
Citation: Song, H.; Liu, P.

A Study on the Optimal Flexible

Job-Shop Scheduling with

Sequence-Dependent Setup Time

Based on a Hybrid Algorithm of

Improved Quantum Cat Swarm

Optimization. Sustainability 2022, 14,

9547. https://doi.org/10.3390/

su14159547

Academic Editors: Miltiadis D.

Lytras and Andreea Claudia Serban

Received: 29 June 2022

Accepted: 29 July 2022

Published: 3 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

A Study on the Optimal Flexible Job-Shop Scheduling with
Sequence-Dependent Setup Time Based on a Hybrid Algorithm
of Improved Quantum Cat Swarm Optimization
Haicao Song 1 and Pan Liu 2,*

1 School of Management Science and Engineering Shandong Technology and Business University,
Yantai 264005, China; songhaicao@sina.com

2 College of Information and Management Science Henan Agricultural University, Zhengzhou 450002, China
* Correspondence: hnycliupan@163.com

Abstract: Multi-item and small-lot-size production modes lead to frequent setup, which involves
significant setup times and has a substantial impact on productivity. In this study, we investigated
the optimal flexible job-shop scheduling problem with a sequence-dependent setup time. We built a
mathematical model with the optimal objective of minimization of the maximum completion time
(makespan). Considering the process sequence, which is influenced by setup time, processing time,
and machine load limitations, first, processing machinery is chosen based on machine load and
processing time, and then processing tasks are scheduled based on setup time and processing time.
An improved quantum cat swarm optimization (QCSO) algorithm is proposed to solve the problem,
a quantum coding method is introduced, the quantum bit (Q-bit) and cat swarm algorithm (CSO)
are combined, and the cats are iteratively updated by quantum rotation angle position; then, the
dynamic mixture ratio (MR) value is selected according to the number of algorithm iterations. The
use of this method expands our understanding of space and increases operation efficiency and speed.
Finally, the improved QCSO algorithm and parallel genetic algorithm (PGA) are compared through
simulation experiments. The results show that the improved QCSO algorithm has better results, and
the robustness of the algorithm is improved.

Keywords: flexible job-shop scheduling; setup time; makespan; quantum cat swarm optimization
algorithm (QCSO)

1. Introduction

Since 1990, the flexible job-shop scheduling problem (FJSP) has attracted attention
due to its wide application and high complexity. In the last decades, fruitful results have
been reported concerning the FJSP. To narrow the gap between the problem and practical
manufacturing, the general FJSP was extended by considering some additional practical
factors. In those extended FJSP problems, setup time is a commonly considered factor.
In many real-life manufacturing systems, the setup operations, such as cleaning up or
changing tools, are not only often required between jobs but also strongly depend on the
immediately preceding process on the same machine. This motivates researchers to study
the FJSP with sequence-dependent setup time (SDST). It is well known that the general FJSP
has been proven to be an NP-hard problem. As an extended problem, SDST is obviously
more complex than the general FJSP. Therefore, efficient methods are needed to acquire
satisfactory solutions that are of high quality in a reasonable computational time. Consider-
ing that exact methods are too intractable to solve the problem, heuristic algorithms have
received extensive attention from scholars. A summary of research optimization algorithms
on FJSP-SDST is presented in Table 1. With regard to the previous work, various heuristic
algorithms have been adopted, but no heuristic can perform best for all types of SDST
problems or all instances of the same problem, which is in accordance with the “no free

Sustainability 2022, 14, 9547. https://doi.org/10.3390/su14159547 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su14159547
https://doi.org/10.3390/su14159547
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0002-3747-4897
https://doi.org/10.3390/su14159547
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su14159547?type=check_update&version=2

Sustainability 2022, 14, 9547 2 of 16

lunch” theorem [1]. This is also the main motivation behind presenting a fresh heuristic
algorithm for the considered SDST problem.

Table 1. Summary of research optimization algorithms on FJSP-SDST.

Literature Objective Function Algorithms

Mousakhani [2] Minimize total tardiness Iterated local search
Shen et al. [3] Minimize makespan Tabu search with specific neighborhood search function

Bagheri and Zandieh [4] Minimize makespan and mean tardiness Variable neighborhood search
Abdelmaguid [5] Minimize makespan Tabu search with specific neighborhood functions
Naderi et al. [6] Minimize makespan Genetic algorithm

Li and Lei [7] Minimize makespan, total tardiness, and total energy consumption Imperialist competitive algorithm with feedback
Defersha and Chen [8] Minimize makespan Parallel genetic algorithm

Azzouz et al. [9] Minimize makespan and bi-criteria objective function Hybrid genetic algorithm and variable neighborhood search
Wang and Zhu [10] Minimize makespan Hybrid genetic algorithm and tabu search

Li et al. [11] Minimize makespan and total setup costs Elitist nondominated sorting hybrid algorithm
Azzouz et al. [12] Minimize makespan Hybrid genetic algorithm and iterated local search
Azzouz et al. [13] Minimize makespan Adaptive genetic algorithm

Abderrabi et al. [14] Minimize total flow time Genetic algorithm and iterated local search
Parjapati and Ajai [15] Minimize makespan Genetic algorithm

Sadrzadeh [16] Minimize makespan and mean tardiness Artificial immune system and particle swarm optimization
Tayebi Araghi et al. [17] Minimize makespan Genetic variable neighborhood search with affinity function

Sun et al. [18] Minimize makespan, total workload, workload of critical machine,
and penalties of earliness/tardiness Hybrid many-objective evolutionary algorithm

Li et al. [19] Minimize energy consumption and makespan Improved Jaya algorithm
Müller et al. [20] Minimize makespan Decision trees and deep neural networks

Wei et al. [21] Minimize the makespan and total energy consumption Energy-aware estimation model
Li et al. [22] Minimize the makespan and the total workload Hybrid self-adaptive multi-objective evolutionary algorithm

Türkyılmaz et al. [23] Minimize makespan Hybrid Genetic Algorithm-hypervolume contribution measure

Jiang et al. [24] Handle the issues of low production efficiency, high energy
consumption and processing cost A novel improved crossover artificial bee colony algorithm

