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Abstract: Due to the rising cost of fuel, increased demand for energy, and the stresses of environmental
issues, dynamic economic emission dispatch (DEED), which is the most precise mode for actual
dispatching conditions, has been a significant study topic in current years. In this article, the
higher dimensional, deeply correlated, non-convex, and non-linear multi-objective DEED problem
is designated, involving both the fuel costs and emissions objectives simultaneously. In addition,
the valve point effect, transmission loss, as well as the ramping rate, are considered. The Salp
Swarm Algorithm (SSA) is a well-established meta-heuristic that was inspired by the foraging
behavior of salps in deep oceans and has proved to be beneficial in estimating the global optima for
many optimization problems. The objective of this article is to evaluate the performance of the multi-
objective Salp Swarm Algorithm (MSSA) for obtaining the optimal dispatching schemes. Furthermore,
the fuzzy decision-making (FDM) approach is employed to achieve the best compromise solution
(BCS). In order to confirm the efficacy of the MSSA, the IEEE 30-bus six-unit power system, standard
39-bus ten-unit New England power system, and IEEE 118-bus fourteen-unit power system were
considered as three studied cases. The obtained results proved the strength and supremacy of the
MSSA compared with two well-known algorithms, the multi-objective grasshopper optimization
algorithm (MOGOA) and the multi-objective ant lion optimizer (MALO), and other reported methods.
The BCS of the proposed MSSA for the six-unit power system was USD 25,727.57 and 5.94564 Ib,
while the BCS was 2.520778 × USD 106 and 3.05994 × 105 lb for the ten-unit power system, and was
1.29200 × USD106 and 98.1415 Ib for the 14 generating units. Comparisons with the other well-known
methods revealed the superiority of the proposed MSSA and confirmed its potential for solving other
power systems’ multi-objective optimization problems.

Keywords: dynamic economic emission dispatch; MSSA; multi-objective salp swarm algorithm;
greenhouse gases; valve point loading

1. Introduction

The need for energy is growing with the continued progress of industrial development
on a world scale [1]. Adaptively modifying the power supply approach based on variations
in load to enhance the economy of the power system has been a critical problem that must
be solved in the optimization of the power system operation [2]. The EED that improves
both the fuel cost and emissions according to the conventional ELD has gradually become
a significant method to decrease the emission level of electric power systems [3]. The EED
aims to adjust the approaches of the current power dispatch compared with developing
power generation equipment or increasingly expanding the renewable energy resource [4],
and extensive effort has newly been executed on the EED problem [5–7]. Nonetheless, EED
studies specifically concentrate on the static model that does not take into consideration
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the relationship between various interval periods for dispatching. As an extension of the
EED, the DEED, which is the best mode for real dispatching conditions, has acquired
more academic concern [8], despite the DEED issue being a highly dimensional, deeply
correlated, non-convex, and non-linear MOP taking into consideration the incompatible
objectives and the operational limitations. When there are transmission losses, the changing
of the power demand and the POZ are also involved, and the DEED model becomes more
complex.

Due to the complicatedness and significance of the DEED issue, it is completely essen-
tial to select a suitable model of dispatch and to choose proficient algorithms to acquire the
best dispatching scheduling for the power generation. Recently, meta-heuristic approaches
have become extremely popular for achieving the optimum solutions for numerous en-
gineering problems [9], including the estimation of PV parameters [10], optimal power
flow incorporating renewable energy and FACTs devices [11–13], and optimum reactive
power dispatch with renewable energy uncertainty [14]. This popularity is because of many
principal causes: a gradient-free mechanism, flexibility, and the local optima avoidance of
these techniques [15].

Some studies have been published to handle the DEED problem. At first, the atmo-
spheric pollutants were not taken into consideration as an objective in the DEED. In [16], a
DEED problem was constructed without the ramp rate bounds of the power generators, the
emission, and the security constraints, to the DEED model. Over the recent years, with the
development of highly effective and more precise solving techniques, the research path of
the DEED has changed to consider fuel cost and atmospheric pollutants simultaneously as
multi-objectives. In [17], Basu employed an EPFSA to find the optimum solution for the this
problem as a single-objective problem. In [18–20], the DEED problem was transformed to a
single-objective problem based on the price penalty factor method and achieved the best
solution for it by the IBFA, the neural network, and the ODEA. In [21–23], single-objective
DEED models were solved using the PSO-based goal-attainment method, fuzzy adaptive
modified theta-PSO, and hybrid DE- SQP, respectively. All of the research mentioned
above have attained acceptable results. Nevertheless, because of the boundary of the DEED
problem as a single-objective problem, it is challenging to acquire more than one optimum
solution in an individual trial; additionally, the Pareto Front is surely difficult to achieve.
In [24–28], the NSGA-II, the MODE, AMODE, the Chemical Reaction Optimization (CRO),
and improved NSGA-II techniques were proposed to achieve the solution for the multi-
objective DEED problem with competing and non-commensurable objectives. Additionally,
in [29], the GSOMP technique was proposed and the DEED was formulated as a group
of static economic emission dispatches based on the period intervals of dispatching that
would have intricacies in the grouping of the best solutions from various time intervals.
An improved tunicate swarm algorithm (ITSA) [30] and an improved PSO algorithm with
a clone selection (PSOCS) [31] were improved to reach the optimal solution for the DEED
problem. Multi-objective hybrid differential evolution with the simulated annealing tech-
nique (MOHDE-SAT) was selected as the best compromise solution for the DEED problem
in [32]. A new approach to separating the DEED problem into offline training steps and
online inference steps was proposed in [33]. Multi-objective Neural Networks trained using
Differential Evolution (MONNDE) was proposed in [34] to build a function approximator
that, once trained, could be used to predict the optimal solution for any change in load.

