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Abstract: Aiming at the surrounding rock failure of heterogeneous and unequal pressure circular
roadways, the approximate analytical algorithm of the plastic zone is proposed. Through the com-
parison of analytical calculations and numerical simulation, the shape characteristics and evolution
law of the surrounding rock’s plastic zone are studied, and the relative error of the two calculation
methods is analyzed. The results show the following: (1) With an increase or decrease in the lat-
eral pressure coefficient, the shape of the plastic zone of the roadway-surrounding rock presents a
circular-ellipse-butterfly shape change law, and the outer edge of the plastic zone presents a scattered
shape, without a continuous boundary. (2) In the butterfly-shaped plastic zone, the butterfly leaf
always lies between the maximum confining pressure and the minimum confining pressure and
rotates with the pressure. (3) There is a certain amount of error between the maximum value of the
plastic zone solved by an analytical algorithm and numerical simulation, and the relative error is
positively related to the burial depth and lateral pressure coefficient of the roadway and negatively
related to the strength of the surrounding rock. (4) In addition, the relative error of the plastic zone
calculation of the multi-layer heterogeneous combination roadway is larger than that of the single
heterogeneous roadway.

Keywords: mining roadway; shape characteristics of plastic zone; heterogeneous surrounding rock;
error analysis

1. Introduction

The deformation and failure of roadway-surrounding rock are essentially caused
by the development of a plastic zone, and the shape characteristics of the plastic zone
determine the failure mode and degree of the roadway [1–3]. It is one of the key problems
that must be solved in engineering practice, using methods such as the stability analysis
of surrounding rock, support design, and roof-fall disaster and rock-burst prevention and
control, to master the shape characteristics of the plastic zone of roadway-surrounding
rock [4–6]. Compared with the numerical simulation method, it is simpler and more
efficient to use the analytical algorithm of the surrounding rock’s plastic zone to study the
shape evolution characteristics of the plastic zone [7,8].

According to the different boundary stress conditions adopted in the mechanical
model, the study of the surrounding rock’s plastic zone can be divided into two categories:
Equal pressure and unequal pressure [9,10]. Under the conditions of equal pressure, schol-
ars have used the Fenner equation (Fenner, 1938) or Kastner equation (Kastner, 1951) to
study the boundary range of the surrounding rock’s plastic zone [11,12]. For unequal
pressure conditions, most scholars use approximate analytical algorithms based on the
elastic-plastic theory [13–15], and there is no accurate stress analytical solution at present.
Zhao et al. [16,17] obtained the shape characteristics and distribution law of the surround-
ing rock’s plastic zone through the boundary equation of a homogeneous circular roadway,
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which is widely used to guide the stability control of a coal mine roadway [18–21]. Guo
et al. put forward the analytical solution of the radius characteristics of the plastic zone of
the surrounding rock and obtained the shape characteristics of the plastic zone under the
conditions of equal pressure or unequal pressure [17,22]. These analytical algorithms have
made important contributions to understanding the shape evolution characteristics of the
homogeneous surrounding rock plastic zone. However, in the real rock mass environment,
the shape characteristics and distribution law of the plastic zone of roadway-surrounding
rock are inevitably different from such homogeneous surrounding rock [23,24]. At present,
the research on heterogeneous rocks mainly focuses on the influence of mechanical param-
eters on the failure behavior of rocks. Specifically, Wang et al. studied the deformation
behavior, damage accumulation, and progressive failure process of heterogeneous coal
through FLAC3D and experiments [25], while Zhang et al. studied the influence of shale
bedding on the stress–strain response, failure mode, and shear strength by establishing a
heterogeneous numerical simulation model [26]. Furthermore, Jonak et al. studied the rock
fracture process and its influencing factors using a numerical simulation method [27–29].