Exploration and exploitation are treated as the most important features of heuristic
algorithms. The trade-off between the two features is crucial to the computational perfor-
mance. However, for many famous heuristics, some algorithms have a better global search
ability, such as particle swarm optimization (PSO), ant colony optimization (ACO), the
genetic algorithm (GA), and the whale optimization algorithm (WOA) [25], while others
have a better local search ability, such as simulated annealing (SA), variable neighborhood
search (VNS), the crow search algorithm (CSA) [26], and tabu search (TS). Compared to
the mentioned algorithms, cat swarm optimization (CSO), a novel swarm intelligence
algorithm proposed by Chu et al. [27], is inspired by the behavioral modes of cats in nature,
specifically their seeking mode and tracing mode, corresponding to global search and local
search in the algorithm. The main advantage of the CSO algorithm is that the local and
global search can be performed simultaneously during the evolutionary process. This
feature provides the chance to find a balance between exploration and exploitation by
elaborately designing the algorithm. Since it was proposed, CSO has been successfully
applied to various optimization problems [28–37]. However, to the best of our knowledge,
it is seldom adopted for SDST. Therefore, the aim of this paper is to apply CSO to the
FJSP-SDST. To enhance the search ability, the quantum computing principle is incorporated
with the conventional CSO to form quantum cat swarm optimization (QCSO). In QCSO,
some improvements are made, as follows: (1) Quantum encoding is employed to enhance
the search ergodicity of the algorithm. (2) The individual positions of cats are updated by
adjusting the quantum rotation angle to improve the search efficiency and speed of the
algorithm. (3) A dynamic adjustment strategy for the mixture ratio of the two search modes
(seeking and tracing) is adopted to maintain the balance between exploration and exploita-
tion. Extensive experimental results demonstrate that the proposed QCSO is effective in
solving the considered problem.

The remainder of this paper is structured as follows: Section 2 describes the presented
problem. Section 3 presents the proposed QCSO algorithm. Section 4 describes the extensive
experiments and analyzes the computational results. Section 5 provides the conclusions
and future work.

Sustainability 2022, 14, 9547 3 of 16

2. Problem Description and Formulation
2.1. Problem Assumption

In a workshop, n jobs {J1, J2, · · · , Jn} need to be processed by m machines {M1, M2,
· · · , Mm}. Each job contains Oi operations and its own processing route. Oij represents the
jth operation of the ith job. Each operation Oij can be processed on any machine selected
from a compatible machine set. The processing time of each operation is determined by
the processing capacity of the assigned machine. The setup time of each machine depends
on the two consecutive operations on it. In this study, we chose an eligible machine for
each operation, then sequenced the operations on each machine in order to minimize the
makespan, i.e., minC = min{maxCk|1 ≤ k ≤ m}, where Ck represents the completion time
of the last job on machine k. For this problem, the following assumptions help to simplify
the problem:

(1) Machines and jobs are available at time zero.
(2) There exist precedence constraints among different operations of the same job, i.e.,

each operation can only be processed after its predecessor is completed.
(3) There are no precedence constraints among different jobs, i.e., jobs are independent of

each other.
(4) Preemption is not allowed, i.e., the processing of each operation must not be inter-

rupted once it starts.
(5) Each machine can only process one operation at a given time.
(6) Job transportation and machine breakdown are not considered.

2.2. Description of Parameters and Variables

Some necessary parameters and variables are shown in Table 2.

Table 2. Some necessary parameters and variables.

Index Explanation

J Job set
O Operation set
M Machine set
Cmax Final completion time (makespan)
Ck Completion time of machine k
co, j,k Completion time of operation o of job j on machine k
po, j,k Processing time of operation o of job j on machine k
so, j,k,o’,j’ Setup time of two adjacent operations arranged on the same machine
sto, j, k Start time of operation o of job j on machine k
Rm Maximum number of processing tasks on machine m
r Position index of processing tasks on each machine, r = 1, 2, · · · , Rm
L A large positive number
cr,k Completion time of task r on machine k
xo,j,k xo,j,k = 1 if operation o of job j is processed on machine k, otherwise xo, j,k = 0

yr,k,o,j
yr,k,o,j = 1 if the task on position r of machine k is just operation o of job j,
otherwise yr,k,o,j = 0

2.3. Problem Formulation

minCmax = min{maxCk|1 ≤ k ≤ m} (1)

cr,k ≥ co,j,k + L× yr,k,o,j − L (2)

cr,k − po,j,k − so,j,k,o′ ,j′ − L× (yr,k,o,j + yr−1,k,o′ ,j′ + 2L ≥ cr−1,k
{
(r > 1) ∧ (o, j) 6= (o′, j′)

}
(3)

yr,k,o,j ≤ xo,j,k (4)

Sustainability 2022, 14, 9547 4 of 16

m

∑
k=1

Rm

∑
r=1

yr,k,o,j = 1 (5)

yr′ ,k,o′ ,j ≤ yr,k,o,j,
{
(o′ > o) ∧ (r′ < r)

}
(6)

yr′ ,k,o′ ,j ≤ 1− yr,k,o,j,
{
(o′ < o) ∧ (r′ > r)

}
(7)

Equation (1) gives the objective function aiming to minimize the makespan. Con-
straints (2) and (3) show that the operation o of job j is just the processing task on position r
of machine k. Constraints (4) and (5) indicate that any operation must be assigned to only
one machine. Constraint (6) shows that if operation o of job j is arranged on position r
of machine k, then any successive operation o’ of job j cannot be arranged on any earlier
run r’ of machine k for processing. Constraint Equation (7) is a symmetric constraint of
Constraint Equation (6); in other words, it ensures that the precedence activity of the job
has been processed.

3. Implementation of Proposed QCSO
3.1. Encoding Approach

To implement QCSO, the first task is to design an appropriate encoding approach.
Here, the probability amplitude is used to represent the current position of each individual
cat. This paper maintains a population of Q-bit individuals, Q(t) =

{
qt

1, qt
2, · · · , qt

N
}

at
generation t, where N is the size of the population and qt

i is a Q-bit individual, defined as:

qt
i =

(
αt

i1
βt

i1

∣∣∣∣ αt
i2

βt
i2

∣∣∣∣· · ·· · ·
∣∣∣∣αt

in×m
βt

in×m

)
, j = 1, 2, . . . , N (8)

where
(

αt
ij, βt

ij

)T
, (i = 1, 2, . . . , n × m) is a Q-bit that should satisfy the normalization

condition,
∣∣∣αt

ij

∣∣∣2 + ∣∣∣βt
ij

∣∣∣2 = 1.
∣∣∣αt

ij

∣∣∣2 gives the probability that the Q-bit will be found in the

0 state and
∣∣∣βt

ij

∣∣∣2 gives the probability that the Q-bit will be found in the 1 state. According
to what is observed, Q(t) can collapse to binary string P(t) composed by 0 and 1. A random

number r is generated from the range [0, 1]; if r >
∣∣∣βt

ij

∣∣∣2, the bit of the binary string is set
to 1. Thus, a binary string of length L is formed from the Q-bit individual. Meanwhile,
every L binary string is converted to a decimal string in the range of 0 to n. Then, a decimal
string of length n × o is formed. The decimal string is sorted from small to large to get the
location, and its procedures are encoded.

