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Abstract: In this study, we evaluated the active earth pressure on a retaining wall with a narrow co-
hesive fill under the rotation about the base mode. Under these conditions, Rankine’s and Coulomb’s
earth pressure theories are not strictly effective. To improve the traditional earth pressure calculation
methods (Rankine and Coulomb methods) and deduce the active earth pressure under the rotation
about the base mode, here, we propose a new calculation method that incorporates the effects of
wall displacement, soil arching and soil cohesion using inclined thin-layer elements. The calculation
results are in good agreement with the model test data. Based on the parameter analysis, a critical
aspect ratio of B/H = cotβ is determined along with a detailed elucidation of the various influencing
factors (such as aspect ratio, cohesion and friction angle). The paper presents several solutions to
improve the stability and lower the costs of retaining walls.

Keywords: narrow cohesive fill; rotation about the base; active earth pressure; inclined thin-layer
element; soil arching effect

1. Introduction

Retaining walls are extensively used in bridges, slopes and tunnels to retain soil
and protect the surrounding buildings because of their uncomplicated structures and low
costs. Rankine’s method [1] and Coulomb’s theory [2] are widely used for designing
retaining structures. However, some underlying problems have been encountered with
the traditional earth pressure calculation methods; for instance, the classical earth pressure
theory uses the same method to calculate the active earth pressure of the rotating retaining
structures [3] and the translational (T) walls. However, experiments [4] show that the
distribution of earth pressure in rotational mode is completely different from that in T
mode. Therefore, the classical earth pressure theory is not completely suitable for earth
pressure design and calculation of rotary retaining walls. To overcome this limitation,
some scholars have estimated the retaining-wall earth pressure under displacement modes
of rotation around the wall bottom (RB) and rotation around the wall top (RT) [5–9]. In
addition, the retaining wall is inevitably built near natural rocks and supporting structures,
which form a confined filling between the retaining wall and the existing support [10,11].
The traditional theory assumes that the backfill behind the wall is a soil with a semi-infinite
width. However, this assumption is not applicable to a narrow backfill, and therefore, it is
essential to develop a new method for calculating the active earth pressure of a soil with a
finite width under the RB mode.

In recent years, researchers have tested retaining walls under different displacement
modes (T, RB and RT) to study the load transfer law [12–15]. The experimental data revealed
that the soil arching effect caused by wall–soil friction results in a non-linearly distributed
earth pressure on the wall back [16]. Further, the distribution of earth pressure is largely
affected by the wall displacement mode [17]. Although the earth pressure distribution law
of a rotational retaining wall is significantly different from that of a translational wall, the
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current research on earth pressure is mostly focused on translational retaining walls [18–21].
Therefore, it is necessary to study the distribution law of soil pressure under the RB mode.
In addition, soil cohesion, which is one of the two indicators of shear strength, largely
affects the magnitude of the earth pressure. However, the mechanism influence of soil
cohesion on earth pressure has rarely been studied to date.

To calculate the earth pressure, most researchers assume that the soil reaches a limit
equilibrium state, and the shear strength of the backfill is fully exerted without taking
displacement into account [22]. However, in actual engineering, the retaining wall is in a
nonlimit state, and its displacement affects the distribution of soil pressure [23]. Experi-
ments show that the effective value of shear strength changes with depth in the nonlimit
state [24]. This change in the effective shear strength is required for calculating the earth
pressure to establish a functional relationship between the shear strength and displacement.
In a previous study, a linear relationship was reported between the friction angle and
displacement [25].

Under the framework of the limit equilibrium theory, two theoretical calculation meth-
ods are used to explore the stress state of the fill, viz., the sliding soil wedge method and
the horizontal differential element method. The sliding soil wedge method has natural
advantages based on the Coulomb theory, but it cannot reflect the soil pressure distribu-
tion [26]. Accordingly, the horizontal differential element method is more practical, because
it considers the soil arching effect. However, this method does not consider the shear stress
that makes the element stress unbalanced in the horizontal direction [27], and produces an
uneven stress distribution at the upper and lower interfaces of the element [28,29]. Thus, to
overcome the limitations of these methods, significant improvements are required.

In this study, we developed a calculation method that considers the wall displacement,
soil arching effect and soil cohesion to deduce the active earth pressure under the RB mode.
A detailed analysis was conducted to validate the reliability of this method, along with an
in-depth evaluation of soil properties to indicate various measures to effectively reduce soil
pressure and improve the stability of retaining walls. The primary objectives of this study
were: (a) to present a new method for calculating the earth pressure of a narrow fill, and (b)
to provide viable solutions for improving retaining-wall designs.

2. Basic Hypothesis

Figure 1 shows a schematic of the finite-width soil behind a retaining wall, used for
the stress analysis in this study. As shown in Figure 1, the finite-width clay behind the
retaining wall forms a slip surface under the RB displacement mode. The sliding surface
intersects the basement wall at a point, and the wedge is divided into zone I (rectangular
space) and zone II (triangular space) by the horizontal line passing through this point. The
heights of zone I and zone II are h and H-h, respectively, and h = H − B tan β, where β is
the rupture angle. Previous experiments [14,30] showed that the slip surface of a retaining
wall basically follows Rankine’s theory, we have

β = 45◦ + ϕ/2 (1)

For the theoretical calculations in this study, the following assumptions were made:

(1) The clay behind the wall is of the same material, the soil’s cohesion is c, and the
friction angle of the soil is ϕ. In addition, the developed value of ϕ is ϕm.

(2) The basement wall does not move, and the foundation-pit retaining wall rotates
outward around the wall base.

(3) The Mohr–Coulomb criterion governs the shear strength of the soil with a finite width.
(4) The roughness of the wall back is taken into account, and the wall–soil friction

angles of both the foundation-pit retaining wall and the basement exterior wall are δ.
Therefore, the effective value of δ is δm.

(5) The wall–soil cohesion of the retaining-wall foundation pit and that of the basement
wall is cw and cd, respectively.
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(6) The soil on the ground surface has a uniform load q (unit: kN/m).
(7) A straight slip surface is assumed across the wall heel.
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Figure 1. Schematic of the finite-width soil behind a retaining wall.