Recently, DEED has come to be the essential problem in the dynamic dispatch field
of both micro-grids and smart grids. For such complex MOPs, it would permanently be
the effort of the literature to use a high-performance technique that achieves more accurate
solutions based on the particular characteristics of the problems. In recent decades, the
optimization algorithm has received extensive attention and applications. The MSSA is a
swarm intelligence-based multi-objective optimization algorithm that has been recently
developed in [15]. The MSSA has been tested using benchmark functions and has been
compared with other well-known algorithms [12]. It is an extension of the Salp Swarm
Algorithm (SSA). Therefore, the basic theory of the SSA is firstly presented, and then the
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principles of the MSSA are introduced. The main contributions of the paper are summarized
as follows:

• Proposing the MSSA to find the optimal solution of the non-linear and non-convex
multi-objective DEED problems.

• Solving multi-objective DEED problems considering the valve point effect, transmis-
sion loss, as well as the ramping rate.

• Applying the fuzzy decision-making approach to achieve the best compromise solu-
tions.

• Using the 6-unit power system, 10-unit power system, and 14-unit power system as
three studied cases to prove the efficacy of the MSSA.

• The obtained results prove the strength and supremacy of the MSSA in compari-
son with two well-known algorithms, the MALO [35] and MOGOA [36], and other
reported methods.

The remainder of the article is arranged as follows. Section 2 presents the mathematical
model of the DEED problem. The suggested MSSA is shown in Section 3. The simulation
results and discussions are given in Section 4. Finally, Section 5 presents the conclusion.

2. Mathematical Model of EED Problem
2.1. Objective Functions

The fuel cost of each generator taken into consideration, the VPE, is formulated as
the summation of a quadratic and a sinusoidal function. Figure 1 shows a VPE on the fuel
cost function [37]. Therefore, the fuel cost of NG generators through T dispatching period
intervals is given from the following equation [38]:

F1 =
T

∑
t=1

NG

∑
i=1

[ai + biPGi,t + ciP2
Gi,t +

∣∣∣di sin
(

ei

(
Pmin

Gi − PGi,t

))∣∣∣] (1)

where ai, bi, ci, di, and ei denote the cost coefficients for the ith unit; PGi,t refers to the power
output of the ith (i = 1; 2; 3; . . . ; NG) unit at the dispatching time interval t; and NG is the
number of generating units.
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Figure 1. VPE on a fuel cost function.

Commonly, atmospheric pollutants including CO2, SOx, and NOx produced by fossil-
fueled thermal generators are mathematically represented as the totality of a quadratic and
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an exponential function. Accordingly, the total atmospheric pollutants of NG generators
through the dispatching interval is expressed as [39]:

F2 =
T

∑
t=1

NG

∑
i=1

[
αi + βiPGi,t + γiP2

Gi,t + ηi exp(δiPGi,t)
]

(2)

where αi, βi, γi, ηi, and δi denote the emission coefficients for the ith unit.

2.2. Operational Constraints
2.2.1. Power Balance Constraint

The total power generated should equal the summation of the total power demand
PD,t and the complete transmission losses PL,t, which is formulated as:

n

∑
i=1

Pi,t − PD,t − PL,t = 0 (3)

where PL,t is calculated by Kron’s formula:

PL,t =
n

∑
i=1

n

∑
j=1

Pi,tBijPj,t +
n

∑
i=1

Bi0Pi,t + B00 (4)

where Bij, Bi0, and B00 are the B-matrix coefficients for PL,t.

2.2.2. Generating Capacity Constraint

The power output Pi,t must be within the minimum and maximum power generation
bounds, as represented by:

Pmin
i ≤ Pi,t ≤ Pmax

i (5)

where Pmax
i is the maximum limit of the ith generator.

2.2.3. Ramp Rate Constraint

Under real-world conditions, the operating limit of each generator is bounded by its
ramp rate bound; therefore, the output power Pi cannot be adjusted immediately. The up
and down ramp limits are represented by [40]:{

Pi,t − Pi,t−1 − URi × ∆T ≤ 0
Pi,t−1 − Pi,t − DRi × ∆T ≤ 0

(6)

where URi and DRi are the up and down limit of generator i, respectively. ∆T denotes
the length of each dispatching time interval.

3. Multi-Objective Optimization Algorithm

The multi-objective technique has been employed to achieve the solution for several
MOPs. A recent multi-objective technique that is called the MSSA is presented in this paper.

3.1. Multi-Objective Optimization Problem

The DEED model is represented as a MOP with non-linear constraints based on the
objective functions and system constraints as follows:

min [F1(P), F2(P)]
s.t. gi(P) = 0, k = 1, 2, . . . ., u

hi(P) ≤ 0, i = 1, 2, . . . ., q
(7)

where F1(P) and F2(P) refer to the fuel cost and emission objective functions, respectively,
gi(P) and hi(P) denote the equality and inequality restrictions, and u and q represent the
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number of corresponding formulations, respectively. P refers to the active power decision
control vector of the generators.