For the FJSP with O procedures, n jobs, and m machines, the individual length of a
quantum bit is defined as L = ([logn

2] + 1)× n× o, where [x] represents an integer that is
not more than x.

3.2. Decoding Mechanism

This paper investigates the FJSP-SDST with the purpose of facilitating high achieve-
ment for all performance indices, such as the makespan of jobs, under the conditions of
satisfying the process constraints, ensuring that the precedence activities of the job are
completed, and minimizing the setup time of the work procedure of the same machine. The
quantum individual is a linear superposition state of the solution through the probability
amplitude, so the solution of the linear superposition state should be translated into a
decimal solution through the decoding mechanism [38]. Because [logn

2] + 1 ≥ logn
2 , every

[logn
2] + 1 binary string should be converted to a decimal number, and finally a decimal

string of length m × n is formed. The decimal string is sorted in order from small to large
to make sure that the relative position of each number is unchanged. The smallest numbers

Sustainability 2022, 14, 9547 5 of 16

of m represent the first job, while the next smallest numbers represent the second job. In
this way, we can get the decimal string based on the working procedure code.

Step 1: Set P(t) as a Q-bit individual:

P(t) =
[

α′1
β′1

∣∣∣∣ α′2β′2

∣∣∣∣· · ·· · ·
∣∣∣∣α′nβ′n

]
(9)

where t represents the generation of the qubit, and in order to increase the chance that each
solution will be searched, α0

i and β0
i (i = 1, 2, · · · n) are initialized with

√
2

2 .

Step 2: Generate a random number r from the range [0, 1]; if
∣∣α′i∣∣2 > r2, let xi(t) = 1,

else let xi(t) = 0 (i = 1, 2, . . . , n). For every P(t), we can get a binary X(t) =
(
x′1, x′2, · · · , x′n

)
of length n.

Step 3: In X(t), convert each [logn
2] + 1 binary string to a decimal string, to form a

decimal string D(t) = (d′1, d′2, · · · , d′m×n) of length m × n.
Step 4: Let the numbers in D(t) be ordered from small to large; the smallest numbers

of m represent the first job, the next smallest numbers represent the second job, and so on.
The relative position of each number in D(t) is kept constant during the process. Thus, we
can get a permutation W(t), by which each n job serial number is repeated m times. The
number i that appears in W(t) for j times will represent operation j of job i. If there are two
or more of the same numbers in D(t), then the smaller serial number represents the job that
has the smaller process number.

The data processing of the 4 × 3 scale problem is shown in Table 3, and the specific
decoding process is as follows:

Table 3. Data processing of a 4 × 3 scale problem.

Job Number of Machine

1 1 2 3
2 3 1 2
3 1 3 2
4 2 3 1

For example, in the 4 × 3 scale JSP, which includes 4 jobs and 3 machines, P(t) is a
36-bit qubit chromosome. Observing P(t), if we get the 36 binary string X(t) = {0, 1, 1,
1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0}, then
D(t) = (2, 2, 2, 1, 2, 0, 3, 0, 1, 1, 1, 2). So positions 4, 6, and 8 comprise job 1; positions
9, 10, and 11 comprise job 2; positions 1, 2, and 3 comprise job 3; and position 5, 7, and
12 comprise job 4, and W(t) = (3, 3, 3, 1, 4, 1, 4, 1, 2, 2, 2, 4). The number 3 in position 1
represents the first operation of job 3, the number 1 in position 6 represents the second
operation of job 1, and the number 4 in position 12 represents the third operation of job
4. According to process genes 101 201 202 102 (x0y represents operation y of job x) that
are generated, the corresponding machine genes are selected. For example, the optional
machines of x0y are JM = {a, b, c} and randomly generate discrete integers in the range of JM.
If the generated number is 2, then it will select the corresponding machine b. Finally, the
fitness function is calculated according to the process genes and machine genes. Any one
of the quantum bits can be decoded as a feasible scheduling solution, and the advantage of
this method is that it will not generate inapposite solutions.

3.3. Seeking Mode

The seeking mode corresponds to a global search in the search space of the optimiza-
tion problem. According to the value of MR, the individuals of the cat swarm in the search
mode are determined first, and a global local search is carried out for each individual. The
mutation operator is used to evaluate the fitness after the position exchange of its quantum
coding. If it is better than the current solution, the current optimal solution is replaced. The
steps involved in this mode are as follows:

Sustainability 2022, 14, 9547 6 of 16

Step 1: Make j copies of the cat’s current location ck and place them in the memory pool;
the size of the memory pool is j, and j = SMP. If the value of SPC is true, then j = (SMP − 1),
and leave the current position as a candidate solution.

Step 2: According to the value of CDC, each individual copy in the memory pool
randomly increases or decreases SRD percent from the current value, and the original value
is replaced.

Step 3: Calculate the fitness value (FS) of each candidate solution separately.
Step 4: Select the candidate point with the highest FS from the memory pool to replace

the current cat’s position and update the cat’s position.
Step 5: Select a random position from the cat’s candidate position to move, and replace

the position ck.

Pi =
|FSi − FSb|

FSmax − FSmin
, 0 < i < j (10)

If the target of the fitness function is the minimum value, then FSb = FSmax, otherwise
FSb = FSmin.

3.4. Tracing Mode

The tracing mode corresponds to a local search in the optimization problem. In this
mode, cats move to each dimension according to their own speed; individual cats approach
the local optimal position, and their individual position is updated by comparing it with
the optimal position of the group. The crossover operator is used for local search, and each
individual cat is optimized by tracking its history and the local optimization of the current
cat population. The crossover operator is as follows:

Individual: α1, α2, . . . , |αi, . . . , αj|, . . . , αl
Individual historical extremes: β1, β2, . . . , |βi, . . . , βj|, . . . , βl
New individual after crossing: α1, α2, . . . , |βi, . . . , βj|, . . . , αl
The steps of tracing mode can be described as follows:
Step 1: Update the speed (vi,d) of each dimension direction. The best position update

that the entire cat group has experienced is the current optimal solution, and it is denoted
as xbest. The speed of each cat is denoted as vi = {vi1, vi2, . . . , vid}, and each cat updates its
speed according to Equation (11):

vi,d = vi,d +r1*c1*(xbest,d − xi,d), d = 1,2, . . . ,M (11)

where xbest,d is the position of the cat with the best fitness value; xi,d is the position of ck, c1
is a constant, and r1 is a random value in the range [0, 1]; vi,d is the updated speed of cat i
in dimension d, and M is the dimension size; xbest,d(t) represents the position of the cat with
the best fitness value in the current swarm.