3. Determination of Friction Angle and Soil’s Cohesion in the Nonlimit State
3.1. Qualitative Analysis of Nonlimit State

In applying the classical earth pressure theory, engineers and technicians assume that
the soil displacement behind the wall reaches its ultimate state; this is then reduced by
applying a safety factor. However, the wall often fails to reach the limiting condition [24,31].
Bang [32] first proposed the nonlimit state hypothesis, which holds that an intermediate
state between the static and limiting states of the retaining wall exists, which is referred to
as the nonlimit state. Nonlimit earth pressure is affected by factors such as retaining wall
displacement mode and fill displacement, and the calculation is very complex [33,34]. At
present, it is in the exploratory stage. Relevant research is of great significance to ensure
the stability of retaining walls and to optimize structural design [35].

The model experiments of Sherif [36] and Xu [37], as well as the FEM results of
Matsuzawa [38] and Naikai [39], demonstrated that as the wall rotation under RB increased,
the earth pressure at different depths declined sharply and then gradually stabilized. The
backfill soil entered the limit equilibrium state from top to bottom.

The resultant force of ground pressure diminishes as the rotation angle increases in
RB mode. The displacement of the retaining wall increases with the increase in the wall
rotation. Sherif et al. [36] proposed Sc as the critical value of the displacement of the
soil behind the retaining wall, reaching the active limit state. Fang et al. [24] suggested
Sc = 3 ∼ 5× 10−4 H for sandy soil, with H as the wall height, and the value of Sc was only
dependent on the wall height. It is assumed that Sd refers to the horizontal displacement
of the soil behind the wall top when the wall rotates. When Sd/Sc < 1, the soil within
the wall height is in the nonlimit state; when Sd/Sc = 1, the soil at the top of the wall
just reaches the active limit state; when Sd/Sc > 1, the active limit state begins to extend
downward from the top of the wall with the increase in the angle of the rigid wall, and the
earth pressure continuously decreases. Because the rotation angle is large enough, the shear
strength of the soil can be thoroughly developed. Moreover, the rotation angle continues
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to increase, soil pressure behind the wall remains constant, and active limit states stop
propagating downward.

3.2. Calculation of Shear Strength Parameters in Nonlimit State
3.2.1. Calculation of Friction Angle Parameters

Xu et al. [40] derived the theoretical formula of soil friction angle ϕm on a displaced
wall in the nonlimit state using the Mohr stress circle as:

sin ϕm =
(1− Rf + ηRf)(1− K0)(1 + sin ϕ) + η sin ϕ(1 + K0)− η(1− K0)

(1− Rf + ηRf)(1 + K0)(1 + sin ϕ)− η sin ϕ(1 + K0) + η(1− K0)
(2)

where Rf is the failure ratio with a value in the range of 0.75–1.00. For a normal con-
solidated soil, the initial value of soil friction angle can be calculated by the following
formula: ϕ0 = arcsin[ (1 − K 0)/(1 + K 0)]. For normally consolidated soil, the static earth-
pressure coefficient (K0) is given by: K0 = 0.95− sin ϕ [41]. Suppose Sz is the horizontal
displacement of the wall at a certain depth under the active state, and Sc is the horizontal
displacement of the retaining wall at any height under the active limit state. Then, the
displacement ratio of the retaining wall, η, can be calculated by η = Sz/Sc. The critical
horizontal displacement of the cohesive soil, Sc, ranges from 0.4% H to 1.0% H [42].

Gong et al. [31] proposed a method for calculating the effective value of the wall–soil
friction angle as follows:

tan δm = tan δ0 +
4
π
(arctan η)(tan δ− tan δ0) (3)

Chang [25] proposed that the initial wall–soil friction angle δ0 could be replaced by
ϕ/2. Moreover, the wall–soil friction angle δ is the experimentally measured value, which
can be replaced by 2ϕ/3 in the absence of experimental data [43].

3.2.2. Calculation of Cohesion Parameters

In previous studies, a functional relationship between the friction angle and dis-
placement was established. However, only a few methods for calculating the cohesion
parameters have been reported to date. In this study, we established a relationship be-
tween cohesion and the friction angle; this makes cohesion indirectly relate to the wall
displacement. Here, the fully developed value of adhesion force between the foundation-pit
retaining wall and the soil is cw, and that between the basement wall and the soil is cd, and
cw and cd can be calculated from 2c/3. In addition, the developed values of the wall–soil
adhesion force can be obtained as follows [44].

cwm = cw tan δm/ tan δ (4)

cdm = cd tan ϕm/ tan ϕ (5)

In this formula, cwm is the developed value of the cohesive force between the retaining
wall and the soil, and cdm is the developed value of the adhesive force between the basement
wall and the soil. In addition, δm is the effective value of the wall–soil friction angle, and
ϕm is the developed value of the soil friction angle.

Based on the derived calculation formula of cohesion under the nonlimit state, we can
obtain the expression of shear stress for zone I as:

τwm = cw
tan δm

tan δ
+ σwm tan δm (6)

τsm = cd
tan δm

tan δ
+ σsm tan δm (7)

where σwm and τwm are the normal stress and shear stress of the soil at the contact be-
tween the foundation-pit retaining wall and the soil, respectively; σsm and τsm are the
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normal stress and shear stress of the soil at the contact between the basement wall and the
backfill, respectively.

4. Derivation of Active Earth Pressure of a Finite-Width Soil
4.1. Principal Stress Trajectory

Due to the existence of wall–soil friction, the principal stress is no longer just transmit-
ted horizontally or vertically; instead, it is deflected, and the corresponding direction can
be expressed using the principal stress trace [29]. There are various forms of principal stress
traces, such as parabola, catenary and arc. In addition, Smita [45] found that the shape of
the principal stress trace has a negligible effect on the calculated results of earth pressure,
and thus, can be ignored. Therefore, to simplify the calculations, the arc principal stress
trace was adopted in this study. As shown in Figure 2, an inclined line can be obtained by
connecting the trace of the small principal stress in zone I with the intersection point of the
walls on both sides, which can replace the trace of the small principal stress. Because the
friction coefficient between the foundation-pit retaining wall and the soil and that between
the basement wall and the soil is the same, i.e., δ, the principal stress trace in zone I can be
expressed by horizontal lines.
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Figure 2. Trajectory of the minor principal stress in zone I.