Through theoretical analysis, this paper creatively puts forward an analytical algo-
rithm for calculating the plastic zone of the heterogeneous surrounding rock. Then, through
the comparative calculation of an analytical algorithm and numerical simulation, the shape
characteristics and evolution law of the surrounding rock’s plastic zone under equal and un-
equal pressure conditions are obtained. Finally, the errors of the two methods in calculating
the plastic zone of the surrounding rock are discussed. The analytical algorithm proposed
in this paper and the obtained plastic zone evolution law of heterogeneous surrounding
rock are of great significance to the stability control of roadway-surrounding rock.

2. Analytical Algorithm for Plastic Zone of Surrounding Rock in Heterogeneous
Circular Roadway
2.1. Elastic Mechanics of Surrounding Rock of General Circular Roadway

The general roadway model can be simplified as a plane hole in elastic-plastic mechan-
ics [30]. According to the theory of elastic mechanics, when the medium satisfies the basic
assumptions of being homogeneous, continuous, and isotropic, the stress state at any point
of the surrounding rock of the roadway can be expressed by Equation (1).

σr =
P
2

[
(1 + λ)

(
1− a2

r2

)
+ (λ− 1)

(
1− 4 a2

r2 + 3 a4

r4

)
cos 2θ

]
σθ = P

2

[
(1 + λ)

(
1 + a2

r2

)
− (λ− 1)

(
1 + 3 a4

r4

)
cos 2θ

]
τrθ = P

2

[
(1− λ)

(
1 + 2 a2

r2 − 3 a4

r4

)
sin 2θ

] (1)

where σr, σθ , and τrθ are the radial stress, circumferential stress, and shear stress at any
point in the surrounding rock, (MPa); r, θ is the polar coordinate of any point; a is the
radius of the roadway, (m); P is the minimum confining pressure, (MPa); λ is the ratio of
the maximum confining pressure to the minimum confining pressure, which is called the
lateral pressure coefficient.

2.2. Mechanical Model of Heterogeneous Circular Roadway Surrounding Rock

Figure 1 shows the mechanical model of heterogeneous surrounding rock in a circular
roadway. It can be seen from Equation (1) that the equation does not contain any parameters
related to the properties of the medium, which indicates that the stress distribution around
the circular hole has nothing to do with the properties of the medium in the fully elastic
state. This Equation can be used to analyze the stress around the hole in the heterogeneous
surrounding rock. For this reason, the following assumptions are made: Firstly, it is
assumed that the analytical Equation (1) of the stress distribution of the surrounding rock
in an elastic state of an inhomogeneous medium is the same as in Equation (1); secondly,
the formation of the plastic zone of the heterogeneous surrounding rock of the roadway is
only related to the elastic stress state and mechanical parameters of the surrounding rock;
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in other words, whether any point of the roadway-surrounding rock is in a plastic state
only depends on the stress state and mechanical parameters of the point, and has nothing
to do with the formation process of the plastic state.
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Figure 1. Mechanical model of heterogeneous surrounding rock in circular roadway.

2.3. Shape of Plastic Zone in Surrounding Rock of Heterogeneous Circular Roadway

The Mohr–Coulomb criterion can be used to judge whether any point of the roadway-
surrounding rock is in an elastic state or a plastic state, as shown in Equation (2) and
Figure 2.

τ − C(i, j) + σ tan(ϕ(i, j)) ≥ 0 (2)

where τ is the shear stress, (MPa); C(i, j) is the cohesive force at a certain point of the
roadway-surrounding rock (MPa); σ is the normal stress (MPa); ϕ(i, j) is the friction angle
of a certain point of the roadway-surrounding rock (◦). It can be seen from Equation (2) that
the plastic state of the surrounding rock medium is related to the mechanical parameters
(cohesion and friction angle) of the surrounding rock medium at a certain point. When
there is no intersection between the Mohr stress circle and the strength envelope (Mohr
stress circle 1), the surrounding rock at point A is in an elastic state. If the Mohr stress circle
is tangential to the strength envelope (Mohr stress circles 2 and 3), the surrounding rock at
point A is in a state of plastic.
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Since Equation (1) is the stress state at any point of the surrounding rock after excava-
tion and Equation (2) is the strength envelope of the Mohr–Coulomb criterion, the implicit
equation for judging whether the surrounding rock of the roadway is in a plastic state in
a heterogeneous medium can be obtained by solving the two equations simultaneously
(Equation (3)).
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where