Step 2: Determine whether the speed is within the maximum range. To prevent the
variation from being too large, a limit is added to the variation of each dimension, which
also results in a blind random search of the solution space. SRD is given in advance; if
the changed value of each dimension is beyond the limits of the SRD, set it to the given
boundary value.

Step 3: Update location. Update the position of the cat according to Equation (12):

xi,d = xi,d + vi,d, d = 1, 2, . . . , M (12)

In CSO, cats represent a feasible solution to the optimization problem to be solved.
Some cats perform in seeking mode, and the rest follow in tracing mode. Two models
interact through MR, and MR represents the number of cats in tracing mode as a proportion
of the entire cat swarm. Most of the time, cats are resting and observing the environment,
and the actual tracing and capturing time is quite short, so MR should be a smaller value in
the program.

Sustainability 2022, 14, 9547 7 of 16

3.5. Updating Quantum Rotation Angle

As the executive mechanism of evolution operation, quantum gates can be selected
according to specific issues. At present, there are many kinds of quantum gates. According
to the calculation features of QCSO, the quantum rotation gate is used to update the cat
swarm position in this paper. The adjusted operation of the quantum rotation gate is
as follows:

G(θi) =

[
cos(θi)
sin(θi)

− sin(θi)
cos(θi)

]
(13)

The update process is as follows:[
αt+1

ij
βt+1

ij

]
= G

[
αt

ij
βt

ij

]
=

[
cos(∆θt+1

ij)

sin(∆θt+1
ij)

− sin(∆θt+1
ij)

cos(∆θt+1
ij)

][
αt

ij
βt

ij

]
(14)

In tracing mode, the increment of qubit argument of cat Pi is updated as follows:

∆θt+1
ij = ∆θt

ij + c1 × r1 × (θgj − θij) (15)

Let θgj − θij ∈ [−π, π]; if the value is out of range, it should be plus or minus 2π.
In seeking mode, random disturbance is achieved by small range fluctuation of

qubit argument.
∆θt+1

ij = c2π × r1 (16)

where c1 and c2 are two constants and r1 is a random value in the range [0, 1].
Meanwhile, the standard CSO allocates fixed proportions of the entire cat swarm in

searching and tracking mode. However, the requirements of global and local search in
the evolutionary process of CSO are different, so it cannot effectively improve the search
capability of the algorithm. In view of this problem, in this paper we propose a method
related to the number of iterations to select the behavior mode of a cat swarm with variable
iteration times:

MR = MRmax − (MRmax −MRmin)’× L/nmax (17)

where nmax is the maximum iterations and L is the current run time.
In order to improve the global search ability and the convergence rate, the algorithm

uses a larger ratio of the seeking cat swarm in the early run period and a larger ratio of
the tracing cat swarm in the later run period to improve the local search ability, which
guarantees the convergence property of the algorithm.

3.6. Fitness Function

The optimization objective of this paper is to minimize the makespan. When the
population is large, the elitist strategy could be used to select individuals for quantum
crossover, and the optimization objective minimizes the makespan as the fitness function.
Due to the large number of populations, the probability that the optimal individual and the
worst individual will be selected is very high. To allow better individuals to have a larger
probability of being selected, we create the fitness function:

F(x) = Mt(x) −MB(min) (18)

In Equation (18), Mt(x) and MB (min) indicate the completion time of the current
individual and the current minimum makespan in generation t. In other words, it is the
current optimal solution.

3.7. Flowchart of QCSO

The flow of QCSO is as follows:
1© Initialize the population Q(t0), and randomly create n chromosomes that encoded

by qubit.

Sustainability 2022, 14, 9547 8 of 16

2© Decode chromosomes and convert qubit encoding to decimal.
3©Measure each individual in initial population Q(t0), and get a definite solution P(t0).
4© Evaluate the fitness value of each solution, and save the optimal individual and its

corresponding fitness value.
5© According to the value of MR, determine the individual searching and tracking

status of the cat group, and judge whether the calculation process can be over. If the end
condition is satisfied, then exit; otherwise, continue to calculate.

6© Measure each individual in population Q(t), and get the corresponding
definite solution.

7© Evaluate the fitness value of each definite solution.
8© Use the quantum rotation gate G(t) to update the individual position of the cat

swarm, and get the new population Q(t + 1).
9© Save the optimal cat swarm, optimal individual, and corresponding fitness value;
10© Increase the number of iterations by 1, and return to step 5©.
The flowchart of the quantum cat swarm optimization algorithm is shown in Figure 1.

Figure 1. Flowchart of quantum cat swarm optimization algorithm.

4. Algorithm Validation
4.1. Data Generation

This paper runs 2 × 4, 4 × 4, 4 × 6, 8 × 4, and 10 × 4 five-scale problems, in which
every job has four procedures. For example, 8 × 4 indicates that there are eight kinds of
jobs on four machines. The relevant data of the simulation analysis in this paper come
from the literature [8], and each operation is processed on a different machine. Different
processing times and setup times for the same machining tasks are scheduled on different
machines, and the setup time matrix is asymmetric. Part of the data is shown in Tables 4–17.

Sustainability 2022, 14, 9547 9 of 16

There is an initial setup time on each machine, which also differed. In the data tables, Ji
refers to job I, Oj refers to operation j, Jij refers to operation j of job i, and Mi refers to the
machine number.

Table 4. Optional machine table in each process of 4 × 4 problem.

Job J1 J2 J3 J4

O1 1, 2 2 1, 2, 3 4
O2 2, 3 1, 4 3 1, 2
O3 3 1, 3 2, 3, 4 1, 2
O4 1, 2, 3 3 1 2, 4

Table 5. Processing time for 4 × 4 problem jobs (min).