4.2. Derivation of Active Earth Pressure in Rectangular Area

Zone I is a rectangular region that does not contain a slip surface, as shown in Figure 3.
At a depth y from the ground level, a thin-layer element ABCD with a thickness of dy is
considered for the static analysis.

It is assumed that the normal stress of the soil at the contact between the retaining
wall and the soil is σwm, and the shear stress is τwm. Further, the normal stress of the soil at
the junction of the basement wall and the soil is σsm, and the shear stress is τsm.

The major and minor principal stresses of the soil at the contact between the soil and
the retaining wall are σw

1 and σw
3 , respectively. In addition, the major and minor principal

stresses of the soil at the interface between the soil and the basement wall are σs
1 and

σs
3, respectively.

As shown in Figure 3, the triangular elements ∆ABE and ∆CDF are considered at the
contact between the retaining wall and the soil and the junction between the basement wall
and the soil, respectively. The following conclusions can be obtained by applying the static
equilibrium theory:

σwm = σw
3 sin2 θAm + σw

1 cos2 θAm (8)

τwm = (σw
1 − σw

3 ) sin θAm cos θAm (9)



Sustainability 2022, 14, 9772 6 of 25

σsm = σs
1 sin2(π − θBm) + σw

3 cos2(π − θBm) (10)

τsm = (σs
1 − σs

3) sin(π − θBm) cos(π − θBm) (11)

where θAm is the cut angle between the maximum principal stress and the horizontal
direction at the interface between the retaining wall and the soil in zone I. In addition, θBm
represents the angle between the maximum principal stress and the horizontal direction at
the interface between the basement wall and the soil in zone I.
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According to the Mohr–Coulomb criterion, the following functional relationship can
be established between the major and minor principal stresses of cohesive soils [46]:

N =
σs

1 + c cot ϕ

σs
3 + c cot ϕ

=
σw

1 + c cot ϕ

σw
3 + c cot ϕ

= tan2(45◦ +
ϕ

2
) (12)

where the magnitude of N is only related to the soil friction angle, and has no relation with
the wall height H, soil width B and cohesion c.

To obtain the solutions of the principal stress deflection angles θAm and θBm, as shown
in Figure 4, the Mohr stress circle is employed.

The following equation is derived from the geometric relationship shown in Figure 4:

θAm +
αAm

2
=

π

2
(13)

where αAm/2 is the cut angle between the major principal stress and the vertical direction.
Figure 4 shows the geometrical relationship of the Mohr stress circle.
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∠CBE = ϕm (14)

∠CBA = δm (15)

∠BCA = αAm (16)

sin(δm + αAm) =
CD
AC

=
CD
R

(17)

sin δm =
CD
BC

(18)

sin ϕm =
CE
BC

=
R

BC
(19)

where ϕm is the effective value of the soil friction angle; δm is the effective value of the
wall–soil friction angle; and R is the radius of the Mohr stress circle.

Combining Equations (17)–(19), we have

sin(δm + αAm) =
sin δm

sin ϕm
(20)

The simultaneous Equations (13) and (20) can be used to deduce the expression of the
principal stress deflection angle.{

θAm = θBm = π
2 − u

u = 1
2 [arcsin(sin δm/ sin ϕm)− δm]

(21)

Because of the same friction coefficient on both sides of the retaining wall, the principal
stress deflection angle satisfies the following condition: θAm = θBm.

As shown in Figure 2, the geometric parameters of the thin-layer differential element
can be determined by the following method. The left and right interfaces of the unit are line
segments lAB and lCD, and the lengths are all dy. The intersections of the principal stress
trace and the wall on both sides are represented by points A and D, respectively, and the
line lAD is obtained by connecting two points at a depth y from the filling surface. Further,
lAD represents the length of the upper interface of the thin layer unit. At a depth of y+dy
from the ground surface, the lower interface of the unit lBC can be obtained in the same
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way. Because the friction coefficients of the wall back of the foundation-pit retaining wall
and the basement wall are equal, the principal stress traces are symmetrical. Therefore,
points A and D are on the same horizontal line, and points B and C are also on the same
horizontal line. Based on this, the following relationship can be obtained:

lAB = lCD = dy (22)

lAD = lBC = B (23)

As depicted in Figure 3, the major principal stress is uniformly distributed at the upper
and lower interfaces of the thin-layer element. Thus,

σw
1 = σs

1 (24)

The average principal stress σ1 acting on lAD is

σ1 =
σw

1 + σs
1

2
= σw

1 = σs
1 (25)

The force FAD on the upper interface of the thin-layer element can be expressed as:

FAD = lADσw
1 (26)

Similarly, the lower interface force (FBC) of the thin-layer element is

FBC = lBC(σ1 + dσ1) (27)

where σ1 + dσ1 represents the stress acting on lBC.
The tangential force FAB on the left interface of the thin-layer element of the soil can

be expressed as:
FAB = lABτwm (28)

Similarly, the tangential force FCD on the right interface of the element is

FCD = lCDτsm (29)

Further, gravity dw1 analysis of the thin-layer unit was performed, and the corre-
sponding equation is as follows:

dw1 = γ
(lAD + lBC)t1

2
= γBdy (30)

where t1 is the thickness of the thin-layer unit; γ is the unit weight of the soil; dy is the
thickness of the element ABCD; and B is the soil width.

As the thin-layer element satisfies the static equilibrium conditions in the vertical and
horizontal directions, the following equations can be obtained:

σwmlAB − σsmlCD = 0 (31)

FBC + FAB + FCD − FAD − dw1 = 0 (32)

Combining Equations (6), (7), (25), (31) and (32), we have

Bdσ1 + 2cw
tan δm

tan δ
dy + 2 tan δmσwmdy− γBdy = 0 (33)
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Equation (33) contains two unknowns σ1 and σwm; thus, in this study, we considered
the simultaneous Equations (8) and (12) to eliminate σwm, and the derivation process is
as follows:

σwm = (σw
3 + c cot ϕ) sin2 θAm − c cot ϕ sin2 θAm

+(σw
1 + c cot ϕ) cos2 θAm − c cot ϕ cos2 θAm

(34)

A functional relationship between σwm to σ1 can be obtained by simplifying Equation (34).