K1 = 9(1− λ)2

K2 = −12(1− λ)2 + 6(1− λ2) cos 2θ

K3= 10(1− λ)2 cos2 2θ − 4(1− λ)2 sin2(ϕ(i, j)) cos2 2θ − 2(1− λ)2 sin2 2θ − 4(1 − λ2)

cos 2θ + (1 + λ)2

K4 = −4(1− λ)2 cos 4θ + 2(1 − λ2) cos 2θ − 4(1 − λ2) sin2(ϕ(i, j)) cos 2θ − 4
P (1 − λ)

cos 2θ sin(2ϕ(i, j))C(i, j)

K5 = (1− λ)2 − sin2(ϕ(i, j))
(

1 + λ + 2C(i,j)
P

cos(ϕ(i,j))
sin(ϕ(i,j))

)2

where a is the roadway radius, λ is the lateral pressure coefficient (the ratio of the maximum
confining pressure to the minimum confining pressure), P is the minimum confining
pressure, C(i, j), ϕ(i, j) are the cohesive force and internal friction angle functions about a
point coordinate, respectively, and R is the radial plastic zone boundary of the roadway-
surrounding rock. It can be seen from Equation (3) that only the cohesion and internal
friction angle are involved in the parameters of medium properties, that is, point A of the
heterogeneous circular roadway-surrounding rock is elastic or plastic, which is only related
to the cohesion and internal friction angle of the point, and has nothing to do with other
medium properties of the point.

3. Shape Characteristics and Evolution Law of Plastic Zone

Based on the analytical solution (Equation (3)), the shape of the plastic zone of the
surrounding rock of the roadway under specified conditions is drawn by MATLAB pro-
gramming. Because the only mechanical parameters related to the heterogeneous rock mass
medium in the analytical algorithm are cohesion and internal friction angle, only cohesion
and the internal friction angle are selected within a certain range in the application of the
analytical algorithm and FLAC3D numerical simulation calculation (they obey uniform
distribution), and other mechanical parameters are fixed. The rock’s mechanical parameters
used for numerical calculation and analytical calculation are shown in Table 1.

Table 1. Rock mechanics parameters.

Rock Tensile
Strength/MPa

Friction
Angle/(◦) Cohesion/MPa Elastic Modu-

lus/GPa Poisson’s Ratio Compressive
Strength/MPa

coal 0.35 [23, 28] [2.8, 3.2] 22.96 0.23 9.42
mudstone 1.91 [27, 33] [5.7, 6.3] 10.35 0.24 20.78

sandy mudstone 4.39 [32, 38] [8.7, 9.3] 2.69 0.22 34.57

3.1. Shape Characteristics of Plastic Zone in Surrounding Rock of Single-Layer
Heterogeneous Roadway

When the size of a rock layer is large enough, the plastic zone of the surrounding
rock of the roadway is usually in a single layer. In order to simplify the problem, it is
assumed that the particles in the layered structure are uniform in size and distribution. The
numerical calculation of FLAC3D adopts the Mohr–Coulomb constitutive model, which is
consistent with the analytical calculation. In the model, X × Y × Z = 40 m × 2 m × 40 m,
as shown in Figure 3a. The total number of zones and gridpoints is 120,000 and 180,720,
respectively. Figure 3b is the result of the random assignment of the cohesion of zone
elements in the FLAC3D single-layer Coal model.
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The shape of the plastic zone of single-layer heterogeneous coal, mudstone, and
sandy mudstone under different lateral pressure coefficients, calculated by an analytical
algorithm and FLAC3D numerical simulation, is shown in Figure 4. It can be seen that with
the increase in the lateral pressure coefficient, the range of the plastic zone is gradually
expanded, and the shape of the plastic zone obtained by the two methods shows a change
from circular to ellipse to butterfly, which indicates that the plastic zone shape obtained
by the two methods is similar. It can also be seen from the figure that there is an irregular
serrated shape at the outermost edge of the plastic zone. When the plastic zone of the
surrounding rock changes from an ellipse to a butterfly shape, there is no continuous
boundary in the plastic zone, and the plastic zone and non-plastic zone crisscross each
other. In the analytical calculation and numerical simulation, the outer edge of the plastic
zone presents the characteristics of the scattered distribution. The cohesive force, friction
angle, and strength of mudstone and sandy mudstone are larger than those of coal, so
the scope of the plastic zone of mudstone and sandy mudstone is smaller than that of
coal, but the shape and characteristics of the plastic zone of the three rock masses are
highly consistent.