Job J1 J2 J3 J4

O1 87, 140 200, 220, 200 165, 150 1102.5, 1347.5, 1125
O2 210, 192 280, 260 165, 135, 165 1102.5, 1125, 1125
O3 245, 280, 262 240, 200 150, 180 1100, 1200
O4 245, 262 230, 270 140, 160 1000, 1050

Table 6. Initial setup time for 4 × 4 problem jobs (min).

Job M1 M2 M3 M4

J1 220 90 80 45
J2 120 85 60 85
J3 235 75 65 127
J4 167 129 109 68

Table 7. Setup time for 4 × 4 problem jobs on M1 (min).

Job J1 J2 J3 J4

J1 0 250 176 155
J2 260 0 248 165
J3 210 50 0 218
J4 220 60 205 0

Table 8. Setup time for 4 × 4 problem jobs on M2 (min).

Job J1 J2 J3 J4

J1 0 190 161 292
J2 220 0 146 224
J3 260 122 0 158
J4 215 114 171 0

Table 9. Setup time for 4 × 4 problem jobs on M3 (min).

Job J1 J2 J3 J4

J1 0 235 231 285
J2 260 0 162 159
J3 290 193 0 202
J4 228 213 152 0

Table 10. Setup time for 4 × 4 problem jobs on M4 (min).

Job J1 J2 J3 J4

J1 0 252 203 252
J2 65 0 146 156
J3 154 68 0 159
J4 121 154 154 0

Sustainability 2022, 14, 9547 10 of 16

Table 11. Optional machine table in each process of 8 × 4 problem.

Job J1 J2 J3 J4 J5 J6 J7 J8

O1 2, 3 1, 2, 4 2, 4 1, 2, 4 1, 2 1, 4 2, 3 4
O2 1, 3 1, 3 1, 2, 4 1, 2, 4 2, 4 2, 3 2, 3, 4 1, 2
O3 1, 2, 3 3, 4 1, 2 2, 4 1, 3, 4 1, 2, 3 1, 3 1, 2
O4 2, 4 1, 4 2, 3 2, 3 3,4 1 2, 4 1, 4

Table 12. Processing time for 8 × 4 problem jobs (min).

J1 J2 J3 J4

87, 140 200, 220, 200 165, 150 1102.5, 1347.5, 1125
210, 192.5 280, 260 165, 135, 165 1102.5, 1125, 1125
245, 280, 262.5 240, 200 150, 180 1100, 1200
245, 262.5 230, 270 140, 160 1000, 1050

J5 J6 J7 J8

220, 200 210, 240 180, 200 120
140, 120 260, 300 210, 235, 265 110, 160
180, 200, 220 200, 220, 260 250, 280 220, 260
130, 160 270 150, 180 200, 240

Table 13. Initial setup time for 8 × 4 problem jobs (min).

Job M1 M2 M3 M4

J1 220 90 80 45
J2 120 85 60 85
J3 235 75 65 127
J4 167 129 109 68
J5 216 143 123 145
J6 134 110 95 187
J7 146 225 88 122
J8 221 219 75 157

Table 14. Setup time for 8 × 4 problem jobs on M1 (min).

Job J1 J2 J3 J4 J5 J6 J7 J8

J1 0 250 176 155 215 255 190 212
J2 260 0 248 165 223 157 154 214
J3 210 50 0 218 213 258 259 215
J4 220 60 205 0 119 159 164 227
J5 150 110 117 178 0 30 116 215
J6 130 125 129 132 137 0 40 203
J7 120 215 238 181 147 121 0 209
J8 150 225 159 169 116 212 113 0

Table 15. Setup time for 8 × 4 problem jobs on M2 (min).

Job J1 J2 J3 J4 J5 J6 J7 J8

J1 0 190 161 292 201 255 269 248
J2 220 0 146 224 209 157 254 218
J3 260 122 0 158 213 251 214 148
J4 215 114 171 0 151 220 207 214
J5 210 152 149 153 0 80 85 161
J6 159 155 219 159 156 0 90 142
J7 151 121 153 117 112 80 0 217
J8 154 216 165 152 119 210 159 0

Sustainability 2022, 14, 9547 11 of 16

Table 16. Setup time for 8 × 4 problem jobs on M3 (min).

Job J1 J2 J3 J4 J5 J6 J7 J8

J1 0 235 231 285 294 240 200 90
J2 260 0 162 159 221 100 200 60
J3 290 193 0 202 219 150 150 150
J4 228 213 152 0 55 118 159 208
J5 173 159 158 75 0 106 148 158
J6 119 156 159 206 149 0 157 204
J7 138 184 215 233 258 126 0 106
J8 176 217 208 259 239 137 125 0

Table 17. Setup time for 8 × 4 problem jobs on M4 (min).

Job J1 J2 J3 J4 J5 J6 J7 J8

J1 0 252 203 252 216 158 206 153
J2 65 0 146 156 101 212 103 157
J3 154 68 0 159 154 111 155 206
J4 121 154 154 0 35 108 203 108
J5 206 124 150 85 0 155 159 212
J6 151 158 104 104 203 0 95 203
J7 159 153 109 152 159 123 0 149
J8 107 152 112 101 206 109 45 0

4.2. Calculation Result

In this paper, Matlab R2010a software was used in a PC with CORE i3 M 380 CPU, the
main frequency of the CPU was 2.53 GHz, and the RAM was 500 GB. The relevant parame-
ters of QCSO used in this paper refer to the literature [8,25]. The operation parameters were
as follows: population size p = 60, termination algebra T = 200, dynamic rotation angle
∆θ = 0.15π, 0.16π, 0.2π, and everyone was tested 20 times, SMP = 15, and MR varied ran-
domly in the range [0.2, 0.8] according to the number of iterations of the algorithm. Further,
c1 = 2, r1 is a random number in the range [0, 1]. The QCSO algorithm was compared to the
parallel genetic algorithm (PGA) [8], and the comparison of calculation results included the
following aspects: target minimum value (Min.sol), target average value (Avg.sol), target
maximum value (Max.sol), times for optimal solution, average relative percentage error
(RPE), and their standard deviation (SD). The percentage, which represents the absolute
deviation of a measurement value to the mean value, is called RPE, and it is used to measure
the deviation of a single measurement result from the mean value. SD is the square root of
the sum of the squared deviation from the mean, and it is also the arithmetic square root of
variance. It can reflect the discrete degree of the dataset, which is represented by σ. The
smaller the value of σ, the better the stability of the algorithm. The formulas for RPE and σ
are as follows:

RPE =
CPGA

max − CQCSO
max

CQCSO
max

× 100 (19)

In Equation (19), CPGA
max and CQCSO

max indicate the optimization value of minimizing the
makespan solved by PGA [8] and improved QCSO used in this paper.