σwm = t3(σ1 + c cot ϕ)− c cot ϕ (35)

t3 =
sin2 θAm

N
+ cos2 θAm (36)

where t3 is the accommodation coefficient of σ1.
The differential equation of σ1 can be obtained by combining Equations (33)–(36) as:

dσ1
dy

+ A1σ1 = A2 (37)

A1 =
2t3 tan δm

B
(38)

A2 = γ− 2
cw

tan δm
tan δ + tan δmc cot ϕ(t3 − 1)

B
(39)

where A1 and A2 are the relevant parameters of the differential equation about σ1.
By solving the above differential equation, we obtain

σ1 = C1e−A1y +
A2

A1
(40)

where C1 is an undetermined coefficient.
By substituting Equation (40) into Equation (35), the active earth pressure strength of

zone I can be derived as:
σwm = C1t3e−A1y + A3 (41)

A3 = t3
A2

A1
+ (t3 − 1)c cot ϕ (42)

where A3 is the constant term of the general solution of the differential equation; where
C1 is an undetermined coefficient, which can be calculated according to the boundary
conditions applicable at the top of the foundation-pit retaining wall.

As shown in Figure 5, the triangular element ∆VPT can be taken for the analysis of the
wall–soil interface at the top of the foundation-pit retaining wall. Here, VT coincides with
the back of the wall, VP coincides with the top of the retaining wall, and PT coincides with
the direction of the major principal stress at point V. The normal stress and shear stress on
the left interface of ∆VPT are σwv and τwv, respectively. The stress on the right interface is
σv

3 , and that on the upper interface is q. Because the line length of the triangle is very short,
it can be considered that the principal stress is approximately uniformly distributed at the
interface of the element.

σwvlVT − σv
3 lPT sin θAm = 0 (43)

τwvlVT + σv
3 lPT cos θAm − qlPV = 0 (44)

where θAm is the cut angle between the major principal stress and the horizontal direction.
In addition, lVT , lPT and lPV are the lengths of the lines VT, PT and PV, respectively.

lVT = dy
lPT = dy/ sin θAm
lPV = dy cot θAm

(45)
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Combining Equations (43)–(45), we obtain

σwv = λ 1q− λ 2cw (46)

λ1 =
cot θAm

tan δm + cot θAm
(47)

λ2 =
tan δm

(tan δm + cot θAm) tan δ
(48)

where σwv indicates the lateral earth pressure of the retaining wall at the filling depth of y
= 0. In addition, cw is the stick force between the foundation-pit retaining wall and the soil.
Lastly, λ1 and λ2 are the adjustment coefficients of q and cw, respectively.

According to the boundary conditions, when y = 0, we obtain σwm = σwv. The expres-
sion of the undetermined coefficient C1 can be calculated using this boundary condition.

C1 =
λ 1q− λ 2cw − A3

t3
(49)

When the retaining wall moves in the RB mode, tensile cracks form in the soil near the
top of the wall. The depth of the fractured space, zc, can be obtained under the condition
that the lateral earth pressure of zone I is zero [47].

zc = −
1

A1
ln(− A3

C1t3
) (50)

When h > zc, the depth of the tension crack is completely inside zone I, and the active
earth pressure resultant force in zone I is Ea1.

Ea1 =
∫ h

zc
σwmdy (51)

Further, the active earth pressure tilting moment M1 of the retaining wall can be
denoted as:

M1 =
∫ h

zc
σwm(H − y)dy (52)

When h ≤ zc, the tension crack extends from the fill surface to zone II, and the resultant
force of the active earth pressure Ea1 as well as the overturning torque M1 are both zero.

4.3. Derivation of Active Earth Pressure in Triangular Area

As depicted in Figure 6, the zone II earth pressure analysis model includes a slip
surface. Thus, it can be considered as a triangular area for the analysis and calculation.
Because the frictional coefficients of the left and right sides of the triangular soil wedge are
different, the principal stress trace can be simplified as an inclined straight line, and an
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inclined thin-layer element GHIJ is obtained. It is generally believed that the soil arching
effect changes only the direction of the principal stress transmission without changing its
value. The change in the magnitude of the large principal stress σ′1 on the principal stress
trajectory is determined by its burial depth [28].
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As shown in Figure 7, we assume that the normal stress on the left interface of the
thin-layer element is σ′wm, and the shear stress is τ′wm. Further, the normal stress on the
right interface of the thin-layer element is σtm, and the shear stress is τtm.

The major and minor principal stresses of the soil at the contact between the soil
and the retaining wall are σw′

1 and σw′
3 , respectively. In addition, the major and minor

principal stresses of the soil at the interface between the soil and the slip surface are σt
1 and

σt
3, respectively.

Since triangular elements ∆GKJ and ∆HIL satisfy the static equilibrium conditions,
we can obtain

w′wm = σw′
3 sin2 θAm + σw′

1 cos2 θAm (53)

τ′wm = (σw′
1 − σw′

3 ) sin θAm cos θAm (54)

σtm = σt
1 sin2(θCm − β) + σt

3 cos2(θCm − β) (55)

τtm = (σt
1 − σt

3) sin(θCm − β) cos(θCm − β) (56)

where θAm is the cut angle between the maximum principal stress and the horizontal
direction at the interface between the retaining wall and the soil in zone II; θCm represents
the angle between the maximum principal stress and the horizontal direction at the interface
between the slip surface and the soil in zone II; and β is the slip angle.