3.2. Shape Characteristics of Plastic Zone in Surrounding Rock of Multi-Layer Heterogeneous
Composite Roadway

When the plastic zone of the roadway is large, it usually crosses multiple strata. In
this case, the influence of multiple strata combinations should be considered to analyze the
shape of the plastic zone of roadway-surrounding rock. Without considering the sequence
of strata combination, the plastic zone shape of a multi-layered heterogeneous rock mass
under different lateral pressure coefficients is obtained by using the calculation model
shown in Figure 5 and comparing the analytical calculation and numerical simulation.
In each rock stratum, the random selection of the cohesion and friction angle follows a
uniform distribution, and the value range is shown in Table 1. For the numerical calculation,
the model size, boundary conditions, and loading method are shown in Figure 3a.
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Figure 5. Calculation model of multi-layer heterogeneous surrounding rock. (a) Analytical calculation.
(b) Numerical simulation.

It can be seen from Figure 6 that in a multilayer heterogeneous rock mass medium,
regardless of whether in the analytical calculation or numerical simulation, the shape of the
plastic zone of the surrounding rock of a roadway can be regarded as the combination of the
plastic zone shape of single heterogeneous rock under the same conditions, and the shape
of the plastic zone changes from circular to ellipse to butterfly, because the cohesion, friction
angle, and strength of mudstone and sandy mudstone are larger than coal. When the lateral
pressure coefficient is 2.5, only the plastic zone in the coal seam becomes butterfly-shaped.
With the increase in the lateral pressure coefficient, the plastic zone and non-plastic zone
crisscross each other, the plastic zone cannot be clearly defined, and the outer edge of the
plastic zone also changes from serrated to scattered.
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3.3. Directional Characteristics of Butterfly Shaped Plastic Zone

According to the mechanical model shown in Figure 1, specifying the stress state of
point A (R, θ), when the angle between the maximum confining pressure and the horizontal
direction is α, then the stress state corresponding to point A is also transferred to point
B (R, θ + α). Assume θ1 = θ + α, that θ = θ1 − α. If we take (R, θ1 − α) into Equation (1)
and combine Equation (2), then the shape equation of the plastic zone of the roadway-
surrounding rock with different rotation angles (α) can be obtained (Equation (4)).

f ′(
a
R
) = K′1(

a
R
)

8
+ K′2(

a
R
)

6
+ K′3(

a
R
)

4
+ K′4(

a
R
)

2
+ K′5>0 (4)

K′1 = 9(1− λ)2

K′2 = −12(1− λ)2 + 6(1− λ2) cos(2(θ1− α))

K′3= 10(1− λ)2 cos2(2(θ1− α))− 4(1− λ)2 sin2(ϕ(i, j)) cos2(2(θ1− α))

−2(1− λ)2 sin2(2(θ1− α))− 4(1− λ2) cos(2(θ1− α)) + (1 + λ)2

K′4 = −4(1− λ)2 cos(4(θ1− α)) + 2(1− λ2) cos(2(θ1− α))− 4(1− λ2) sin2(ϕ(i, j))
cos(2(θ1− α))− 4

P (1− λ) cos(2(θ1− α)) sin(2ϕ(i, j))C(i, j)

