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Abstract: Predicting the frost depth of soils in pavement design is critical to the sustainability of
the pavement because of its mechanical vulnerability to frozen-thawed soil. The reliable prediction
of frost depth can be challenging due to the high uncertainty of frost depth and the unavailability
of geotechnical properties needed to use the available empirical- and analytical-based equations
in literature. Therefore, this study proposed a new framework to predict the frost depth of soil
below the pavement using eight machine learning (ML) algorithms (five single ML algorithms and
three ensemble learning algorithms) without geotechnical properties. Among eight ML models, the
hyperparameter-tuned gradient boosting model showed the best performance with the coefficient of
determination (R2) = 0.919. Furthermore, it was also shown that the developed ML model can be
utilized in the prediction of several levels of frost depth and assessing the sensitivity of pavement-
related predictors for predicting the frost depth of soils.

Keywords: frost depth; frozen-thawed; pavement; machine learning; hyperparameter

1. Introduction

Soils are porous materials containing pore water, which freeze from the ground surface
when seasonally frozen soils are exposed to atmospheric temperature below 0 ◦C [1].
When the freezing process is initiated from the surface, the pore water is moved from the
unfrozen to frozen soil by capillary action, which induces the progress of freezing with
volume expansion [2,3]. The expansion of soil induced by the freezing process is called
frost heaving and more significant frost heaving would be anticipated when the frozen soil
mass continues to expand by groundwater supply [4,5]. Among many infrastructures that
are potentially affected by frost heaving (e.g., buildings, bridge foundations, and utility
lines), pavement is one of the substantially affected infrastructure by the frost heaving of
the soils.

During the thawing period (when the atmospheric temperature rises above 0 ◦C),
the frozen soil starts melting from the ground surface. Therefore, pavement structure
(e.g., subgrade, granular base) becomes saturated when excess pore water from melted ice
is trapped between the ground surface and frozen layer. The increased water content may
lead to a potential risk of high pore water pressure, which reduces the shear strength of the
soil [6,7] and degrades the performance of the pavement structure. The increase in pore
water pressure also significantly reduces the bearing capacity of the pavement structure.
Under such conditions, substantial displacement can occur if high vehicle loads are applied
to the pavement [8]. The deeper the frost penetration, the greater the ground affected by
frozen-thawed soil and the risk of pavement damage.

Because of the vulnerability of pavement above the frozen-thawed soil, the frost depth
can be an important design parameter, particularly in cold regions [9,10]. Therefore, reliable
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prediction of the frost depth is essential for pavement engineering design. The frost depth
is affected by climatic conditions such as atmospheric temperature, solar radiation, and
wind speed for environmental factors and mineralogy, thermal properties (e.g., thermal
conductivity), and water content for soil-related factors. Many studies have investigated the
frost depth by using numerical and analytical approaches [11–14]. In addition, an empirical
equation for predicting frost depth using thermal conductivities of soil and the average
atmospheric temperature has been reported [15]. However, the abovementioned studies
require geotechnical properties to predict the frost depth. However, some geotechnical
properties are hard to measure and may not be available for the site where the prediction
of frost depth is needed.

In this study, a new framework was proposed to predict the frost depth of soils without
measuring the frost depth by coring the pavement layer. Eight machine learning (ML)
algorithms were used to develop an optimal frost depth prediction model. The measured
dataset in South Korea was used, which does not contain geotechnical properties. The best-
performing ML models were determined by comparing the coefficient of determination for
eight ML models after performing hyperparameter tuning. In addition, the predictability
of each level of frost depth and sensitivity of frost depth by pavement-related predictors
were also discussed using the best-performing developed ML model.

2. Dataset
2.1. Field Experiment

The frost depth was measured using the methylene blue solution, which is blue only
at a temperature above 0 ◦C [16,17]. The device for measuring the frost depth consists of
an acrylic cylinder with an outer diameter of 25.4 mm and an inner diameter of 15 mm, a
transparent tube with a diameter of 10 mm, a protective iron body, and a cover (Figure 1).
The acrylic inner tube was filled with methylene blue solution, which appears colorless at a
temperature below 0 ◦C. The frost depth was evaluated by measuring the depth at which
the methylene blue solution in the acrylic inner tube turned colorless. The accuracy of the
measuring device was ±50 mm [18].