With a single objective, it can be confidently assessed that a solution is superior to
another by relying on comparing the single criterion, whereas in an MOP, there is more
than a single criterion to check and compare the obtained solutions. Pareto optimal (PO)
dominance is the principal approach that is used to compare two solutions for multiple
objectives and it is described in [41]. A priori and a posteriori are the two principal
methods to achieve the best solution for the MOPs. In the prior approach, the MOP is
converted into a single-objective problem by the summation of the objectives with a group
of weights specified by experts. The major shortcoming of this approach is that the Pareto
optimal collection and the front need to be constructed by re-running the technique and
modifying the weights. Nevertheless, the posteriori approach maintains the multi-objective
construction in the solving strategy, and the Pareto optimal set can be chosen in a single
run. Without any weight to be explained by experts, this method can estimate any Pareto
Front type. Due to the posterior optimization benefits over the a priori method, the goal of
our study is targeted at a posteriori multi-objective optimization.

3.2. Multi-Objective Salp Swarm Algorithm

Salps are a kind of marine organism from the Salpidae family, with a comparable
appearance to jellyfish. In the strategy of foraging food, these salps display a swarm
performance, establishing a salp chain that stimulates the SSA technique suggested in [15].
The population in a salp chain contains a leader and a set of followers, where the leader
tries to find the source of the food while the followers vary their location according to the
salp ahead of them, and accordingly to the leader. Regarding an optimization problem
with n variables and the xi location of the salp i, denoted by a vector of n elements xi = [ x1

j ,

x2
j , . . . , xn

j ], the leader’s location in the salp chain updates through this equation:

x1
j =

{
Fj + c1

((
ubj − lbj

))
c2 + lbj, c3 > 0.5

Fj − c1
((

ubj − lbj
))

c2 + lbj, c3 ≤ 0.5
(8)

where Fj denotes the value in the jth dimension of the food source F (the best location),
ubj and lbj are the upper and lower bounds, respectively, in the jth dimension, and the
parameters c2 and c3 represent randomly produced numbers in the interval [0, 1]. The
parameter c1 can be calculated from the equation below:

c1 = 2e−( 4t
T )

2
(9)

where t denotes the present iteration while T represents the maximum number of iterations.
When the leader’s location updated, the followers’ location is varied by the following

equation:

xi
j =

1
2

(
xi

j + xi−j
j

)
(10)

where xi
j refers to the location in jth dimension of agent i, with 2 ≤ i ≤ n.

The swarm behavior of salp chains is simulated based on the mathematical equations
explained above. When dealing with MOPs, two issues need to be modified for the SSA
technique. Firstly, the MSSA needs to store many results as the best solutions for a MOP.
Secondly, in each iteration, the SSA updates the food source with the optimal solution, but
in the MOP, single optimal solutions are not existent.

In the MSSA, the primary problem is resolved by supplying the SSA technique with a
food source repository. This repository can collect a determinate number of ND solutions.
In the optimization operation, the Pareto dominance operators are used to compare each
salp with all the residents in the repository. When a salp dominates only an agent in the
repository, it needs to remove the exchanged salp. In another case, when a salp dominates
a group of agents in the repository, they all must be from the repository and the salp must
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be added to the repository. If at minimum one of the residents dominates a salp in the
newly generated swarm, we should discard it directly. When a salp is non-dominated
compared to the entire residents, it should be added to the archive. When the repository is
full, it needs to reject one of the similar ND salps in the repository. For addressing the other
problem, a suitable method is to choose it from a group of ND salps with the least crowded
neighborhood. This can be performed by the same ranking method and RWS. The solution
procedure of the MSSA for solving the DEED problem is depicted using the flowchart in
Figure 2. Additionally, Algorithm 1 presents the pseudo code of the MSSA:
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Algorithm 1 Pseudo code of MSSA

Initialize the parameters the number of salps, Obj_no, dim, lb, ub, Archive Maxsize, max_iter
Initialize the salp population xi(i = 1, 2, . . . , n);
Define the objective function (Dynamic Economic Emission Dispatch function)
While (t ≤ max_iter)

Evaluate the fitness of all salp with Ob_func;
Find the ND solutions
Update the repository in regard to the achieved ND agents
If (repository is full);

Perform the repository maintenance process to eliminate one repository neighborhood
Insert the ND agent to the repository

End If
Select a source of food from repository
Update c1 by Equation (9);
For each search agent

If (i==1)
Update the location of the leading salp by Equation (8);

Else
Update the location of the leading salp by Equation (10);

End if
End For
t = t + 1;

End While
Return repository

4. Simulation Results and Discussions

In this section, the MSSA is applied to three test systems (six-generator, ten-generator,
and fourteen-generator). The results attained by the MSSA are compared to the results
of the MALO and MOGOA algorithms and those reported in previous articles. When
accessing the experimental results, besides using the best fuel cost and best emission
solutions, the BCS that is determined using a fuzzy-based mechanism is used [42]. To find
the BCS, the membership value of each individual in the Pareto optimal set Fi is calculated
by the membership function as follows:

µi =


1 Fi ≤ Fmin

i
Fmax

i −Fi
Fmax

i −Fmin
i

Fmin
i < Fi <

0 Fi ≤ Fmax
i

Fmax
i (11)

where Fmax
i and Fmin

i are the maximum and minimum values of Fi between all ND solutions,
respectively.

The normalized membership function (µk) is given by:

µk =
∑

Nobj
i=1 µk

i

∑M
k=1 ∑

Nobj
i=1 µk

i

(12)

where M denotes the total number of ND solutions. The BCS is chosen from all ND
solutions based on the value of µk , where it has a maximum value of µk.