σ =

√√√√ 1
N

N

∑
i=1

(xi − µ)2 (20)

In Equation (20), xi are real numbers, and µ is the arithmetic mean value of xi.
QCSO and PGA are used to solve different scale problems, and they were all run

20 times. It can be seen in Table 18 that there is little difference in the optimization ability
of the two algorithms when the scale of the problem is relatively small, but when the scale
of the problem increases, the optimization ability of QCSO is obviously better than that
of PGA. Although the average difference of the optimal solution is not very large, the SD

Sustainability 2022, 14, 9547 12 of 16

contrast is obvious. For the 8 × 4 problem scale, σ calculated by QCSO is 62.48 and by PGA
is 1103, and the difference is 53.55. For the 10 × 4 problem scale, σ calculated by QCSO is
91.81 and by PGA is 192.51, and the difference is 100.7. This illustrates that when the scale
of the problem increases, QCSO is better than PGA. In addition, the results of running it
20 times show that with increased problem scale, QCSO searches for the optimal solution
more times than PGA. For example, for the 6 × 4 problem scale, the ratio of times QCSO
searched for the optimal solution is 80%, while the ratio for PGA is 70%. For the 8 × 4
problem scale, the ratio of times QCSO searched for optimal solution is 80%, but the ratio
for PGA is 60%. For the 10 × 4 problem scale, the ratio of times QCSO searched for the
optimal solution is 75%, while the ratio for PGA is 40%. All of this shows that the stability
of QCSO is better.

Table 18. Comparison results.

Problem scale: 2 × 4

Max.sol (min) Min.sol (min) Avg.sol (min) σ Times for optimal solution

QCSO 1359 1359 1359 0 20
PGA 1359 1359 1359 0 20

Problem scale: 4 × 4

Max.sol (min) Min.sol (min) Avg.sol (min) σ Times for optimal solution

QCSO 4773 4744 4761.4 10.58 18
PGA 4773 4744 4771.55 48 10

Problem scale: 6 × 4

Max.sol (min) Min.sol (min) Avg.sol (min) σ Times for optimal solution

QCSO 4924 4764 47945 20.57 16
PGA 4854 4764 4784.35 25.93 14

Problem scale: 8 × 4

Max.sol (min) Min.sol (min) Avg.sol (min) σ Times for optimal solution

QCSO 5118 4853 4941.2 62.48 16
PGA 5184 4826 4962.8 1103 12

Problem scale: 10 × 4

Max.sol (min) Min.sol (min) Avg.sol (min) σ Times for optimal solution

QCSO 5590 5234 5444.3 91.81 15
PGA 5954 5164 5607 192.51 8

Twenty RPE values of different scale problems running results are shown in Table 19.
The mean values of RPE for three kinds of scale problems are all positive, indicating that
QCSO is significantly better than PGA, and QCSO is improved by about 2% on average.
The analysis in this paper shows that the improved QCSO algorithm introduces quantum
coding, which expands the ergodicity of the algorithm. By renewing the quantum rotation
angle, the position of the cat swarm is iteratively updated, and the search efficiency and
running speed of the algorithm are improved. MR, the number of cats that execute tracing
mode, accounting for a proportion of the entire cat swarm, is set to a range of [0.2, 0.8]
in this paper. It varies dynamically according to the change in iteration number of the
algorithm, which improves its optimization capability.

The 6 × 4, 8 × 4, and 10 × 4 problem working sketches solved using QCSO and PGA
are shown in Figures 2–4, respectively, and the number of iterations for all of them is 20. It
is confirmed that the convergence speed and the stability of QCSO is better, especially for
solving large-scale problems. Gantt charts of optimal solutions for the 6 × 4, 8 × 4, and
10 × 4 problems based on QCSO are shown in Figures 5–7, respectively; the numbers on
the colored progress bars represent the procedure of the job. For example, in Figure 7, 101
on the first progress bar of the second line indicates that the first operation of the first job is
arranged to be processed on machine 3. The space between the colored progress bars on
each line is the setup time, and its size indicates the length of the setup time. The space in

Sustainability 2022, 14, 9547 13 of 16

front of the job operation ranked first on each machine represents the initial setup time of
that machine.

Table 19. RPE values of different scale problem running results.

n m Instance RPE n m Instance RPE n m Instance RPE

6 4 1 −0.13 8 4 1 2.09 10 4 1 1.03
2 0 2 0.35 2 −4.55
3 0.69 3 −1.37 3 50
4 −0.10 4 4.38 4 5.72
5 0 5 −1.45 5 1.17
6 2.64 6 1.39 6 2.52
7 0.92 7 5.83 7 −3.08
8 −1.45 8 3.62 8 2.78
9 0.19 9 3.77 9 9.37

10 1.55 10 1.94 10 −1.16
11 0.02 11 5.67 11 5.51
12 0.11 12 0.66 12 0.78
13 −0.12 13 0.16 13 3.86
14 −1.12 14 7.09 14 4.31
15 −0.21 15 1.42 15 7.44
16 3.27 16 −0.80 16 80
17 −0.13 17 4.33 17 −0.71
18 −1.02 18 0.37 18 2.46
19 −0.10 19 1.45 19 0.82
20 0.10 20 0.16 20 2.36

Mean 0.26 Mean 2.05 Mean 2.70

Figure 2. QCSO and PGA used to solve 6 × 4 problem working sketch. (a) QCSO used to solve 6 × 4
problem working sketch. (b) PGA used to solve 6 × 4 problem working sketch.

Figure 3. QCSO and PGA to solve 8 × 4 problem working sketch. (a) QCSO used to solve 8 × 4
problem working sketch (b) PGA used to solve 8 × 4 problem working sketch.

Sustainability 2022, 14, 9547 14 of 16

Figure 4. QCSO and PGA to solve 10 × 4 problem working sketch. (a) QCSO used to solve 10 × 4
problem working sketch (b) PGA used to solve 10 × 4 problem working sketch.

Figure 5. Gantt chart of optimal solution to 6 × 4 problem using QCSO.

Figure 6. Gantt chart of optimal solution to 8 × 4 problem using QCSO.

Figure 7. Gantt chart of optimal solution to 10 × 4 problem using QCSO.

