chay model.

All the variables used are linked via arrows with positive and negative polarity, since
positive and negative links denote parallel behavior and inverse linkage between variables,
respectively. Moreover, the CLDs consist of various variables, including the water balance,
surface flow, and demands related to the domestic, agriculture, industrial, green spaces, as
well as population, groundwater, and withdrawal.

To scrutinize the comprehensive vision of the water-allocation system, applied water
demands for sectors, e.g., agriculture and cultivated crops, were considered as millimeters
per month. The water consumption for various crop products was evaluated by the mean
water consumption of cultivated crops. Additionally, the irrigation efficiency in both crop
and horticultural products was considered in the model. The water demand was calculated
using NETWAT software, which benefited from a 10-day- and monthly-basis FAO–Penman–
Monteith method. Moreover, water balance analysis of the area showed that insignificant
groundwater inflow equal to 1% of available surface water enters the lake [31]. The input
variables are considered in monthly intervals and have been retrieved from the regional
water companies’ data-distribution center. The used variables are indicated in Table 3.

Table 3. Variables of the Aji-Chay SD model.

Data Source(s) Data Type

Groundwater (GW) Total supply IWRMC a Modeled
Natural recharge Surveying evidence Modeled
Recycled water Surveying Evidence Modeled
GW withdrawal IWRMC Modeled

Natural discharge Surveying Evidence Statistical
GW volume change Surveying evidence Modeled

Wastewater percolation SW IWRMC Statistical
Precipitation volume IMO b Modeled
Precipitation height IMO Statistical

Horticultural demand average NETWAT Statistical
Unmeasured surface inflow volume Surveying evidence Modeled
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Table 3. Cont.

Data Source(s) Data Type

Evaporation IMO Modeled
Available water IWRMC Statistical

Population Iran’s Statistical Center Statistical
Domestic demand IWRMC Modeled

Agricultural demand IWRMC Modeled
Industrial demand IWRMC Modeled

Horticultural demand IWRMC Modeled
Crop demand IWRMC Modeled

Green space demand IWRMC Modeled
Environmental demand IWRMC Statistical

Total demand IWRMC Modeled
Inflow to basin Surveying evidence Modeled

Inflow Surveying evidence Modeled
Surface water percolation IWRMC Modeled

Wastewater GW percolation IWRMC Statistical
Irrigation percolation IWRMC Statistical
Husbandry demand Iran’s Ministry of Agriculture Statistical

Horticultural cultivated demand Iran’s Ministry of Agriculture Statistical
Crop demand average NETWAT Statistical

Total supply SW IWRMC Modeled
Runoff IWRMC Modeled

a Iran Water Resources Management Company; b Iran Meteorological Organization.

Afterward, the supply–demand approach was developed using the software Vensim,
having utilized the CLDs (Figure 4). In this regard, monthly data were inserted into the
model to simulate the model, and the necessary hydrological equations were defined in
the Vensim context. Indeed, the SD model conducts a multi-scenario analysis, which led to
the achievement of a comparative analysis of a variety of possible management practices.
The interactions between stocks and flow rates are best captured through a nexus view,
identifying the full interactions between the supply–demand resources over time.
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Proposed Reclamation Scenarios in the SD Model

To achieve effective policymaking, four reclamation scenarios as well as their simulta-
neous implementation, i.e., cloud seeding, increasing the irrigation efficiency and reducing
agricultural production, controlling policies on groundwater withdrawal as well as envi-
ronmental awareness, and cultivation for reducing domestic consumption as well as their
ensembles, have been proposed to overcome the water deficits. Reclamation scenarios are
discussed in detail below.

Plan 1. Cloud seeding
Given the inevitable impact of climate change, as manifested by the rainfall-runoff

model, the region’s runoff is experiencing a descending trend throughout the entire study
area. In this regard, the cloud seeding scenario was proposed as a novel approach to rainfall
management in urban areas with the aim of increasing runoff and existing potential for
runoff aggregation. If all of the conditions are met and well-organized in the best possible
way through the cloud seeding process, rainfall will be increased by 15% at best [32]. In the
present study, the scenario of a 10% increase in runoff was considered, benefitting from
novel cloud seeding technology.