According to these three test systems, the three cases studied are tabulated in Table 1.
The total scheduling period was 24 h with 1 h intervals and the load per hour stayed
constant. In the simulations run of the three cases, each algorithm was implemented on
a laptop with Core(TM) i5-4210U CPU (2.40 GHz), RAM 8 GB, and Windows 8.1 64-bit
operating system, through MATLAB R2016a software. The IEEE 30-bus six-generator
(Case 1) test system is displayed in Figure 3. The load demands of this test system are
provided in Appendix A Table A1. The fuel cost and emission coefficients values for the
IEEE 30-bus six-generator test system are provided in Appendix A Table A2.
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Table 1. List of three studied cases.

Case
Number

Number of
Generators

Number of
Buses

Number of Decision
Variables

Number of Equality
Constraints

Case 1 6 30 6 × 24 = 144 24
Case 2 10 NA 10 × 24 = 240 24
Case 3 14 118 14 × 24 = 336 24
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The single line diagram of the 10-generator (Case 2) test system is displayed in Figure 4.
This test system has 39 buses, 46 lines, and 10 thermal generation units. The power demands
of this system are tabulated in Appendix B Table A3. The data pertaining to the thermal
power generating units such as fuel cost coefficients, emission coefficients, the output
power bounds, and ramp rate boundaries are shown in Appendix B Tables A4 and A5.
Appendix B Table A6 presents the B-coefficients.
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Appendix C Table A7 presents the load demands of the IEEE 118-bus 14-generator
(Case 3) test system. The values of the fuel and emission coefficients of these case are given
in Appendix C Table A8.

4.1. Case 1: Six-Unit Test System

In this case, the IEEE 30-bus six-unit power system was solved using the proposed
algorithm. The non-smooth fuel cost function and power loss were considered in the DEED
model. This system was tested and the Pareto Front and best compromise solution ob-
tained by the proposed MSSA, MALO, and MOGOA algorithms are shown in Figure 5a–c,
respectively. It can be clearly seen from these figures that the solutions obtained by the
MSSA were better in convergence and diversity than those of the other algorithms. In
addition, the best compromise solution of the other algorithms such as MAMODE [26] and
GSOMP [29] are displayed in Figure 5d to demonstrate the effectiveness of the proposed
MSSA in achieving the optimal solution for the DEED problem.
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Figure 5. Pareto Front of the first case with power loss obtained by (a) MSSA; (b) MALO; (c) MOGOA;
(d) MSSA and comparison of optimal solutions.

For comparison, the results of the BCS achieved by the MSSA, MALO, MOGOA
and MAMODE [26], GSOMP [29], MOPSO [29], and NSGA-II [29] are listed in Table 2.
From Table 2, it can be observed that the results obtained by the proposed MSSA were
clearly more environmental and cost efficient, which demonstrates the effectiveness and
superiority of the MSSA over all the other algorithms.
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Table 2. The optimum objective values of Case 1.

Algorithm Objectives Total Cost (USD) Emission (Ib)

MSSA BC 25,437.59 6.52773
BE 26,389.76 5.69654
BCS 25,727.57 5.94564

MALO BC 26,200.57 5.73927
BE 26,273.83 5.71806
BCS 26,233.87 5.72757

MOGOA BC 26,158.07 5.83543
BE 26,637.37 5.73097
BCS 26,337.08 5.74666

MAMODE BC 25,732 NA
BE NA 5.7283
BCS 25,912.89 5.97955

GSOMP BC 25,493 NA
BE NA 5.6847
BCS 25,924.46 6.00415

MOPSO BC 25,633.2 NA
BE NA 5.6863

NSGA-II BC 25,507.4 NA
BE NA 5.6881

Bold values have the best performance; best cost (BC); best emission (BE); best compromise solution (BCS); not
available (NA).

From the obtained results presented in Table 3, the power balance constraints were
verified according to the complete information of the BCS. At each time interval, the sum
of the output of the generating units matched the power load plus the power loss mutually,
meaning the solution did not violate the equality constraints at each interval. The power
balance constraints checking for the best compromise solution are shown in Figure 6.
From the above result comparisons, it can be concluded that, compared with the other
comparative methods, the proposed MSSA can provide better results and the effectiveness
of the proposed technique for solving the DEED problem was verified.
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Table 3. The BCS of the first case acquired using MSSA with power loss (p.u.).

Hour P1 P2 P3 P4 P5 P6 PT PL

1 0.3068 0.3926 0.6113 0.8005 0.6690 0.4950 3.2752 0.0252
2 0.3760 0.4722 0.8176 0.9616 0.7564 0.5511 3.9348 0.0348
3 0.3109 0.4573 0.6931 0.8493 0.6620 0.5560 3.5287 0.0287
4 0.2697 0.3719 0.5970 0.6426 0.6305 0.5080 3.0196 0.0196
5 0.3240 0.4369 0.6214 0.8330 0.6568 0.5060 3.3782 0.0282
6 0.3700 0.5111 0.8599 0.9713 0.7568 0.5666 4.0358 0.0358
7 0.4673 0.6018 0.9944 1.1233 0.9327 0.6861 4.8056 0.0556
8 0.5225 0.6361 1.0820 1.1433 0.9867 0.7439 5.1145 0.0645
9 0.5634 0.7228 1.1207 1.2508 1.0785 0.7930 5.5292 0.0792