K′5 = (1− λ)2 − sin2(ϕ(i, j))
(

1 + λ + 2C(i,j)
P

cos(ϕ(i,j))
sin(ϕ(i,j))

)2

According to Equation (4), when the maximum confining pressure deflects the α angle
(α = 0◦/30◦/60◦/90◦), the shape and direction characteristics of the plastic zone of the
surrounding rock are shown in Figure 7. It can be seen that when the direction of the
maximum confining pressure deflects, the shape of the plastic zone of the surrounding rock
of the roadway also deflects, but the butterfly leaf of the plastic zone is always between the
maximum confining pressure and the minimum confining pressure.
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3.4. Shape Evolution of Plastic Zone

Taking coal as the research medium, according to Equation (3), the plastic zone
maximum radius and the shape of the plastic zone of roadway-surrounding rock under
different lateral pressure coefficients are obtained, as shown in Figure 8. As can be seen,
when λ = 1, the plastic zone is standard circular. With the increase or decrease in the lateral
pressure co-efficient λ, the shape of the plastic zone changes from circular to ellipse and
butterfly. The difference is that when the lateral pressure coefficient decreases gradually
(0 < λ < 1), the plastic zone gradually becomes a vertical butterfly. When the coefficient
of lateral pressure increases gradually (λ > 1), the plastic zone gradually changed into a
horizontal butterfly.

In addition, it can be seen from the curve in Figure 8 that the plastic zone ranges
of the butterfly-shaped plastic zone are particularly sensitive to a change in the lateral
pressure coefficient. When the plastic zone of the roadway-surrounding rock changes to
become butterfly-shaped, a small change in the lateral pressure coefficient will cause the
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sharp expansion of the plastic zone, and then cause the large-scale failure of the roadway-
surrounding rock.
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4. Error Analysis of Analytical Algorithm

Because the analytical solution of Equation (3) has two basic assumptions that are
different from the actual situation, the calculation result can only be an approximate
solution of the plastic zone distribution of the surrounding rock of the heterogeneous
circular roadway. In order to analyze the relative error between the analytical algorithm
and the numerical simulation, the center of the roadway is taken as the circle center, and
the maximum plastic state point of the surrounding rock is taken as the radius of the
circumscribed circle. The radius of the circumscribed circle is the boundary of the plastic
zone in the error analysis (as shown in Figure 9). The physical and mechanical parameters
of each lithology in the calculation process are shown in Table 1.
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4.1. Error Analysis of Plastic Zone Boundary of Single Layer Heterogeneous Surrounding Rock
4.1.1. Error Analysis of Plastic Zone Boundary under Isobaric Condition

Under the condition of bi-directional equal pressure (λ = 1), the statistical results of
the plastic zone boundary obtained by applying the analytical algorithm and numerical
simulation calculation for three kinds of heterogeneous surrounding rock at different
depths are shown in Figure 10.

It can be seen from Figure 10 that the calculation result obtained by the analytical
algorithm is smaller than that by numerical simulation. With the increase in the roadway
burial depth, the boundary of the plastic zone continuously increases. The boundary of the
plastic zone calculated by numerical simulation increases almost linearly with the increase
in the burial depth, while the boundary of the plastic zone obtained by the analytical
algorithm increases relatively slightly with the increase in the burial depth. The relative
error of the two methods increases with the increase in the burial depth, that is, the relative
error is positively correlated with the burial depth. Under the same burial depth, comparing
the three kinds of surrounding rock with different strengths in Figure 10a–c, it can be seen
that the relative error of the two calculation methods decreases with the increase in the
surrounding rock strength, and its relative error is negatively correlated with the strength
of the surrounding rock.
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4.1.2. Error Analysis of Plastic Zone Boundary under Non-Isobaric Conditions