Plan 2. Increasing irrigation efficiency and reducing agricultural production
Given the point that the agricultural sector has the highest consumption among

the various sectors, managing this sector requires being at the center of the attention of
policymakers. Firstly, the irrigation efficiency can be boosted by taking advantage of
mechanized or drip irrigation up to 90%. In the current situation, the irrigation efficiency
within the study area is 37% and 45% for agricultural and horticultural lands of the Urmia
Lake Restoration Program (ULRP), respectively. Afterward, policymaking toward reducing
agricultural products can be known as a prominent solution to meet the increased water
demand [33]. As the cultivated crops consume high amounts of water, a win–win solution
between government officials and farmers would be a constructive step in this direction.
For instance, importing the required products instead of cultivating crops with high virtual
water consumption and allocating funds to support farmers to achieve a sustainable
watershed can be considered in this regard in order to increase the irrigation efficiency, an
ascending trend of 30% in irrigation efficiency was considered.

Plan 3. Controlling policies on groundwater withdrawal as well as environmental awareness
According to the results of the Urmia Lake restoration program, which has been con-

ducted on Urmia Lake, groundwater resources play a significant role in this vital area [34].
Regarding this, approximately one-third of the region’s water demand is supplied from
groundwater resources (Iran Water Resources Management Company), so the importance of
policymaking toward controlling the groundwater resources as well as illegal withdrawals
have come to the fore. This approach is strongly influenced by the term “environmental
awareness”. In this regard, a 20% reduction in groundwater withdrawal was assumed in
this study.

Plan 4. Cultivation for reducing domestic consumption
Due to the high per capita water consumption and the importance of the term “water

literacy” as an influential factor that sets the pace for decreasing domestic consumption,
this scenario has been proposed. To drastically reduce domestic consumption, a 10% drop
was considered to descend the water footprint in domestic units.

Plan 5. Simultaneous implantation of scenarios
Finally, having considered the impact of the simultaneous implementation of pro-

posed reclamation scenarios, the consensus of all the proposed scenarios was analyzed
simultaneously.

2.3. Evaluation Criteria

Three evaluation criteria including the correlation coefficient (CC), determination
coefficient (DC), and root mean square error (RMSE) have been utilized to probe the
efficiency of the proposed methodology in downscaling and the rainfall-runoff model.
The CC has been widely employed for determining the linear relation of calibrated and
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observed values varying from −1 to +1; the greater CC is the stronger coefficient, while
zero does not imply any relationship between the two parameters (see Equation (4)).

CC =
N(∑ OC)− (∑ O)(∑ C)√

[N ∑ O2 − (∑ O)2] [N ∑ C2 − (∑ O)2]
(4)

The DC criterion is utilized to specify the accuracy of the prediction.
It tests how accurately reported outcomes are dependent on the proportion of the total

differences that the current model replicates and differs from −∞ to 0 (Equation (5)).

DC = 1− ∑T
i=1(O− C)2

∑T
i=1
(
O−O

)2 (5)

RMSE reflects the degree of relevancy between observed and simulated quantities
as the sample standard deviation denoting differences between predictor and predictand.
The range of RMSE varies widely from 0 to ∞, while the performance improves with the
reduction in RMSE. When the RMSE values approach 0, the values are well-connected (see
Equation (6)).

RMSE =

√
∑N

i=1(O− C)2

N
(6)

where N specifies the number of data, O shows the observed data, C indicates the calculated
values, and O determines the mean of the observed data.

Furthermore, for the purpose of analyzing the reliability of the SD model, three
evaluation criteria—the boundary adequacy test, behavior sensitivity test, and extreme
condition test—were utilized.

The boundary adequacy test is applied when the model contains the relevant structural
relationships to meet the purpose of the model. Consequently, the boundary adequacy test
inquires whether the model comprises all relevant aspects of the structure and the chosen
level of aggregation is appropriate.

The behavior-sensitivity test determines whether plausible shifts in the variables can
cause the failure of behavior tests previously passed in the model or not.

Moreover, by assigning extreme values to the model, the behavior of the simulated
model is compared with the real system via an extreme condition test [34].

3. Results and Discussion

The current study sought to prove to investigate whether the reclamation scenarios
under a changing climate as well as the development plan can meet the response to
increasing water demand in the Aji-Chay watershed for a future twenty-year horizon or
not. To have all the factors scrutinized, the results are presented in three steps; step one:
statistical downscaling as well as climate projection; step two: the rainfall-runoff model;
step three: a SD model coupled with a sustainable assessment. The findings are outlined in
the following sub-categories, based on the proposed methodology.