10 0.5478 0.6738 1.0600 1.1967 1.0742 0.7190 5.2716 0.0716
11 0.6053 0.6953 1.1598 1.2153 1.1160 0.7898 5.5815 0.0815
12 0.6297 0.7469 1.1529 1.3184 1.1386 0.8572 5.8437 0.0937
13 0.5358 0.6647 1.0635 1.2200 1.0455 0.7936 5.3230 0.0730
14 0.5614 0.6853 1.0480 1.1968 1.0295 0.7012 5.2220 0.0720
15 0.5151 0.6013 0.9823 1.0354 0.9633 0.7117 4.8091 0.0591
16 0.5863 0.6697 1.0924 1.1834 1.0571 0.7879 5.3769 0.0769
17 0.5480 0.6413 1.0702 1.1935 1.0275 0.7392 5.2197 0.0697
18 0.6483 0.7825 1.1536 1.3271 1.0989 0.8356 5.8460 0.0960
19 0.5509 0.6653 1.0803 1.2327 1.0223 0.7717 5.3233 0.0733
20 0.5788 0.6293 1.0482 1.2115 1.1082 0.7498 5.3258 0.0758
21 0.4362 0.5833 0.9479 1.0702 0.9487 0.6131 4.5995 0.0495
22 0.3931 0.5030 0.9248 0.9880 0.8860 0.5946 4.2896 0.0396
23 0.3901 0.5804 0.8155 0.9958 0.9065 0.6071 4.2954 0.0454
24 0.3915 0.4850 0.7786 0.9582 0.8404 0.5858 4.0395 0.0395

4.2. Case 2: 10-Unit Test System

In this case, the standard 39-bus ten-unit New England power system with the con-
sideration of power loss was tested. The problem had 24 non-linear equality constraints.
Figure 7 presents the Pareto Front of case two with a transmission loss achieved using the
proposed MSSA, MALO, MOGOA, and the BCS of other algorithms such as the RCGA,
NSGA-II, and MODE. From the Pareto Front curves it can be seen that the proposed MSSA
can give well-disseminated solutions with the fuel cost and emission functions. In addition,
it is clear to see that the Pareto solutions are distributed uniformly in the objective space
from Figure 7.

The dispatching results of Case 2 that were achieved using the proposed MSSA were
compared with two well-known algorithms in detail, as displayed in Table 4. From this
table, it is seen that the BCS of the MSSA was USD 2.520778 × 106 and 3.05994 × 105 lb,
which is superior to the several compared techniques. In terms of the economy and
environment, the cost and emission of the BCS of the MSSA technique was superior to the
NSGA II [24], RCGA [24], MODE [25], MALO, and MOGOA. In general, the solution of the
MSSA technique was superior to the comparison techniques.

The details of the BCS attained using the MSSA are shown in Table 5. At each interval,
the summation of the generators’ output equaled the summation of the load demand plus
the transmission losses, meaning the solution did not violate the equality restrictions at each
time interval. From these simulation results, it can be concluded that, compared with the
other comparative techniques, the MSSA provided the best results, meaning the efficiency
of the MSSA for solving the DEED problem was confirmed again. Figure 8 illustrate the
power balance restrictions that verified the PT, PD, and PL at each interval.
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Figure 7. Pareto Front of Case 2 with power loss obtained by (a) MSSA; (b) MALO; (c) MOGOA;
(d) MSSA and comparison of optimum solutions.

4.3. Case 3: 14-Unit Test System

In this case, the IEEE 118-bus system with 14 generating units considering the power
loss of the network was studied to confirm its effectiveness in solving the high dimen-
sional DEED problem with non-linear objectives and constraints. The best Pareto Front
of case three with a power loss attained using the proposed MSSA, MALO, and MOGOA
algorithms is shown in Figure 9. It is seen that the BCS of the proposed MSSA technique
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was USD 1.292 × 105 and 98.1415 lb, which was better than the two compared techniques.
Moreover, from this figure, we can see directly that the Pareto solutions of the proposed
MSSA were widely and well distributed.

Table 4. The optimum objective values of the second case.

Algorithm Objectives Total Cost/106 (USD) Emission/105 (Ib)

MSSA BC 2.505334 3.083911
BE 2.525936 3.046193
BCS 2.520778 3.05994

MALO BC 2.530114 3.0465133
BE 2.5301699 3.0464497
BCS 2.530128 3.04646

MOGOA BC 2.5233373 3.178493
BE 2.546446 3.0928948
BCS 2.5436 3.1126

NSGA-II BC 2.5168 3.1740
BE 2.6563 3.0412
BCS 2.5226 3.0994

RCGA BC 2.5168 3.1740
BE 2.6563 3.0412
BCS 2.5251 3.1246

MODE BC 2.5123 3.0113
BE 2.5436 2.9607
BCS 2.5224 3.0997

Bold values have the best performance; best cost (BC); best emission (BE); best compromise solution (BCS).

Table 5. The BCS of the second case acquired using MSSA with transmission losses (p.u.).