Figure 1. Description of the frost depth measuring device: (a) configuration of the acrylic tube;
(b) installation of measuring device.
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To measure the frost depth, a total of 80 stations were installed throughout South Korea
as shown in Figure 2 [19]. The locations of each station were selected to measure the repre-
sentative frost depth of the area, which satisfied the following conditions: (1) representative
soil of the area, (2) relatively high altitude, and (3) shaded location. To analyze the factors
affecting the frost depth, a reference survey of each area at the observation stations was
conducted by measuring the east longitude, north latitude, and the thickness of each pave-
ment layer (thickness of asphalt surface, thickness of asphalt base, thickness of granular
base, thickness of subgrade, thickness of frost protection layer).

Figure 2. Locations of observatory stations marked with red dots.

As shown in Figure 3, the installation of the frost depth observatory was divided into
six steps [19]. (1) The locations of the observatory were determined. (2) Pavement was
cored to a depth of 15 cm with a diameter of 15 cm, which allowed the protective iron
body to be sufficiently inserted. (3) Borings with a diameter of 3 cm and a depth of 150 cm
were performed on the pavement structure. (4) The water-proof acrylic tube containing
the methylene blue solution was installed. (5) The protective iron body that can be opened
for measurement and prevents damage to the device from the vehicle loads was installed.
(6) The measuring device was fixed by filling the gap between the protective iron body and
the pavement with mortar.
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Figure 3. Installation of frost depth observatory in six steps: (a) positioning; (b) pavement cor-
ing; (c) boring for acrylic tube; (d) installation for acrylic tube; (e) protective iron body insertion;
(f) backfill.

2.2. Data Analysis

A total of 686 data points were utilized to develop ML models in this study. The dataset
consists of frost depth (Y) and nine predictors: X1 = longitude, X2 = latitude, X3 = elevation (m),
X4 = thickness of asphalt surface (cm), X5 = thickness of asphalt base (cm), X6 = thickness
of granular base (cm), X7 = thickness of subgrade (cm), X8 = thickness of frost protection
layer (cm), X9 = freezing index (◦C·day). The set of predictors includes three location-
related parameters (X1, X2, and X3) and five pavement-related parameters (X4, X5, X6, X7,
and X8). The freezing index (X9) in this study refers to the difference between the maximum
and minimum cumulative temperature profiles throughout the year. Therefore, the freezing
index is only dependent on temperature, but is not a function of soil properties. This allows
the inclusion of the ambient temperature-dependent parameter in the set of predictors
for developing ML models to predict the frost depth of soils, which is also a function of
groundwater level, ground temperature, and soil properties (e.g., thermal conductivity,
particle size, porosity, etc.).
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Table 1 summarizes the statistical descriptions of the dataset. The distribution of
predictors and frost depth showed the different range of values and variations also shown
in Figure 4. It can be noted that location-related predictors, freezing index, and frost depth
showed a relatively well distributed dataset throughout the range of values (Figure 4a–c,i,j)
while the values of pavement-related predictors were limited to a few ranges (Figure 4d–h).

Table 1. Statistical descriptions of dataset used in this study.

Predictors Mean ± Std. Min Q1 Median Q3 Max CV

X1 127.72 ± 0.80 126.23 127.02 127.60 128.37 129.46 0.01
X2 36.70 ± 1.04 33.43 36.07 36.86 37.51 38.13 0.03
X3 225.63 ± 193.90 7.00 73.00 192.00 328.00 805.00 0.86
X4 5.48 ± 3.46 0.00 5.00 5.00 5.00 28.00 0.63
X5 9.59 ± 7.73 0.00 6.00 10.00 15.00 50.00 0.81
X6 2.56 ± 5.93 0.00 0.00 0.00 0.00 20.00 2.31
X7 27.32 ± 11.75 0.00 20.00 30.00 30.00 50.00 0.43
X8 12.45 ± 15.92 0.00 0.00 0.00 25.00 60.00 1.28
X9 195.50 ± 159.18 3.94 71.38 155.11 283.40 954.16 0.81
Y 59.75 ± 39.35 0.00 26.05 53.75 87.00 159.00 0.66

Std.: standard deviation; Q1 and Q3: first and third quartiles; CV: coefficient of variation.