3.1. Results of Climate Projection

For climate change impact assessment, a weather generator type of statistical downscal-
ing approach (i.e., LARS-WG) was employed. Four individual GCM models—EC-EARTH,
HadCM2, MIROC, and MPI-ESM—as well as the ensemble of GCMs were utilized in
LARS-WG to downscale the temperature and precipitation. The results revealed that the
ensemble multi-GCM model, benefitting from the peculiarities of individual GCM models,
performed effectively in comparison to individual scenarios (Table 4).
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Table 4. Results of the precipitation-downscaling model via LARS_WG based on individual and
multi-GCM models.

Downscaling
Model GCM Models

Evaluation Criteria

CC DC RMSE (mm)

LARS-WG

PEC-EARTH 0.91 0.76 4.60
PHADGEM2 0.61 0.22 8.99
PMIROC5 0.91 0.82 4.07
PMPI-ESM 0.89 0.43 7.65

PEnsembles of GCMs 0.91 0.85 4.08
P: precipitation.

The results of the ensemble multi-GCM model to project future precipitation and
temperature under RCP4.5 and 8.5 scenarios led to an ascending and descending trend for
temperature and precipitation predictands, respectively. Additionally, the mean monthly
precipitation outputs revealed that the precipitation predictand will experience a descend-
ing trend through all the months under RCP4.5 during 2021 up to 2040 (Figure 5). Further-
more, the mean annual precipitation variation during 1961–2080 is shown in (Figure 6). It
can be concluded that the precipitation changes under the pessimistic scenario of RCP8.5
will be more severe than the predicted precipitation under RCP4.5.
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The findings of this study for climate projection confirm the results of the previous
study by [9] which resulted in a 29% and 21% drop in precipitation using the ANN method
for the current study area considering RCP4.5 and 8.5, respectively.

Having the climate projections for predictands visualized, an inverse-distance weight-
ing (IDW) approach was used for a better understanding of fluctuation among the stations
during 2021–2040 (see Figure 7). It is clear that Tabriz city will experience the highest
ascending trend for temperature. This may be attributed to the industrial function of Tabriz
city, which is the imprint of the high greenhouse gas (GHG) concentrations in the city. The
results showed that the precipitation predictand on average will decrease within the region.
Despite the descending trend through the region, Sahand station will experience the lowest
precipitation reduction; this issue may be affected by the type of weather system originating
from the location of the station, which is located in the high mountainous region, and is
also less subjected to urbanization conditions.
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3.2. Results of Rainfall-Runoff Model

The ANN framework of rainfall-runoff models was developed to link climate change-
based precipitation and temperature data to surface runoff. Since projecting future emission
conditions and plausible factors affected by humans on the environment is challenging,
researchers utilize a variety of scenarios based on various assumptions about possible
economic, social, technological, and environmental circumstances, known as prediction
scenarios (here RCPs). In the current study, RCPs 4.5 and 8.5 as the intermediate and
high-emission scenarios were utilized due to data availability.

The existing observed data is divided into 70–15–15% as the training and validation
and crosscheck steps, respectively. Additionally, the Levenberg–Marquardt algorithm as
well as feed-forward neural network (FFNN) model were employed to train the network
with different hidden neurons, which were selected via trial and error by examining
1000 epochs. The ANN model evaluation criteria showed that the maximum efficiency
occurred at 480 epochs with four hidden neurons.
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On the other hand, to overcome the non-uniform distribution of rain gauges, the
Thiessen polygon method was utilized using Geographic information system (GIS) software
(See Figure 8). If the areas related to any polygons, A1, A2, . . . , An, and precipitation values
in polygonal stations are P1, P2, . . . , Pn, respectively. In this case, the average rainfall of
the region is obtained from the following formula:

Pt =
A1P1 + A2P2 + . . . + AnPn

A1 + A2 + . . . + An
(7)Sustainability 2022, 14, x FOR PEER REVIEW 16 of 20 
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As a result, the projected rainfall under RCPs 4.5 and 8.5 for the future twenty-year
horizon will yield a 17–23% decrease on average.

3.3. Results of System Dynamics Model

The SD model of Aji-Chay watershed has been validated and modified by using sys-
tematic analyses, behavior pattern tests, and structure-oriented behavior tests (Barlas, 1996).
Throughout the model-development procedure, the SD model validation was analyzed
by systematic verification, which reflected the performance of the model as well as its
resemblance to the existing reality [31]. To verify an appropriate model structure, the
boundary-adequacy test was performed by defining endogenous and exogenous factors
within the model (Table 5). Furthermore, the capability of the SD model in the reproduction
of historical evidence was analyzed. The evaluation of the correlation between simulated
values and historical evidence for groundwater and population stocks from 2015 to 2020 re-
vealed 0.81 and 0.98 correlation values for groundwater and population stocks, respectively,
manifesting the authenticity and reliability of the SD model (Figure 9).
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Table 5. The Aji-Chay SD model’s endogenous and exogenous variables.