Under the condition of bi-directional unequal pressure (λ 6= 1), the statistical results
of the analytical calculation and numerical simulation of the plastic zone boundary of
the single heterogeneous surrounding rock are shown in Figure 11. It can be seen from
Figure 11 that with the increase in the lateral pressure coefficient, the boundary of the
plastic zone increases gradually. When the plastic zone is elliptical, the increase in the
boundary of the plastic zone is small. At this time, although the relative error between the
analytical algorithm and numerical simulation has an upward trend, the change is not large.
When the shape of the plastic zone changes to a butterfly shape, the boundary of the plastic
zone begins to increase greatly with the increase in the lateral pressure coefficient, and the
relative error of the two calculation methods also increases. On the whole, the relative
error of the two calculation methods is positively correlated with the lateral pressure
coefficient. When λ = 2.1, the shape of the plastic zone begins to transform from an ellipse
into a butterfly, and the maximum value of the plastic zone boundary also transfers from
the vertical direction of the ellipse to the shoulders and two bottoms of the roadway. At
this time, the plastic zone boundary increases slightly, and the relative error of the two
calculation methods is approximately 26.8%. When λ is 2.4 and 2.7, respectively, the shape
of the plastic zone shows an obvious butterfly shape, and the boundary of the plastic zone
begins to expand rapidly along the butterfly leaf. It is worth noting that when λ is 2.7, the
boundary ranges of the plastic zone obtained by the analytical calculation are larger than
that of numerical simulation, and the relative error of the two methods is also reduced.

Similarly, for mudstone and sandy mudstone (as shown in Figure 11b,c), the variation
law of relative error of the two calculation methods with a lateral pressure coefficient is
basically consistent with that of coal, but because the strength of the surrounding rock
increases gradually, the relative error of the two calculation methods decreases gradually
with the same lateral pressure coefficient, and the relative error is negatively correlated
with the strength of the surrounding rock.
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4.2. Error Analysis of Plastic Zone Boundary of Multi-Layer Heterogeneous Composite
Surrounding Rock

Without considering the change in strata combination, the relative error of the plastic
zone boundary between the analytical algorithm and numerical simulation is analyzed.
The rock combination and rock mechanics parameters adopted by the two calculation
methods are shown in Figure 5 and Table 1.

4.2.1. Error Analysis of Plastic Zone Boundary under Isobaric Condition

Figure 12 shows the statistical results of the plastic zone boundary of a multi-layer het-
erogeneous composite roadway under the conditions of equal pressure using an analytical
algorithm and numerical simulation. It can be seen from Figure 12 that with the increase in
burial depth, the plastic zone boundary calculated by the two methods gradually increases.
In contrast, the plastic zone boundary calculated by the analytical algorithm increases
slowly, and the numerical simulation increases rapidly. For example, when the burial depth
is 700 m, 800 m, 900 m, and 1000 m, the plastic zone boundary calculated by the analytical
algorithm is 2.7 m, 2.75 m, 2.77 m, and 2.82 m, respectively, while the numerical simulation
results are 3.81 m, 3.95 m, 4.21 m, and 4.4 m. It can be seen from Figure 12 that with
the increase in burial depth, the relative error of the analytical calculation and numerical
simulation increases gradually and decreases in some cases. For example, when the burial
depth is 1200 m, the error is 39.2%, while when the burial depth is 1300 m, the error is
reduced to 35.5%. On the whole, the error of the plastic zone boundary of the multi-layer
heterogeneous composite roadway is larger than that of the single-layer heterogeneous
roadway.
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Figure 12. Calculation results of multi-layered heterogeneous circular roadway-surrounding rock
plastic zone boundary with lateral pressure coefficient of 1.

4.2.2. Error Analysis of Plastic Zone Boundary under Non-Isobaric Conditions

Figure 13 shows the statistical results of the plastic zone boundary under non-isobaric
conditions using an analytical algorithm and numerical simulation. It can be seen that with
the increase in the lateral pressure coefficient, the boundary of the plastic zone increases
with the increase in the lateral pressure coefficient.



Sustainability 2022, 14, 9480 15 of 18

Sustainability 2022, 14, x FOR PEER REVIEW 16 of 19 
 

heterogeneous surrounding rock, the error of the plastic zone calculated by analytical cal-
culation and numerical simulation is often larger than that of the single heterogeneous 
surrounding rock. 