Hour P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 PL

1 150.01 138.07 166.79 132.28 153.54 117.74 57.83 64.50 54.36 20.46 19.59
2 150.09 142.01 135.31 167.76 148.41 134.97 70.44 74.86 65.90 42.62 22.38
3 151.11 149.39 186.96 177.14 160.71 129.73 96.10 102.74 79.65 53.16 28.68
4 180.36 173.72 188.94 189.97 170.87 159.04 125.90 118.29 79.96 55.00 36.05
5 152.47 191.60 185.68 227.73 219.00 159.49 129.98 119.07 79.83 54.92 39.78
6 216.24 195.52 216.39 264.98 241.20 157.90 129.89 119.96 79.93 54.92 48.92
7 212.53 234.47 271.75 254.13 238.67 159.30 130.00 120.00 79.96 55.00 53.81
8 230.46 237.72 303.67 277.65 242.83 159.54 129.50 119.32 79.66 54.57 58.92
9 283.42 303.83 325.48 295.22 242.08 160.00 129.92 119.88 79.99 54.99 70.80

10 332.92 342.01 338.70 299.98 243.00 160.00 130.00 120.00 79.99 54.99 79.58
11 376.74 389.20 339.96 300.00 243.00 160.00 129.99 120.00 80.00 55.00 87.88
12 397.87 416.60 339.99 300.00 243.00 160.00 130.00 120.00 80.00 55.00 92.46
13 356.03 372.61 339.88 299.98 242.96 159.99 130.00 119.99 79.99 55.00 84.44
14 292.50 296.25 318.86 299.34 242.96 159.97 129.99 119.98 79.99 54.98 70.82
15 230.56 229.74 292.52 294.79 242.63 160.00 129.58 120.00 80.00 55.00 58.82
16 171.31 174.43 237.51 245.09 240.74 157.37 124.65 118.51 75.72 52.61 43.94
17 157.28 150.24 203.43 235.55 238.54 155.80 127.08 119.30 77.52 54.81 39.54
18 213.11 203.73 246.62 245.80 226.31 158.13 129.67 119.72 79.40 54.44 48.94
19 232.58 239.14 295.31 280.12 242.93 159.98 129.98 119.92 79.96 55.00 58.93
20 309.10 311.05 338.90 300.00 243.00 159.86 130.00 120.00 80.00 55.00 74.90
21 286.57 288.13 334.04 297.93 243.00 160.00 130.00 120.00 80.00 55.00 70.67
22 211.19 217.82 260.45 248.14 225.32 146.40 119.67 116.17 78.09 53.94 49.19
23 151.66 139.84 197.33 208.20 202.88 104.38 129.89 117.26 71.11 41.56 32.11
24 151.96 137.93 164.64 182.20 198.39 109.62 102.80 90.20 42.34 29.29 25.38
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The obtained results of the proposed technique were compared with others, which
confirmed the capability of the proposed technique to find the optimal solution for the
DEED problem. The detailed compared results are displayed in Table 6.

Table 6. Comparison of the optimum objective values of Case 3.

Algorithm Objectives Total Cost//105 (USD) Emission (Ib)

MSSA BC 1.2548728 110.02359
BE 1.3560793 91.69988
BCS 1.29200 98.1415

MALO BC 1.3406945 98.15331
BE 1.3638826 92.150718
BCS 1.34938 94.1988

MOGOA BC 1.2822754 114.45838
BE 1.3853273 93.275504
BCS 1.29844 108.6742

Bold values have the best performance; best cost (BC); best emission (BE); best compromise solution (BCS).

The power outputs of the generating units are tabulated in Table 7 and the 24 h total
fuel cost value and the value of the total emissions were USD 129,200.076 and 98.1415 Ib,
respectively. It can be proved from Table 7 that the total generated power was equal to the
summation of PL and PD and that all the inequality constraints were fulfilled, which shows
the efficacy of the MSSA. The output power of each generator, total power, load demand,
and power loss are shown in Figure 10.
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Table 7. The BCS of the third case attained using MSSA with transmission losses (p.u.).