According to the Mohr–Coulomb criterion, the following functional relationship can
be established between the major and minor principal stresses of the cohesive soils [46,48]:

N =
σw′

1 + c cot ϕ

σw′
3 + c cot ϕ

=
σt

1 + c cot ϕ

σt
3 + c cot ϕ

= tan2(45◦ +
ϕ

2
) (57)

where N is only related to the soil friction angle.
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It can be seen from Figure 8 that the principal stress deflection angles θAm and θCm
can be represented as{

θAm = π
2 −

1
2 [arcsin(sin δm/ sin ϕm)− δm]

θCm = π
4 + β− ϕ

2
(58)
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As shown in Figure 7, the inclined thin-layer element with a thickness dz is considered
at a depth z from the top surface of zone II, and each side length of the element is calculated
as follows:

lGJ = dz (59)

lKJ = lIL = dz sin θ2 (60)
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lHI =
dz sin θ2

cos(θ − β)
(61)

where θ2 is the angle between the inclined thin-layer element and the vertical direction, and
the length of the upper interface lGH of the inclined thin-layer can be calculated according
to the geometrical relationship of ∆GHM shown in Figure 7.

lGH =
(H − h− z) cos β

cos(θ2 − β)
(62)

Similarly, the length of the lower interface of the thin layer (lI J) can be obtained using
the sine theorem.

lI J =
(H − h− z− dz) cos β

cos(θ2 − β)
(63)

Assuming that the major principal stress at point G at the interface between the upper
boundary of the inclined thin-layer element and the foundation-pit retaining wall is equal
to σw′

1 , and the major principal stress at point H at the contact between the upper boundary
and the sliding surface is equal to σt

1, we obtain

σt
1 = σw′

1 + γ∆yGH (64)

where γ is the unit weight of the soil, and ∆yGH is the altitude difference between points G
and H.

The average principal stress acting on the upper interface lGH of the thin-layer
element is

σ′1 =
σt

1 + σw′
1

2
(65)

The force FGH on the upper interface of the thin-layer element can be expressed as:

FGH = lGHσ′1 (66)

For the same reason, the interfacial force FI J of the lower thin-layer element is ex-
pressed as:

FI J = lI J(σ
′
1 + dσ′1) (67)

The normal force Fn
GJ on the left interface of the thin-layer element can be expressed as:

Fn
GJ = lGJσ

′
wm (68)

The tangential force Fτ
GJ on the left interface of the thin-layer element is shown below:

Fτ
GJ = lGJτ

′
wm (69)

The normal force Fn
HI on the right interface of the thin-layer element can be expressed as:

Fn
HI = lHIσtm (70)

The tangential force Fτ
HI on the right interface of the thin-layer element is given by:

Fτ
HI = lHIτtm (71)

The gravity dw2 analysis of the thin-layer unit is described below:

dw2 =
γ(lGH + lI J)t

2
(72)

t = dz sin θ2 (73)
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where t is the height of the trapezoidal element GHIJ, and γ is the unit weight of the
soil mass.

In Equations (6) and (7), the relationship between the shear stress and the normal
stress at the left and right boundaries of the thin-layer element in zone I is established. Fur-
thermore, to simplify the calculation, it is necessary to establish the functional relationship
between the shear stress and the normal stress of the thin-layer element in zone II.

τ′wm = cw
tan δm

tan δ
+ σ′wm tan δm (74)

τtm = c
tan ϕm

tan ϕ
+ σtm tan ϕm (75)

Because the resultant force of the inclined soil thin-layer element in the horizontal and
vertical directions is zero, we obtain

Fn
GJ − FGH cos θ2 + FI J cos θ2 + Fτ

HI cos β− Fn
HI sin β = 0 (76)

Fτ
GJ − FGH sin θ2 + FI J sin θ2 + Fτ

HI sin β + Fn
HI sin β− dw2 = 0 (77)

Substituting Equations (59) to (75) into Equations (76) and (77), we obtain

D1cwdz + D2cdz + D3σ′wmdz + D4σ′1dz + D5(H − h− z− dz)dσ′1 − D6γ(H − h− z)dz = 0 (78)

D0 =
cos θ2 cos β

cos(θ2 − β)
(79)

D1 = (tan ϕm − tan β)
tan δm

tan δ
(80)

D2 = D0 tan θ2
tan ϕm

tan ϕ
[(tan ϕm − tan β)− (1 + tan ϕm tan β)] (81)

D3 = tan δm(tan ϕm − tan β)− (1 + tan ϕm tan β) (82)

D4 = D0[(1 + tan ϕm tan β)− tan θ2(tan ϕm − tan β)] (83)

D5 = D0[tan θ2(tan ϕm − tan β)− (1 + tan ϕm tan β)] (84)

D6 = D0 tan θ2(tan ϕm − tan β) (85)

where D0~D6 are the related parameters of the equilibrium equation of thin layer
element GHIJ.

In Equation (78), there are two variables σ′wm and σ′1; thus, it is essential to obtain
the functional relationship between them. As shown in , we conducted a geometrical
analysis using the triangular element GKJ of the thin layer on the back of the foundation-pit
retaining wall and obtained the following relationship:

lGJ = dz (86)

lGK = dz cos θ2 (87)

lJK = dz sin θ2. (88)

where lGJ , lGK and lJK are the lengths of the line segments GJ, GK and JK, respectively; and
θ2 is the included angle between the upper interface of the inclined thin-layer unit and the
vertical direction.

According to the static equilibrium conditions applicable to ∆GKJ, we obtain

σ′wmlGJ − σw′
1 lGK cos θ2 − σw′

3 lJK sin θ2 = 0 (89)

τ′wmlGJ − σw′
1 lGK sin θ2 + σw′

3 lJK cos θ2 − dw0 = 0 (90)
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The gravitational force dw0 of the triangular element can be expressed as:

dw0 =
γ

2
sin θ2 cos θ2(dz)2 (91)

By combining Equations (64) and (65), the expression of σw′
1 with respect to σ′1 can be

obtained as:
σw′

1 = σ′1 −
1
2

γ∆yGH (92)

∆yGH = lGH cos θ2 = (H − h− z)D0 (93)

where ∆yGH represents the height difference between points G and H.
By combining Equations (58), (92) and (93), the expression of σw′

3 can be obtained.