Figure 4. Cont.
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Figure 4. Histograms of dataset used in this study: (a) X1 = longitude; (b) X2 = latitude;
(c) X3 = elevation (m); (d) X4 = thickness of asphalt surface (cm); (e) X5 = thickness of asphalt base
(cm); (f) X6 = thickness of granular base (cm); (g) X7 = thickness of subgrade (cm); (h) X8 = thickness
of frost protection layer (cm); (i) X9 = freezing index (◦C·day); (j) Y = frost depth (m).

The high correlation between predictors may degrade the performance of ML models.
Therefore, the Pearson correlation coefficients between each pair of the predictor were
evaluated and illustrated by the heatmap as shown in Figure 5. The highest positive value
of 0.73 between the thickness of asphalt surface (X4) and thickness of asphalt base (X5) was
observed, implying a relatively strong correlation between those two predictors. However,
because X4 and X5 are design parameters of pavement (no physical relationship), they can
be critical predictors in predicting frost depth. Furthermore, X4 and X5 in the dataset fall
into only a few values (Figure 4d,e); both X4 and X5 were included as predictors in the
following sections.

Figure 5. Heatmap of correlation of each pair of input predictors. Note that numbers in each zone
represent Pearson’s coefficient between two predictors.

3. Methodology
3.1. Machine Learning Techniques

Machine learning techniques is an AI system that predicts output values from given
input data through regression analysis or classification method, and many machine learning
algorithms are being developed. In this paper, eight commonly used machine learning
techniques were utilized to obtain the best-performing algorithm to predict the frost depth
of South Korea [20–22]. Of the eight machine learning techniques used in the ML model,
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five were machine learning algorithms (K-nearest neighbor (KNN), neural network (NN),
stochastic gradient descent (SGD), support vector machine (SVM), and decision tree (DT)),
and three were ensemble learning techniques (random forest (RF), gradient boosting (GB),
and extreme-gradient boosting (XGB)). The RF is one of the most frequently used parallel
ensemble learning methods while GB and XGB were selected to represent the sequential
learning method (also known as boosting). The characteristics of each ML technique used
in this study are summarized in Table 2.

Table 2. Key features of selected ML techniques in this study.

ML Technique Features Reference

KNN Non-parametric algorithm, high-speed training,
computationally expensive [23]

NN Ability to learn nonlinear model, sensitive to scaling of
predictors, need to optimize number of layers and neurons [24]

SGD Optimization of differentiable cost function, ability to train
big dataset, hyperparameters tuning is necessary [25]

SVM Non-parametric algorithm, ability to model high-dimensional
data, computationally expensive [26]

DT Non-parametric algorithm, ability to obtain predictor
importance, high chance of overfitting issues [27]

RF Homogenous ensemble algorithm, ability to select base ML
algorithm (e.g., DT, SVM, NN, KNN) [28]

GB Sequential learning method, minimize the loss function by
parameterizing DT, [29]

XGB Addition of regularization term into GB to solve overfitting
issues, many loss functions available [30]

3.2. Dataset Partition and Scaling

The distribution of predictors in the dataset shown in Figure 4 implies that nine
predictors (X1–X9) and frost depth (Y) showed different scales, which may downgrade the
performance of ML models. Therefore, min-max scaling (normalization of predictors and
frost depth by the difference between maximum and minimum) was applied in this study to
improve the performance of ML models. In addition, this study utilized 80% of the dataset
for training ML models and 20% of the dataset to assess the generalization capacity of
developed ML models. The training and test dataset were shuffled and randomly selected
to avoid sampling bias.

3.3. Performance Measurement and K-Fold Cross-Validation

The performance of eight developed ML models for predicting frost depth was as-
sessed through the coefficient of determination (R2) and root mean squared error (RMSE).
The RMSE provided the absolute error of min-max scaled frost depth between measured
and predicted values while R2 values provided the relative predictability of developed ML
models. In addition, k-fold cross-validation was performed to assess the performance of
ML models where the training dataset was split into k subsets for training (k-1 subsets)
and test (remaining one subset). Therefore, the k evaluation scores were returned as a
result of k-fold cross-validation. Note that k = 10, which is normally applied to k-fold cross
validation, was selected in this study.