Sustainability 2022, 14, 9547 15 of 16

5. Conclusions

To improve production efficiency, reduce cost, and increase the flexible production of
the job-shop, each operation of the same job can be processed on a different machine, and
the processing and setup times of the same operation on the different machines are not
the same. Different job sequences on the same machine result in different setup times, and
because of the extremely low repetition rate of single-item and small-batch products, it is
impossible to obtain setup times for different processing sequences. To shorten the setup
times and improve the utilization rate of equipment and other resources, in this paper we
examine a job-shop scheduling optimization scheme based on group technology. First, we
cluster the job into groups according to the similarity of the required processing resources.
Second, we select the processing machines according to the machine load and processing
time. Finally, we schedule the procedures on the machines with the optimization objective
of minimizing the completion time according to the setup and processing time. In this
paper, we combine qubit and QCSO and propose the improved QCSO to solve the FJSP.
We also introduce quantum coding, which extends the ergodicity of the algorithm. By
renewing the quantum rotation angle, the position of the cat swarm is iteratively updated,
and the operation efficiency and speed of the algorithm are improved. Dynamic MR values
in the range of [0.2, 0.8] are used in this paper, which vary randomly according to the
number of iterations of the algorithm. Finally, the operation results of the improved QCSO
and PGA are compared through simulation experiments [8], and the minimum, average,
and maximum values of the objective function, relative percentage deviation, and standard
deviation are compared. The results show that the improved QCSO has better optimization
results and robustness, and these results confirm the feasibility and validity of the method
used in this paper.

Author Contributions: Writing—original draft, H.S. and P.L. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was funded by the doctoral fund projects of Shandong Technology and Busi-
ness University (BS201938), the National Natural Science Foundation of China (61403180, 41601593),
and the Natural Science Foundation of Shandong Province (ZR2019QF008).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Acknowledgments: Shandong Technology and Business University and Henan Agricultural Univer-
sity provided the writers with the resources to conduct the research reported in this manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Wolpert, D.H.; Macready, W.G. No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1997, 1, 67–82. [CrossRef]
2. Mousakhani, M. Sequence-dependent setup time flexible job-shop scheduling problem to minimise total tardiness. Int. J. Prod.

Res. 2013, 51, 3476–3487. [CrossRef]
3. Shen, L.; Dauzère-Pérès, S.; Neufeld, J.S. Solving the flexible job-shop scheduling problem with sequence-dependent setup times.

Eur. J. Oper. Res. 2018, 265, 503–516. [CrossRef]
4. Bagheri, A.; Zandieh, M. Bi-criteria flexible job-shop scheduling with sequence-dependent setup times—Variable neighborhood

search approach. J. Manuf. Syst. 2011, 30, 8–15. [CrossRef]
5. Abdelmaguid, T.F. A neighborhood search function for flexible job-shop scheduling with separable sequence-dependent setup

times. Appl. Math. Comput. 2015, 260, 188–203. [CrossRef]
6. Naderi, B.; Zandieh, M.; Fatemi Ghomi, S.M.T. Scheduling job-shop problems with sequence-dependent setup times. Int. J. Prod.

Res. 2009, 47, 5959–5976. [CrossRef]
7. Li, M.; Lei, D. An imperialist competitive algorithm with feedback for energy-efficient flexible job shop scheduling with

transportation and sequence-dependent setup times. Eng. Appl. Artif. Intell. 2021, 103, 104307. [CrossRef]
8. Defersha, F.M.; Chen, M. A parallel genetic algorithm for a flexible job-shop scheduling problem with sequence dependent setups.

Int. J. Adv. Manuf. Technol. 2010, 49, 263–279. [CrossRef]
9. Azzouz, A.; Ennigrou, M.; Ben Said, L. A hybrid algorithm for flexible job-shop scheduling problem with setup times. Int. J. Prod.

Manag. Eng. 2017, 5, 23–30. [CrossRef]

http://doi.org/10.1109/4235.585893
http://doi.org/10.1080/00207543.2012.746480
http://doi.org/10.1016/j.ejor.2017.08.021
http://doi.org/10.1016/j.jmsy.2011.02.004
http://doi.org/10.1016/j.amc.2015.03.059
http://doi.org/10.1080/00207540802165817
http://doi.org/10.1016/j.engappai.2021.104307
http://doi.org/10.1007/s00170-009-2388-x
http://doi.org/10.4995/ijpme.2017.6618

Sustainability 2022, 14, 9547 16 of 16

10. Wang, Y.; Zhu, Q. A Hybrid Genetic Algorithm for Flexible Job-shop Scheduling Problem with Sequence-Dependent Setup Times
and Job Lag Times. IEEE Access 2021, 9, 104864–104873. [CrossRef]

11. Li, Z.C.; Qian, B.; Hu, R. An elitist nondominated sorting hybrid algorithm for multi-objective flexible job-shop scheduling
problem with sequence-dependent setups. Knowl. Based Syst. 2019, 173, 83–112. [CrossRef]

12. Azzouz, A.; Ennigrou, M.; Said, L.B. A self-adaptive hybrid algorithm for solving flexible job-shop problem with sequence
dependent setup time. Procedia Comput. Sci. 2017, 112, 457–466. [CrossRef]

13. Azzouz, A.; Ennigrou, M.; Said, L.B. Solving flexible job-shop problem with sequence dependent setup time and learning effects
using an adaptive genetic algorithm. Int. J. Comput. Intell. Stud. 2020, 9, 18–32. [CrossRef]

14. Abderrabi, F.; Godichaud, M.; Yalaoui, A. Flexible Job-shop Scheduling Problem with Sequence Dependent Setup Time and Job
Splitting: Hospital Catering Case Study. Appl. Sci. 2021, 11, 1504. [CrossRef]

15. Parjapati, S.K.; Ajai, J. Optimization of flexible job-shop scheduling problem with sequence dependent setup times using genetic
algorithm approach. Int. J. Math. Comput. Nat. Phys. Eng. 2015, 9, 41–47.