σw′
3 =

σ′1
N

+
− 1

2 γD0(H − h− z) + c cot ϕ(1− N)

N
(94)

By substituting Equations (92)–(94) into Equation (89), the expression for the active
earth pressure strength (σ′wm) can be deduced as follows:

σ′wm = t4σ′1 −
1
2

γD0t4(H − h− z) +
c cot ϕ(1− N) sin2 θ2

N
(95)

t4 = cos2 θ2 + sin2 θ2/N (96)

By substituting Equation (95) into Equation (78), we can obtain the differential equation
of σ′1.

dσ′1
dz

+
λ3

H − h− z
σ′1 =

γ

λ5
− λ4

H − h− z
(97)

λ3 =
t4D3 + D4

D5
(98)

λ4 =
D1cw + D2c + D3

c cot ϕ(1−N) sin2 θ2
N

D5
(99)

λ5 =
2D5

t4D0D3 + 2D6
(100)

Solving the differential Equation (97), we obtain

σ′1 = C2(H − h− z)λ3 − γ(H − h− z)
λ5(1− λ3)

− λ4

λ3
(101)

Substituting Equation (101) into Equation (95) yields the expression for the active earth
pressure strength (Equation (102)) as:

σ′wm = C2t4(H − h− z)λ3 − e1(H − h− z) + e2 (102)

e1 =
γt4

λ5(1− λ3)
+

1
2

γD0t4 (103)

e2 =
c cot ϕ(1− N) sin2 θ2

N
− λ4t4

λ3
(104)

where C2 is an undetermined coefficient, which can be derived using the boundary condi-
tion y = h.

C2 =
C1t3e−A1h + e1(H − h)− e2 + A3

t4(H − h)λ3
(105)
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When h > zc, the tensile crack is completely in zone I, and the active earth pressure
resultant force Ea2 in zone II is

Ea2 =
∫ H−h

0
σ′wmdz (106)

The active earth pressure tilting moment of the backfill in zone II is expressed as:

M2 =
∫ H−h

0
σ′wm(H − h− z)dz (107)

The tensile crack extends from the fill surface to zone II under the condition: h ≤ zc.
Further, the active earth pressure resultant force Ea2 in zone II is expressed as:

Ea2 =
∫ H−h

zc−h
σ′wmdz (108)

The tilting moment (M2) of the zone II foundation-pit retaining wall is as follows:

M2 =
∫ H−h

zc−h
σ′wm(H − h− z)dz (109)

The height of the resultant-force application point ha can be expressed as:

ha =
M
Ea

=
M1 + M2

Ea1 + Ea2
(110)

5. Verification by Comparison

Zhou and Ren [49] conducted a model test on a finite-width cohesive soil under
RB using the following model parameters: retaining wall height H = 4.45 m, soil width
B = 2 m, friction angle of the soil ϕ = 24.27◦, wall–soil friction angle δ = 2/3ϕ, cohesion
of the backfill c = 1.472 kPa, wall–soil interface adhesion force cw = 0.98 kPa, soil weight
γ = 14.73 kN/m3, failure ratio Rf = 0.85, and overload on the ground surface q = 0. In the
test, the retaining wall was considered to be in a static state; therefore, the displacement
ratio was η = 0. As shown in Figure 9a, our method was compared with the horizontal
differential element method of Rao, who assumed a semi-infinite space [19], that of Liu,
who assumed a finite space for the calculations [50]. Zhou and Ren [49] also conducted an
experimental investigation of the distribution of earth pressure for a wall top displacement
of 4.01 cm under RB. Under the condition that the other properties of the soil are consistent
with those shown in Figure 9a, the critical horizontal displacement of the cohesive soil
was found to be Sc = 0.9%H [42]. Then, the displacement ratio η of the retaining wall
gradually decreased with the increasing depth of the soil, and the shear strength index of
the soil exhibits a developed value. The comparison between the experimental value and
the theoretical value using the proposed method is represented in Figure 9b.

As shown in Figure 9a, when the displacement ratio is η = 0, the proposed soil
pressure increases monotonically with the soil depth. The theoretical values well match
the experimental ones, indicating the rationality of this method. In addition, Rao’s soil
pressure prediction curve is in good agreement with Zhou’s experimental value at a depth
of 0–2 m, but it begins to shrink at a depth of 2 m and gradually deviates from our
experimental value. Liu’s theoretical soil pressure increases monotonously with the soil
depth, and the trend is consistent with our experimental values. However, from a depth of
approximately 3 m, the fitting accuracy gradually reduces. As presented in Figure 9b, when
the displacement ratio is η 6= 0, the values predicted in our study are in good agreement
with the experimental data.
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6. Parameter Sensitivity Analysis

In this paper, we elucidate the influence of soil cohesion c, soil friction angle ϕ, wall–
soil friction angle δ and width-to-height ratio B/H of the filling on the distribution of earth
pressure and the height of the resultant force application point. The parameters were
determined as follows: retaining wall height H = 4.5 m, filling’s width-to-height ratio
B/H = 0.3, soil weight γ = 15 kN/m3, soil friction angle ϕ = 24◦, wall–soil friction angle
δ = 2ϕ/3 (without special provisions), soil cohesion c = 1 kPa, wall–soil interface adhesion
force cw = 2c/3 (without special provisions), damage ratio Rf = 0.85, wall displacement
ratio η = 1, and uniform load on the fill surface q = 0. The relevant parameters were
calculated according to specific situations.

6.1. Analysis of the Soil Pressure Distribution Parameters
6.1.1. Effect of B/H on the Earth Pressure Distribution

Figure 10 reveals that the active soil pressure gradually increases with the increasing
width-to-height ratio of the filling. When B/H is small, the soil pressure increases rapidly
with the aspect ratio. However, when B/H is greater than cotβ, the change in the fill width
has no effect on the earth pressure strength. Therefore, B/H = cotβ can be distinguished as
the critical value of both the semi-infinite-width and finite-width soil. In the RB mode, with
the increasing soil depth, the influence of the aspect ratio on the soil pressure distribution
becomes more significant. Further, Figure 10 also indicates that the change in the aspect
ratio does not affect the depth of the tensioning cracks.