3.4. Hyperparameter Tuning

This study implemented the hyperparameter tuning for eight ML algorithms to obtain
the best performing each ML-algorithm with corresponding hyperparameters. The manual
tuning of hyperparameters is usually time-consuming and inefficient. Therefore, this
study applied a grid search approach for the efficient implementation of hyperparameter
tuning. Several important hyperparameters for each ML algorithm were first selected
followed by the selection of a few numbers in a reasonable range for each hyperparameter.
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Then all possible combinations were generated to determine the best-performing set of
hyperparameters where the performance was assessed by R2. In this paper, k = 5 was used
to obtain the optimal hyperparameter combination.

4. Results and Discussion
4.1. Performance of Developed Models

Table 3 shows the K-fold cross-validation, R2, and RMSE values of eight developed ML
models without performing hyperparameter tuning (default hyperparameters were used).
As shown in Table 3, each ML model showed a different performance for the given dataset
used in this study. In addition, relatively high R2 values for some ML models (e.g., SVM,
GB, XGV) implies the dataset used in this study provides the predictability of frost depth
without performing hyperparameter tuning. However, extremely low R2 (0.569 for the test
dataset) and high RMSE values (0.146 for the test dataset) for SGD and relatively low R2

values for NN (0.805) and DT (0.806) imply the need for hyperparameter tuning to improve
the performance of these ML models. Notably, very high R2 values of DT, RF, and XGB for
training show poor generalization capacity because of even lower R2 values for test and
K-fold cross-validation. Overall, the GB algorithm shows the best performance (based on
R2 values for K-fold and test in Table 3) among eight developed ML models and ensemble
ML algorithms (RF, GB, and XGB) show better performance than NN, SGD, and DT.

Table 3. Performance of developed ML models by using default hyperparameters.

ML Technique
R2 RMSE

K-Fold Train Test K-Fold Train Test

KNN 0.884 ± 0.031 0.935 0.884 0.082 ± 0.009 0.063 0.085
NN 0.823 ± 0.040 0.814 0.805 0.103 ± 0.011 0.107 0.108
SGD 0.480 ± 0.049 0.523 0.569 0.179 ± 0.016 0.175 0.146
SVM 0.880 ± 0.028 0.898 0.863 0.083 ± 0.007 0.078 0.094
DT 0.834 ± 0.051 1.000 0.808 0.098 ± 0.013 0.000 0.106
RF 0.872 ± 0.035 0.987 0.877 0.872 ± 0.035 0.029 0.079
GB 0.910 ± 0.019 0.950 0.910 0.073 ± 0.008 0.055 0.077

XGB 0.888 ± 0.033 0.999 0.892 0.081 ± 0.008 0.009 0.078

4.2. Improved Performance after Hyperparameter Tunings

Table 4 summarizes the performance of developed ML models after hyperparameter
tuning and Figure 6 compares K-fold cross-validation and R2 values of the test dataset
before (Table 3) and after (Table 4) hyperparameter tuning. As seen in Table 4 and Figure 6,
an increase in R2 values and a decrease in RMSE values were observed after performing
hyperparameter tuning for all ML models. In addition, more significant performance
improvement by hyperparameter tuning was observed for five single-learning regression
models (KNN, NN, SGD, SVM, and DT) than in three ensemble ML models. This implies the
ensemble ML algorithm can be utilized to develop a prediction model with reasonably high
performance without performing hyperparameter tuning. Nevertheless, the performance
of three ensemble ML models was slightly improved after performing hyperparameter
tuning (Figure 6), meaning that hyperparameter tuning is still needed for ensemble learning
algorithms for better prediction of frost depth.

GB showed the best performance among eight ML models after hyperparameter
tuning and was also evaluated to have better performance than XGB with hyperparameter
tuning under the same conditions (parameter and range of hyperparameters). In general,
the performance of XGB is evaluated better than that of GB, however, in this study, the
performance of GB was estimated to be better than that of XGB due to the influence of the
configuration and distribution of the given data.
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Table 4. Performance of developed ML models after hyperparameter tuning.