16. Sadrzadeh, A. Development of both the AIS and PSO for solving the flexible job-shop scheduling problem. Arab. J. Sci. Eng. 2013,
38, 3593–3604. [CrossRef]

17. Tayebi Araghi, M.E.; Jolai, F.; Rabiee, M. Incorporating learning effect and deterioration for solving a SDST flexible job-shop
scheduling problem with a hybrid heuristic approach. Int. J. Comput. Integr. Manuf. 2014, 27, 733–746. [CrossRef]

18. Sun, J.; Zhang, G.; Lu, J. A hybrid many-objective evolutionary algorithm for flexible job-shop scheduling problem with
transportation and setup times. Comput. Oper. Res. 2021, 132, 105263. [CrossRef]

19. Li, J.; Deng, J.; Li, C. An improved Jaya algorithm for solving the flexible job-shop scheduling problem with transportation and
setup times. Knowl. Based Syst. 2020, 200, 106032. [CrossRef]

20. Raj, S.; Bhattacharyya, B. Reactive power planning by opposition-based grey wolf optimization method. Int. Trans. Electr. Energy
Syst. 2018, 28, 1–17. [CrossRef]

21. Wei, Z.; Liao, W.; Zhang, L. Hybrid energy-efficient scheduling measures for flexible job-shop problem with variable machining
speeds. Expert Syst. Appl. 2022, 197, 116785. [CrossRef]

22. Li, R.; Gong, W.; Lu, C. Self-adaptive multi-objective evolutionary algorithm for flexible job shop scheduling with fuzzy processing
time. Comput. Ind. Eng. 2022, 168, 108099. [CrossRef]

23. Türkyılmaz, A.; Senvar, O.; Ünal, İ. A hybrid genetic algorithm based on a two-level hypervolume contribution measure selection
strategy for bi-objective flexible job shop problem. Comput. Oper. Res. 2022, 141, 105694. [CrossRef]

24. Jiang, X.; Tian, Z.; Liu, W. Energy-efficient scheduling of flexible job shops with complex processes: A case study for the aerospace
industry complex components in China. J. Ind. Inf. Integr. 2022, 27, 100293. [CrossRef]

25. Raj, S.; Bhattacharyya, B. Optimal placement of TCSC and SVC for reactive power planning using Whale optimization algorithm.
Swarm Evol. Comput. 2018, 40, 131–143. [CrossRef]

26. Shiva, C.K.; Gudadappanavar, S.S.; Vedik, B. Fuzzy-Based Shunt VAR Source Placement and Sizing by Oppositional Crow Search
Algorithm. J. Control. Autom. Electr. Syst. 2022. [CrossRef]

27. Chu, S.C.; Tsai, P.W. Computational intelligence based on the behavior of cats. Int. J. Innov. Comput. Inf. Control. 2007, 3, 163–173.
28. Guo, L.; Meng, Z.; Sun, Y. Parameter identification and sensitivity analysis of solar cell models with cat swarm optimization

algorithm. Energy Convers. Manag. 2016, 108, 520–528. [CrossRef]
29. Orouskhani, M.; Orouskhani, Y.; Mansouri, M. A novel cat swarm optimization algorithm for unconstrained optimization

problems. Int. J. Inf. Technol. Comput. Sci. 2013, 5, 32–41. [CrossRef]
30. Lin, K.C.; Zhang, K.Y.; Huang, Y.H. Feature selection based on an improved cat swarm optimization algorithm for big data

classification. J. Supercomput. 2016, 72, 3210–3221. [CrossRef]
31. Kumar, Y.; Singh, P.K. Improved cat swarm optimization algorithm for solving global optimization problems and its application

to clustering. Appl. Intell. 2018, 48, 2681–2697. [CrossRef]
32. Kong, L.; Pan, J.S.; Tsai, P.W. A balanced power consumption algorithm based on enhanced parallel cat swarm optimization for

wireless sensor network. Int. J. Distrib. Sens. Netw. 2015, 11, 1–10. [CrossRef]
33. Skoullis, V.I.; Tassopoulos, I.X.; Beligiannis, G.N. Solving the high school timetabling problem using a hybrid cat swarm

optimization based algorithm. Appl. Soft Comput. 2017, 52, 277–289. [CrossRef]
34. Huang, J.D.; Asteris, P.G.; Pasha, S.M.K. A new auto-tuning model for predicting the rock fragmentation: A cat swarm

optimization algorithm. Eng. Comput. 2022, 38, 2209–2220. [CrossRef]
35. Sikkandar, H.; Thiyagarajan, R. Deep learning based facial expression recognition using improved Cat Swarm Optimization.

J. Ambient. Intell. Humaniz. Comput. 2021, 12, 3037–3053. [CrossRef]
36. Yan, D.; Cao, H.; Yu, Y. Single- objective/multi -objective cat swarm optimization clustering analysis for data partition. IEEE

Trans. Autom. Sci. Eng. 2020, 17, 1633–1646.
37. Singh, H.; Kumar, Y. A neighborhood search-based cat swarm optimization algorithm for clustering problems. Evol. Intell. 2020,

13, 593–609. [CrossRef]
38. Zhang, J. Modified Quantum Evolutionary Algorithms for Scheduling Problems. Ph.D. Thesis, East China University of Science

and Technology, Hanghai, China, 2013.

http://doi.org/10.1109/ACCESS.2021.3096007
http://doi.org/10.1016/j.knosys.2019.02.027
http://doi.org/10.1016/j.procs.2017.08.023
http://doi.org/10.1504/IJCISTUDIES.2020.106486
http://doi.org/10.3390/app11041504
http://doi.org/10.1007/s13369-013-0625-y
http://doi.org/10.1080/0951192X.2013.834465
http://doi.org/10.1016/j.cor.2021.105263
http://doi.org/10.1016/j.knosys.2020.106032
http://doi.org/10.1002/etep.2551
http://doi.org/10.1016/j.eswa.2022.116785
http://doi.org/10.1016/j.cie.2022.108099
http://doi.org/10.1016/j.cor.2021.105694
http://doi.org/10.1016/j.jii.2021.100293
http://doi.org/10.1016/j.swevo.2017.12.008
http://doi.org/10.1007/s40313-022-00903-4
http://doi.org/10.1016/j.enconman.2015.11.041
http://doi.org/10.5815/ijitcs.2013.11.04
http://doi.org/10.1007/s11227-016-1631-0
http://doi.org/10.1007/s10489-017-1096-8
http://doi.org/10.1155/2015/729680
http://doi.org/10.1016/j.asoc.2016.10.038
http://doi.org/10.1007/s00366-020-01207-4
http://doi.org/10.1007/s12652-020-02463-4
http://doi.org/10.1007/s12065-020-00373-0

	Introduction
	Problem Description and Formulation
	Problem Assumption
	Description of Parameters and Variables
	Problem Formulation

	Implementation of Proposed QCSO
	Encoding Approach
	Decoding Mechanism
	Seeking Mode
	Tracing Mode
	Updating Quantum Rotation Angle
	Fitness Function
	Flowchart of QCSO

	Algorithm Validation
	Data Generation
	Calculation Result

	Conclusions
	References