Hour P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 PL

1 1.8448 1.0056 0.7031 0.8494 0.6978 0.7539 0.6777 0.6474 0.7207 0.8242 0.7970 1.0141 0.6891 0.6274 1.8522
2 1.8686 1.5590 0.7619 0.8887 0.8204 0.7799 0.8150 0.6967 0.8426 1.0303 1.0040 1.3621 0.7007 0.6837 1.8136
3 1.9159 1.4781 0.7493 0.8146 0.8097 0.7498 0.7031 0.6984 0.9535 0.8321 0.8117 0.8954 0.6964 0.6315 1.7394
4 1.5969 1.2879 0.6443 0.7765 0.7695 0.7960 0.6510 0.6319 0.6807 0.7502 0.8043 1.1795 0.7743 0.6046 1.9476
5 1.5783 1.2570 0.8429 0.7314 0.7314 0.7883 0.7075 0.6977 0.7986 0.8820 0.8005 1.0211 0.6197 0.6664 1.9229
6 1.7012 1.3836 0.8931 1.0650 0.7281 0.8062 0.8671 0.8092 1.0783 0.9772 0.9998 1.1138 0.7438 0.6578 1.8242
7 1.8590 1.6225 1.0377 1.0833 1.0213 1.0505 0.8526 0.7107 1.0057 1.2990 1.0806 1.1119 0.8145 0.6702 1.7194
8 2.2770 1.7767 0.8949 0.9837 0.9789 1.0381 0.7910 0.8754 0.9454 1.3403 1.0184 1.2218 0.8397 0.7222 1.6034
9 1.9798 2.1283 0.8953 1.0316 0.8775 0.9845 0.9566 0.8269 1.2213 1.3621 1.1799 1.5283 0.8622 0.7757 1.7100
10 2.2102 1.7363 0.9107 0.9018 0.9547 0.8503 0.8137 1.0557 0.9148 1.2187 1.0422 1.3154 0.8075 0.7241 1.6560
11 2.2647 1.8614 0.8648 1.1936 1.0429 0.8684 1.0178 0.9309 1.0312 1.1771 1.0551 1.5499 1.0144 0.7607 1.6330
12 2.2892 1.9223 1.2679 1.5490 0.9783 1.1875 0.8261 0.9638 1.2831 1.2737 1.0947 1.6729 0.9701 0.7903 1.5689
13 2.1056 1.9158 1.0940 1.1415 0.9491 1.2375 0.8647 0.7604 1.0287 1.1263 1.3653 1.4299 0.9939 0.7363 1.6489
14 1.9923 1.7601 0.9725 1.0530 1.1690 0.9384 0.8627 0.8816 0.8881 1.3040 1.1878 1.4874 0.8726 0.6524 1.7218
15 2.0599 1.5643 0.8444 0.9778 0.9095 0.8642 0.7872 0.7977 0.9421 1.3365 1.1358 1.0737 0.8018 0.6860 1.6808
16 2.1009 1.7972 1.1459 1.0448 1.1458 0.9029 0.8425 0.8539 1.0513 1.2255 1.0421 1.3444 1.0195 0.7369 1.6536
17 2.1883 2.0192 0.9134 1.0916 1.1254 1.0463 0.9255 0.8499 0.9232 0.9825 1.0277 1.3759 0.9342 0.7155 1.6186
18 2.2892 2.1489 1.0146 1.1794 0.8802 1.1092 0.8609 0.7866 1.0821 1.1133 1.3164 1.4556 0.8095 0.7232 1.5690
19 2.1990 1.9796 0.8941 0.9135 1.0583 1.0535 0.8683 0.8093 1.0409 1.1729 1.2207 1.6510 0.8146 0.7100 1.6856
20 1.9954 1.6575 0.9303 1.0157 0.9446 1.1513 1.0201 0.8893 1.1961 1.1178 1.4577 1.3617 0.7764 0.7405 1.7543
21 2.2082 1.6239 0.8441 0.8003 0.9282 1.0949 0.7419 0.7442 0.9581 0.9384 1.0039 1.4912 0.7182 0.7269 1.7224
22 1.7212 1.9025 0.8127 0.8846 1.0127 0.8447 0.7468 0.7491 0.8413 1.1173 0.9040 1.2863 0.8112 0.7732 1.8075
23 1.9478 1.6296 0.8620 0.9937 0.8662 0.8004 0.7688 0.6997 0.9438 1.2162 0.9303 1.2251 0.6933 0.6424 1.7192
24 1.7457 1.8476 0.8600 0.8294 0.8312 0.9356 0.7420 0.7182 0.8128 1.1049 0.7625 1.1912 0.7391 0.6600 1.7803
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Table 8. HV indicator values of results obtained for the three cases. 

Case No.  MSSA MALO MOGOA 
Case 1 Best 0.807653 0.636744 0.646386 
 Worst 0.789138 0.171571 0.185795 
 Mean 0.800696 0.39641 0.438754 
 Std dev. 0.006691 0.139975 0.14251 
Case 2 Best 0.665428 0.1914 0.617644 
 Worst 0.08684 0 0.049874 
 Mean 0.3104 0.07108 0.394762 
 Std dev. 0.195818 0.080641 0.21163 
Case 3 Best 0.634702 0.704149 0.578087 
 Worst 0.584107 0.427635 0.515367 
 Mean 0.610866 0.554619 0.542181 
 Std dev. 0.015048 0.095316 0.020538 
Bold values have the best performance. 

Figure 10. Constraints check for the BCS of the third case using MSSA.

The hypervolume (HV) indicator is a set measure used in multi-objective optimization
techniques to evaluate the performance of search algorithms. The hypervolume metric is
defined as the volume covered by the assessed Pareto Front Y = (y(1), y(2), . . . , y(N) based
on a given reference point t = (t1, t2, t3). Therefore, the HV(Y, t) is then defined as [43]:
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HV(Y, t) =
(

t1 − y(1)1

)(
t2 − y(1)2

)(
t3 − y(1)3

)
+ ∑N

i=2

(
t1 − y(i)1

)(
y(i−1)

2 − y(i)2

)(
y(i−1)

3 − y(1)3

)
(13)

As depicted in Table 8, the HV of the MSSA outperformed that of the other two
techniques in terms of the best, worst, average, and std dev. values, which proves that the
technique can achieve ND solutions with a much better capability, consistency, and variety
for the three cases compared to the other techniques.

Table 8. HV indicator values of results obtained for the three cases.

Case No. MSSA MALO MOGOA

Case 1 Best 0.807653 0.636744 0.646386
Worst 0.789138 0.171571 0.185795
Mean 0.800696 0.39641 0.438754
Std dev. 0.006691 0.139975 0.14251

Case 2 Best 0.665428 0.1914 0.617644
Worst 0.08684 0 0.049874
Mean 0.3104 0.07108 0.394762
Std dev. 0.195818 0.080641 0.21163

Case 3 Best 0.634702 0.704149 0.578087
Worst 0.584107 0.427635 0.515367
Mean 0.610866 0.554619 0.542181
Std dev. 0.015048 0.095316 0.020538

Bold values have the best performance.