ML Technique
R2 RMSE

K-Fold Train Test K-Fold Train Test

KNN 0.889 ± 0.032 0.954 0.889 0.079 ± 0.009 0.053 0.081
NN 0.889 ± 0.022 0.920 0.847 0.081 ± 0.010 0.070 0.093
SGD 0.782 ± 0.043 0.798 0.769 0.111 ± 0.010 0.111 0.118
SVM 0.882 ± 0.030 0.905 0.865 0.082 ± 0.008 0.076 0.094
DT 0.865 ± 0.042 0.932 0.818 0.088 ± 0.011 0.065 0.103
RF 0.888 ± 0.033 0.985 0.910 0.079 ± 0.009 0.030 0.076
GB 0.918 ± 0.015 0.955 0.919 0.070 ± 0.007 0.053 0.068

XGB 0.906 ± 0.014 0.975 0.904 0.076 ± 0.005 0.040 0.075

Figure 6. R2 values for K-fold cross-validation, train, test of eight ML models: (a) before hyperparam-
eter tuning (using default hyperparameters in Table 5); (b) after hyperparameter tuning (using tuned
hyperparameters in Table 5).

Table 5. Best hyperparameters for each ML algorithm.

ML Technique Range of Hyperparameters Tuned
Hyperparameters

KNN leaf_size = 10, 15, 20, . . . , 40, 45, 50
n_neighbors = 3, 4, 5, . . . , 8, 9, 10

10
3

NN
α = 0.00001, 0.0001, 0.001, 0.01, 0.1

early_stopping = True, False
hidden_layer_sizes = [50], [100], [100, 100], [50, 50, 50]

0.0001
True

[50, 50, 50]

SGD
α = 0.0001, 0.0001, 0.001, 0.005

eta0 = 0.005, 0.01, 0.03, 0.05, 0.1, 0.2
max_iter = 500, 600, 700, . . . , 1800, 1900, 2000

0.0001
0.2

1200

SVM
C = 0.5, 0.6, 0.7, . . . , 1.3, 1.4, 1.5

gamma = 0.5, 0.55, 0.6, . . . , 0.9, 0.95, 1.0
kernel = ’linear’, ’poly’, ’rbf’, ‘sigmoid’

1.4
1.9

’rbf’
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Table 5. Cont.

ML Technique Range of Hyperparameters Tuned
Hyperparameters

DT min_samples_leaf = 1, 2, 3, . . . , 8, 9, 10
min_samples_split = 1, 2, 3, . . . , 8, 9, 10

7
3

RF 1 n_estimators = 50, 60, 70, . . . , 280, 290, 300 280

GB 1 max_depth = 2, 3, 4, . . . , 8, 9, 10
n_estimators = 20, 30, 40, . . . , 280, 290, 300

2
270

XGB 1 max_depth = 2, 3, 4, . . . , 8, 9, 10
n_estimators = 20, 30, 40, . . . , 280, 290, 300

4
50

1 Base predictor = DT.

Figure 7 shows the scatter plots of the predicted and measured values for two al-
gorithms, DT and GB. A good model predicts values that are as close to the measured
values as possible, and in a scatter plot, the points are located as close to the diagonal
line as possible. Compared to other algorithms, DT differed significantly in performance
indicators (R2 value and RMSE) of train and test dataset. This means that DT has poor
generalizing capacity and is not suitable for predicting frost depth in this study.

Figure 7. Scatter plots of cross-validation predicted Y (frost depth) against measured Y (frost depth):
(a) train data for DT; (b) train data for GB; (c) test data for DT; (d) test data for GB.

4.3. Prediction of Each Level of Frost Depth (Confusion Matrix)

In this paper, the GB based model was used to classify the frost-sensitive ground at a
given range of frost depth using the confusion matrix. The deeper the frost depth, the more
frost expansion occurs and more susceptible the ground is to freezing. Grounds that have a
deep frost depth and are sensitive to freezing are classified into a category that is concerned
about frost damage and requires continuous management. This study divided the ranges
of frost depth into four and eight categories as shown in Table 6. The maximum frost depth
in the dataset used in this study was 159 cm and the range of frost depth was determined
to have an identical interval (the dataset was split by the range of values listed in Table 6).
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Table 6. Ranges of frost depth in each category in Figures 8 and 9.

First Scenario Second Scenario

Category No.
Figure 8

Range of Frost
Depth (cm)

Category No.
Figure 9

Range of Frost
Depth (cm)

1 0–39.7 1 0–19.9
2 39.7–79.5 2 19.9–39.8
3 79.5–119.3 3 39.8–59.6
4 119.3–159 4 59.6–79.5
5 - 5 79.5–99.4
6 - 6 99.4–119.3
7 - 7 119.3–139.1
8 - 8 139.1–159

Figure 8. Confusion matrix of four ranges of frost depth (D = frost depth): (a) training dataset;
(b) test dataset.