6.1.2. Effect of ϕ on Soil Pressure Distribution

As shown in Figure 11, in this study, we assumed that the soil friction angle ϕ changes
between 10◦ and 30◦ with an interval of 5◦. Five groups of data were set up to evaluate the
influence of the soil friction angle on the earth pressure distribution. Notably, the roughness
factor δ/ϕ of the wall–soil interface was considered to be a fixed value of 2/3 to exclude its
influence on the distribution of the soil pressure. As evident from Figure 11, a larger friction
angle results in a smaller active earth pressure; this enhances the soil arching effect [12].
This variation can be explained as follows. Under the RB mode, the backfill tends to slide
downward relative to the retaining wall. Considering the wall–soil friction, the wall surface
exerts an upward frictional force to prevent the backfill from sliding downward, resulting
in the deflection of the principal stress and the soil arching effect. The frictional force
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provides an upward binding force for the backfill, which offsets the gravity of the soil to
some degree, and is equivalent to the reduction in the gravitational force on the soil. The
wall–soil friction angle δ increases along with soil friction angle ϕ, which increases the
frictional force, leading to the reduction in the earth pressure.
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6.1.3. Effect of c on the Earth Pressure Distribution

Evidently, to maintain the stability of a cohesive soil (c = 10 kPa), the resistance
provided by the retaining wall is far less than that required for a cohesionless soil with
the same properties [51]. Therefore, it is vital to consider the influence of soil cohesion
in the design of retaining structures. Here, we discuss the influence of soil cohesion c
and wall–soil cohesion cw on the soil pressure distribution based on the Mohr–Coulomb
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criterion. To control the variable, the relationship between the wall–soil interface adhesion
force and the soil cohesion is considered to be cw = 2/3c. As shown in Figure 12, it is
clear that with the increasing soil cohesion, the tensile cracks in the soil gradually extend
downward, and the soil pressure decreases. Further, the soil pressure distribution along
the depth is the same under different soil cohesions. These results indicate that changes in
soil cohesion do not affect soil arching strength.
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6.2. Analysing the Height of the Soil-Pressure Application Point
6.2.1. Effect of B/H and ϕ on the Height of the Resultant Point

As shown in Figure 13, when the soil friction angle is the same (δ/ϕ = 2/3), the height
of the soil-pressure resultant point, ha, reduces gradually with the increasing width–height
ratio B/H, and tends to approach the wall base. When B/H is determined, with the increasing
friction angle, the value of ha gradually approaches that of the wall top. These results
indicate that an increase in the aspect ratio of the soil and a decrease in the soil friction
angle of filling improve the stability of the retaining structure. When B/H ≥ cotβ, only a
negligible change is observed in ha with the increasing aspect ratio. This shows that when
B/H ≥ cotβ, the slip surface of the soil reaches the filling surface, and the finite-width soil
between the retaining walls evolves into a semi-infinite-width soil, which is used in the
calculation of the soil pressure.

6.2.2. Effect of δ/ϕ = 2/3 on the Height of the Resultant Point

From Figure 14, it can be observed that for a certain aspect ratio, with an increase in
the wall–soil roughness factor (δ/ϕ), the height of the earth-pressure resultant-force point
ha increases gradually, and the anti-overturn stability of the retaining wall becomes worse.
The increase in δ/ϕ in turn increases the friction force and wall–soil cohesion, as evident
from Equations (4) and (5), at the interface of the retaining wall, resulting in a decrease in
the earth pressure. However, compared to the soil friction angle ϕ, the influence of the
wall–soil interface roughness factor (δ/ϕ) on the earth pressure is relatively limited [46].
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6.2.3. Effect of c on the Height of the Resultant Point

Figure 15 shows that with the increasing soil cohesion c, the height of the resultant-
force application point ha decreases, which is indicative of the soil-cohesion-induced
improvement in the anti-overturn stability of the retaining structures. Soil cohesion results
in the appearance of tensile cracks with certain depths of the backfill, and the lateral earth
pressure in the crack area becomes zero. With an increase in the soil viscosity, the tensile
cracks gradually propagate downward to form a larger zone of zero lateral pressure; this
causes a downward movement of the application point of the soil-pressure resultant force.
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7. Conclusions

Here, we proposed a new method that includes the effects of soil arching, cohesion
and filling width to calculate the active earth pressure under RB. For the calculations, we
assumed an approximate slip angle of 45◦ + ϕ/2. Based on the results obtained in this
study, the following conclusions can be drawn:

(1) Because the wall–soil friction changes the direction of the principal stress transfer,
we considered the influence of the soil arching effect in this study to calculate the soil
pressure. We simplified the principal stress trace from a circular arc to an inclined line,
and the backfill was divided into several inclined thin layers along the inclined line. This
effectively avoided the problem of horizontal stress imbalance caused by ignoring the
interlayer shear stress in the horizontal differential element method. We proved that this
proposed method can improve the calculation accuracy compared to that obtained with the
horizontal infinitesimal method.

(2) When the retaining wall is in the nonlimit state, the filling obeys the principle of
progressive failure. In addition, the earth pressure is closely related to the displacement of
the retaining wall. Thus, to establish the relationship between the shear strength and the
wall displacement, we introduced the concepts of displacement ratio η and failure ratio Rf.
In this study, the full play value of the shear strength in the earth pressure formula was
replaced by the developed value. Thereby, an analytical solution of the nonlimit active
earth pressure of a finite-width clay under the RB mode was obtained.

(3) The influence of the width-to-height ratio was considered in the calculation of the
earth pressure of a narrow fill. When B/H ≥ cotβ, the increasing aspect ratio showed no
effect on the earth pressure, because in this case, the filling can be considered as a triangular
wedge for the earth pressure calculation. Therefore, B/H = cotβ can be used as the critical
value to distinguish between semi-infinite-width and finite-width soil.

(4) For a finite-width soil (B/H < cotβ), a shrinking width–height ratio as well as an
increasing friction angle of the soil and soil cohesion contribute to the decrease in the earth
pressure. Thus, a reasonable supporting structure can be designed to reduce the earth
pressure of the filling by changing these properties of the soil.