Endogenous Exogenous

Population Natural recharge Crop cultivated tonnage
Agricultural demand Groundwater withdraw Horticultural cultivated tonnage

Industrial demand Natural discharge Crop demand average
Domestic demand Groundwater level Horticultural demand average

Crop demand Climate projections Industrial factories Number
Husbandry demand Evaporation Demographic changes

Horticultural demand Wastewater coverage Water Balance
Green spaces demand Withdraw Supply–Demand relation

Total demand Inflow
Infiltration
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According to the SD model, the agriculture sector makes up 45% of the total water
consumption, with livestock and industry sectors consuming 27% and 23%, respectively,
and the domestic consumption is 4% of the total water consumption in the study area. The
consumption level of all these sectors is on the rise; supply constraints are of considerable
importance to the region’s sustainable development (Figure 10). As the findings revealed,
the agricultural sector was the main culprit for water shortages in the Aji-Chay watershed.
Hence, policymaking toward managing the water dedicated to the agricultural sector
should be at the center of the attention of stakeholders. Due to the intermediate emission
scenarios of RCP4.5 and more compatibility with the conditions of the catchment area in
SD modeling, the results are presented based on the outputs of RCP4.5.
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Figure 10. The amount of water consumed in different sections.

The effects of the plausible scenarios were once considered separately, and then
simultaneous implementation was examined to figure out whether or not the combination
scenarios can meet the water-balance system achieved. The results revealed that only
the ensemble of all scenarios can provide the expectations, while individual scenarios
demonstrated inadequacy in satisfying the requirements of the basin.

The impact of implying proposed scenarios on the water balance of the Aji-Chay
watershed is shown in Figure 11. As shown, the red trace represents the water availability in
the absence of reclamation interventions. It can be concluded that for optimal management
overshadowed by prolonged sustainable policies, water managers should not focus merely
on individual scenarios but should invest in all the proposed scenarios (Table 6).
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Table 6. Impact of implying plausible scenarios.

Plan Description Impact Percentage of Each Scenario (%)

Plan 1 Cloud seeding 9
Plan 2 Increasing irrigation efficiency and reducing agricultural production 17

Plan 3 Groundwater withdraws control policies and coupled with
environmental awareness 13

Plan 4 Cultivation for reducing domestic consumption 1
Plan 5 Simultaneous implementation 27

4. Concluding Remarks

Optimal water allocation for ongoing demands is the principal priority for water man-
agers, especially in arid/semi-arid areas. In this research, an SD technique was developed
under a changing climate for predicting the behavior of a watershed with a supply–demand
approach. The results of the climate projections overshadowed by an ensemble multi-GCM
approach revealed an ascending trend of 0.1 ◦C to +1.3 ◦C in temperature and also 17%
and 23% descending in precipitation within the region. Having considered the climate
projections, an ANN-based rainfall-runoff model was generated to link the impacts of
climate change on hydro-climate parameters and surface runoff. An SD approach was
then developed to ascertain a comprehensive vision toward the water balance over the
region. The results revealed that about 80% of total shortages were affected by the agri-
cultural sector. Additionally, water transfer from outside resources is an inevitable tool
for meeting future water demand; however, this may result in conflict. In this regard, the
importance of water diplomacy in the region has been found to be of great importance.
Taking the best-applied targeting strategies to mitigate the severity of shortages involves
the simultaneous implementation of proposed scenarios (i.e., cloud seeding, increasing
irrigation efficiency as well as reducing agricultural production, groundwater withdrawal
control, and also environmental awareness, coupled with cultivation to reducing domes-
tic consumption) where the results managed to meet the requirements of a sustainable
ecological status after a period of 10 years. The reclamation process managed to meet the
requirements of socio-environment aspects as well as prolonged sustainability approaches.
Overall, to overcome the limitations of this study, it may be recommended to utilize various
downscaling methods, especially RCMs, which are more detailed models and enjoy forms
of artificial intelligence (AI) models such as LSSVM, ANFISS, and Gene Programming for
the Rainfall-Runoff modeling. Moreover, considering a more exhaustive vision toward the
SD model, the financial aspects can be entered into the model as a topic for future studies.
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