Figure 9. Confusion matrix of eight ranges of frost depth (D = frost depth): (a) training dataset;
(b) test dataset.
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Figures 8 and 9 illustrate the confusion matrix corresponding to the range of frost
depths presented in Table 6. As shown in Figure 8, relatively high accuracy values for
training and test were observed when dividing the dataset into four categories. In contrast,
low accuracy valuates for training and test were observed for eight categories (Figure 9),
which is more or less intuitive. Because the number of categories for the second scenario is
twice higher than that of the first scenario, the number of data in every two categories in
Figure 9 is equal to that in every category in Figure 8 (e.g., 70 + 18 + 6 + 92 (data in the first
two categories in Figure 9) = 186 (data in the first category in Figure 8)). Therefore, it can be
anticipated that the developed GB model shows good predictability for frost depth when
the number of categories is low (<4) for designing civil infrastructure. However, the low
accuracy in Figure 9 implies that a more accurate model would be required to achieve an
accurate prediction of frost depth for the high number of categories (>5).

4.4. Sensitivity of Pavement-Related Predictors for Predicting Frost Depth

To quantify the sensitivity of frost depth caused by the variation pavement design, the
distribution of min-max scaled frost depth according to the variation of pavement-related
predictor (X4–X8) was evaluated as shown in Figure 10. All scaled predictors were set to
0.5 (corresponding to the value of (max-min) × 0.5), except the predictor on the horizontal
axis in Figure 10, which was set as uniformly distributed values from 0 to 1.

Figure 10. Distribution of scaled frost depth according to the variation of pavement-related predictors
(GB model was used here).

As shown in Figure 10, all scaled frost depths by the variation of pavement-related
predictors fell into the range between 0.45 and 0.55 (=71.55 and 87.45 cm), implying that the
variation of single pavement-related predictors does not significantly affect the frost depth
of soils. Nevertheless, only a few centimeter differences in predicted frost depth caused
by the variation of pavement-related predictors may be critical in some cases. Moreover,
the range of values for pavement-related predictors in this study (Table 3) is somewhat
limited, and the higher variation of predicted frost depth can be observed by using the
values higher than the maximum values in Table 3.

The boxplots in Figure 10 also imply that the thickness of the asphalt surface is the
most critically influenced by the frost depth of soils. In contrast, the variation of thickness
of granular base almost does not affect the frost depth. The width of boxplots in Figure 10
yields the order of most influenced pavement-related predictors as X4, X5, X7, X8, and X6.
Because the values of pavement-related predictors in the dataset were not well distributed
throughout the range of minimum and maximum values, the order of sensitivity observed
in Figure 10 may be changed after applying well-distributed values of those predictors in
developing ML models.
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5. Conclusions

This study developed eight ML models with and without hyperparameter tuning for
predicting the frost depth of soils below the pavement. R2 and RMSE of each developed ML
model were evaluated to obtain the best performing ML model among eight ML models. In
addition, the prediction performance and sensitivity of pavement-related predictors were
also evaluated by using a confusion matrix and sensitivity analysis using the GB model.
Based on the observations made in this study, the following conclusions can be drawn:

(1) The evaluated R2 and RMSE values indicated that ensemble ML algorithms (RF,
GB, and XGB) showed higher performance than single ML algorithms (KNN, NN,
SGD, SVM, and DT). After performing hyperparameter tuning, GB showed the best
performance among the eight ML algorithms.

(2) The performance was improved more significantly after hyperparameter tuning
for five single ML models than for three ensemble ML models, which implies the
ensemble ML algorithms can be used to develop models for predicting frost depth
with reasonably high performance without performing hyperparameter tuning.

(3) The developed best performing GB model can be used to assess the predictability of
frost depth in a predefined number of categories using the confusion matrix. However,
the low prediction accuracy in the confusion matrix for eight categories implies that a
more accurate model would be required to achieve high predictability of frost depth.

(4) The result of sensitivity analysis for pavement-related predictors implies that the
thickness of the asphalt surface is the most critical factor affecting the frost depth
of soils.
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