(5) For any aspect ratio of the soil, both increasing aspect ratio and soil cohesion as
well as decreasing friction angle lower the height of the resultant-force application point,
thereby improving the anti-overturning stability of the retaining walls.

This paper can provide a reference for the soil pressure calculation of rotating walls,
but it has some limitations. First of all, it assumed an approximate slip angle of 45◦ + ϕ/2;
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thus, further investigations will be conducted for a curved slip surface. Secondly, the study
is only for the condition of a unity soil layer; future research needs to consider the earth
pressure calculation of layered soils. Last, but not least, this study does not consider the
influence of water, and this factor will be added in the next study.
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Nomenclature

β rupture angle of the backfill (◦);
h height of zone I (m);
H height of the retaining wall (m);
B width of the backfill (m);
ϕ soil’s friction angle (◦);
ϕm developed value of soil’s friction angle (◦);
δ wall–soil friction angle (◦);
δm developed value of wall–soil friction angle (◦);
δ/ϕ interface friction coefficient;
c cohesion of the backfill (kPa);
cw wall–soil cohesion of the retaining wall (kPa);
cd wall–soil cohesion of the the basement wall (kPa);
cwm developed value of the wall–soil cohesion of the retaining wall (kPa);
cdm developed value of the wall–soil cohesion of the the basement wall (kPa);
q overload of the ground surface (kN/m);
Sd horizontal displacement of the wall top (m);
Sc critical horizontal displacement of the retaining wall reaching the active limit state (m);
Rf failure ratio;
ϕ0 initial value of soil friction angle (◦);
δ0 initial value of wall–soil friction angle (◦);
K0 static earth-pressure coefficient;
Sz horizontal displacement of the wall at a certain depth (m);
η displacement ratio of the retaining wall;
σwm normal stress on the left interface of the thin-layer element ABCD (kPa);
τwm shear stress on the left interface of the thin-layer element ABCD (kPa);
σsm normal stress on the right interface of the thin-layer element ABCD (kPa);
τsm shear stress on the right interface of the thin-layer element ABCD (kPa);
σw

1 major stress of the soil at the contact between the soil and the retaining wall of zone I (kPa);
σw

3 minor stress of the soil at the contact between the soil and the retaining wall of zone I (kPa);
σs

1 major stress of the soil at the interface between the soil and the basement wall of zone I (kPa);
σs

3 minor stress of the soil at the interface between the soil and the basement wall of zone I (kPa);
θAm cut angle between the maximum principal stress and the horizontal direction at the

interface between the retaining wall and the soil (◦);
θBm included angle between the maximum principal stress and the horizontal direction at the

interface between the basement wall and the soil (◦);
N ratio of major to minor principal stress;
αAm/2 cut angle between the major principal stress and the vertical direction (◦);
R radius of the Mohr stress circle (m);
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lAB length of left interface of the unit of zone I (m);
lCD length of right interface of the unit of zone I (m);
lAD length of upper interface of the unit of zone I (m);
lBC length of lower interface of the unit of zone I(m);
σ1 average principal stress acting on lAD (kPa);
y vertical distance between thin layer unit of zone I and surface (m);
dy thickness of thin layer unit of zone I (m);
FAB tangential force on the left interface of the thin-layer element ABCD (kN);
FCD tangential force on the right interface of the element ABCD (kN);
FAD force on the upper interface of the element ABCD (kN);
FBC force on the lower interface of the element ABCD (kN);
dw1 gravity of the thin-layer unit ABCD (kN);
γ unit weight (kPa);
σv

3 minor principal stress at point V (kPa);
σwv normal stress on the left interface of ∆VPT (kPa);
τwv shear stress on the left interface of ∆VPT (kPa);
lVT length of the line VT (m);
lPT length of the line PT (m);
lPV length of the line PV (m);
zc depth of the fractured space (m);
Ea1 active earth pressure resultant force in zone I (kN);
M1 tilting moment of the retaining wall in zone I (kN·m);
z vertical distance between the upper interface of unit GHIJ and the top of zone II (m);
dz thickness of thin layer unit of zone II (m);
σ′wm normal stress on the left interface of the thin-layer element GHIJ (kPa);
τ′wm shear stress on the left interface of the thin-layer element GHIJ (kPa);
σtm normal stress on the right interface of the thin-layer element GHIJ (kPa);
τtm shear stress on the right interface of the thin-layer element GHIJ (kPa);
θCm cut angle between the maximum principal stress and the horizontal direction at the interface

between the slip surface and the soil in zone II (◦);
θ2 included angle between the inclined thin-layer element and the vertical direction (◦);
σw′

1 major stress of the soil at the contact between the soil and the retaining wall of zone II (kPa);
σw′

3 minor stress of the soil at the contact between the soil and the retaining wall of zone II (kPa);
σt

1 major stress of the soil at the interface between the soil and the slip surface (kPa);
σt

3 minor stress of the soil at the interface between the soil and the slip surface (kPa);
lGH length of the line GH (m);
lHI length of the line HI (m);
lIJ length of the line IJ (m);
lGJ length of the line GJ (m);
lKJ length of the line KJ (m);
lGK length of the line GK (m);
lIL length of the line IL (m);
∆yGH altitude difference between points G and H (m);
œ′1 average principal stress acting on lGH (kPa);
FGH force on the upper interface of the element GHIJ (kN);
FIJ force on the lower interface of the element GHIJ (kN);
Fn

GJ normal force on the left interface of the element GHIJ (kN);
Fτ

GJ tangential force on the left interface of the element GHIJ (kN);
Fn

HI normal force on the right interface of the element GHIJ (kN);
Fτ

HI tangential force on the right interface of the element GHIJ (kN);
dw2 gravity of the thin-layer unit GHIJ (kN);
dw0 gravity of the triangular element ∆GKJ (kN);
t minimum distance between the upper and lower interfaces of the element GHIJ (m);
Ea2 active earth pressure resultant force in zone II (kN);
M2 tilting moment of the retaining wall in zone II (kN·m);
Ea active earth pressure resultant force (kN);
M tilting moment of the retaining wall (kN·m);
ha height of the resultant-force application point (m);
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