25.1

15.8

26
29.5

35.4

1.5 1.8 2.1 2.4 2.7
0

2

4

6

8

10

12

14

16

 Analytical calculation
 Relative error
 Numerical simulation

Lateral pressure coefficient λ

B
ou

nd
ar

y 
ra

ng
e 

of
 p

la
st

ic
 z

on
e 

(m
)

0

10

20

30

40

50

60

70

80

90

100

 R
el

at
iv

e 
er

ro
r (

%
)

 

(P = 20 MPa, a = 2 m) 

Figure 13. Calculation results of plastic zone boundary of multi-layer heterogeneous surrounding 
rock under different lateral pressure coefficients. 

5. Discussion 
5.1. Shape of Plastic Zone of Roadway Surrounding Rock 

It can be seen from Figures 4 and 6 above that with the increase in the lateral pressure 
coefficient, the shape of the surrounding rock plastic zone calculated by the analytical al-
gorithm changes from circular to elliptical, and finally to butterfly, whether in single-layer 
heterogeneous surrounding rock or multi-layer heterogeneous surrounding rock. This is 
consistent with the numerical simulation method. Moreover, the outer edges of the plastic 
zone are scattered, which is consistent with the numerical simulation results under the 
same parameters. Due to the density of the numerical simulation mesh division and the 
step distance between theoretical calculation drawings, there is inevitably a certain differ-
ence in the shape of the plastic zone obtained by the two methods, but this difference does 
not affect the shape characteristics of the plastic zone. 

The above analysis shows that the shape of the plastic zone obtained by the two 
methods is consistent in terms of the shape of the plastic zone. This also shows the effec-
tiveness of the proposed analytical algorithm. 

5.2. Range of Plastic Zone of Roadway Surrounding Rock 
According to the comparison between the analytical algorithm and the numerical 

simulation results, based on the current general in situ stress and rock conditions, there is 
a certain amount of error (generally no more than 30%) between the analytical algorithm 
and the numerical simulation results. There is also a certain amount of error (generally 
less than 40%) in the boundary of the plastic zone in multi-layer heterogeneous composite 
rock masses. This is mainly due to the fact that the two assumptions in the analytical al-
gorithm do not fully conform to the principle of elastoplastic mechanics. Considering its 
mechanical essence, (1) the first assumption is that all rock strata and their interfaces in 
the rock mass are elastic; (2) the second assumption ignores the effect of plastic failure on 
the stress redistribution of the surrounding rock in the elastic zone, and further reduces 
the maximum value of the plastic zone boundary. In addition, the error is also related to 

Figure 13. Calculation results of plastic zone boundary of multi-layer heterogeneous surrounding
rock under different lateral pressure coefficients.

As can be seen from Figures 8 and 13, when λ is 1.5 or 1.8, the shape of the plastic zone
is an ellipse, and the boundary of the plastic zone is mainly extended in the coal seam with
lower strength. The relative error of the two calculation methods is less than 25%. When
λ = 2.1, the shape of the plastic zone is a butterfly, and the boundary of the plastic zone
turned into a mudstone layer of the roadway floor. At the same time, the relative error of
the two methods also increases.

The plastic zone boundary and its relative error obtained by the two methods are
almost the same as those in the single heterogeneous surrounding rock, but for multi-layer
heterogeneous surrounding rock, the error of the plastic zone calculated by analytical
calculation and numerical simulation is often larger than that of the single heterogeneous
surrounding rock.

5. Discussion
5.1. Shape of Plastic Zone of Roadway Surrounding Rock

It can be seen from Figures 4 and 6 above that with the increase in the lateral pressure
coefficient, the shape of the surrounding rock plastic zone calculated by the analytical
algorithm changes from circular to elliptical, and finally to butterfly, whether in single-layer
heterogeneous surrounding rock or multi-layer heterogeneous surrounding rock. This
is consistent with the numerical simulation method. Moreover, the outer edges of the
plastic zone are scattered, which is consistent with the numerical simulation results under
the same parameters. Due to the density of the numerical simulation mesh division and
the step distance between theoretical calculation drawings, there is inevitably a certain
difference in the shape of the plastic zone obtained by the two methods, but this difference
does not affect the shape characteristics of the plastic zone.

The above analysis shows that the shape of the plastic zone obtained by the two
methods is consistent in terms of the shape of the plastic zone. This also shows the
effectiveness of the proposed analytical algorithm.

5.2. Range of Plastic Zone of Roadway Surrounding Rock

According to the comparison between the analytical algorithm and the numerical
simulation results, based on the current general in situ stress and rock conditions, there is
a certain amount of error (generally no more than 30%) between the analytical algorithm
and the numerical simulation results. There is also a certain amount of error (generally
less than 40%) in the boundary of the plastic zone in multi-layer heterogeneous composite
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rock masses. This is mainly due to the fact that the two assumptions in the analytical
algorithm do not fully conform to the principle of elastoplastic mechanics. Considering
its mechanical essence, (1) the first assumption is that all rock strata and their interfaces in
the rock mass are elastic; (2) the second assumption ignores the effect of plastic failure on
the stress redistribution of the surrounding rock in the elastic zone, and further reduces
the maximum value of the plastic zone boundary. In addition, the error is also related
to the grid density of numerical simulation modeling. In the analytical calculation, each
scattered point in the coordinate is regarded as a heterogeneous medium point, while in
the numerical simulation, each grid of the model is regarded as a heterogeneous medium
point. In order to save calculation time, the grid cannot be infinitely encrypted, which leads
to a large grid in the numerical simulation, so there are some errors in the two methods.
These problems need to be further combined with the actual project to be solved.

5.3. Comparison with Existing Experimental Results

Through strict formula derivation, the analytical algorithm of the plastic zone of
surrounding rock in a heterogeneous roadway is obtained. The shape characteristics of
the plastic zone of the surrounding rock calculated by the analytical algorithm are highly
similar to those obtained by other scholars. For example, Leon carried out the test with
marble with tunnel-shaped holes, and butterfly failure occurred in rock samples with a
single hole and two holes [12]. In 2014, Eyvind Aker studied the acoustic emissions of
compressed sandstone samples with prefabricated holes in the laboratory. It was found that
the angle between the direction of macro cracks around the holes and the vertical direction
was approximately 45◦. The extended form is similar to the two butterfly leaves, and the
source location statistical map captured by AE is similar to the butterfly distribution [31].
Chongjin Li, Xibing Li, et al. (2017) studied the crack growth process of marble samples
with holes under uniaxial compression and found that the final macro crack direction of
circular, rectangular, and horseshoe shapes under uniaxial compression is almost consistent
with the angle of the vertical direction. They also studied the crack growth process of
marble samples with voids under biaxial compression, and the failure mode of marble
samples with voids under biaxial compression is similar to the butterfly shape [32]. These
results of experiments and numerical simulation show that the algorithm proposed by this
paper is practical and reliable.

6. Conclusions

(1) The analytical algorithm proposed by this study uses several simple and commonly
known independent variables to express the important unknown quantity of the
range and shape of the plastic zone of the surrounding rock of the roadway, so that
the functional relationship between them is clearer, and the failure law of the roadway
can be revealed by studying the properties of the function, which is incomparable
with other methods such as numerical simulation.

(2) The comparison results show that the shape and range characteristics of the plastic
zone obtained by the analytical algorithm are highly consistent with those obtained
by the numerical simulation method, and are also consistent with the existing experi-
mental results, so the analytical algorithm is effective. Compared with other methods,
this method can guide field practice more conveniently and simply.

(3) There are some errors between the analytical method and the numerical simulation.
In addition, the relative error of the plastic zone calculation of a multi-layer heteroge-
neous roadway is larger than that of a single heterogeneous roadway. According to
the accuracy required by the actual project, these problems can be ignored.
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