5. Conclusions

In this article, a DEED model was presented. In this DEED model, the fuel cost and
total pollutant emissions were optimized as incompatible objectives through a definite
dispatch time. The non-linear aspects of the generating units’ ramp rate bounds, VPE,
variation of the load demand, and transmission loss were considered. An MSSA was
suggested to solve the DEED problem. By testing three cases of three power systems, the
obtained results confirmed that the DEED problem was proficiently solved using the MSSA
and that a group of well and widely distributed Pareto optimal solutions was acquired
rapidly. A comparison of the results with algorithms suggested in related publications
showed that the MSSA had better effectiveness and better prospective applications. The
study included a comparison with other recent algorithms, including the multi-objective
antlion optimizer (MALO), multi-objective grasshopper optimization algorithm (MOGOA),
and other published multi-objective algorithms. Additionally, the Pareto Fronts attained
for the assessed technique demonstrated the supremacy of the solutions achieved using the
MSSA, which indicated the efficacy and applicability of the model in solving complicated
MOPs definite to power systems’ operations. In addition, all the Pareto Front curves
confirmed that the proposed MSSA can give well-disseminated solutions with the fuel
cost and emission functions. It was confirmed that the proposed MSSA can achieve well-
distributed and high-quality Pareto optimal solutions for the DEED problem and has the
possibility to achieve the optimum solution for the MOPs of other power systems. In terms
of the model’s additional improvement, future studies on the development of the MSSA
for solving the power systems’ problems including the renewable energy sources in the
suggested power system such as wind power and solar power are suggested as, due to their
randomness, it will be more complicated to optimize the solution. Therefore, it is necessary
to explore a more complete model and to develop the MSSA optimization algorithm to
enhance its strength.
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Appendix A

Table A1. The load demands (MW) of the six-generator test system [29].

Hour PD Hour PD Hour PD

1 3.25 9 5.45 17 5.15
2 3.90 10 5.20 18 5.75
3 3.50 11 5.50 19 5.25
4 3.00 12 5.75 20 5.25
5 3.35 13 5.25 21 4.55
6 4.00 14 5.15 22 4.25
7 4.75 15 4.75 23 4.25
8 5.05 16 5.30 24 4.00
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Table A2. Generator and emission coefficients of the six-generator test system [44].

Unit Pmax
Gi Pmin

Gi ai(USD/h) bi(USD/MWh) ci(USD/(MW)2) αi βi γi ηi δi

PG1 150 5 10 200 100 4.091 −5.543 6.49 2.00 × 10−4 2.857
PG2 150 5 10 150 120 2.543 −6.047 5.638 5.00 × 10−4 3.333
PG3 150 5 20 180 40 4.258 −5.094 4.586 1.00 × 10−6 8
PG4 150 5 10 100 60 5.326 −3.55 3.38 2.00 × 10−3 2
PG5 150 5 20 180 40 4.258 −5.094 4.586 1.00 × 10−6 8
PG6 150 5 10 150 100 6.131 −5.555 5.151 1.00 × 10−5 6.667

Appendix B

Table A3. The load demands (MW) of the standard 39-bus ten-unit test system [34].

Hour PD Hour PD Hour PD

1 1036 9 1924 17 1480
2 1110 10 2022 18 1628
3 1258 11 2106 19 1776
4 1406 12 2150 20 1972
5 1480 13 2072 21 1924
6 1628 14 1924 22 1628
7 1702 15 1776 23 1332
8 1776 16 1554 24 1184

Table A4. Generator coefficients of the standard 39-bus 10-unit test system [45].

Unit Pmin
Gi Pmax

Gi ai(USD/h) bi(USD/MWh) ci(USD/(MW)2) di(USD/h) ei(rad/MW)

PG1 150 470 786.7988 38.5379 0.1524 450 0.041
PG2 135 470 451.3251 46.1591 0.1058 600 0.036
PG3 73 340 1049.998 40.3965 0.028 320 0.028
PG4 60 300 1243.531 38.3055 0.0354 260 0.052
PG5 73 243 1658.57 36.3278 0.0211 280 0.063
PG6 57 160 1356.659 38.2704 0.0179 310 0.048
PG7 20 130 1450.705 36.5104 0.0121 300 0.086
PG8 47 120 1450.705 36.5104 0.0121 340 0.082
PG9 20 80 1455.606 39.5804 0.109 270 0.098
PG10 10 55 1469.403 40.5407 0.1295 380 0.094

Table A5. Emission coefficients and ramp rate of the standard 39-bus 10-unit test system [45].

Unit αi βi γi ηi δi URi DRi

P1 103.3908 2.4444 0.0312 0.5035 0.0207 80 80
P2 103.3908 2.4444 0.0312 0.5035 0.0207 80 80
P3 300.391 4.0695 0.0509 0.4968 0.0202 80 80
P4 300.391 4.0695 0.0509 0.4968 0.0202 50 50
P5 320.0006 3.8132 0.0344 0.4972 0.02 50 50
P6 320.0006 3.8132 0.0344 0.4972 0.02 50 50
P7 330.0056 3.9023 0.0465 0.5163 0.0214 50 30
P8 330.0056 3.9023 0.0465 0.5163 0.0214 30 30
P9 350.0056 3.9524 0.0465 0.5475 0.0234 30 30
P10 360.0012 3.9864 0.047 0.5475 0.0234 30 30
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Table A6. The B-coefficients of the standard 39-bus 10-unit test system [45].

Bij 0.000049 0.000014 0.000015 0.000015 0.000016 0.000017 0.000017 0.000018 0.000019 0.00002
0.000014 0.000045 0.000016 0.000016 0.000017 0.000015 0.000015 0.000016 0.000018 0.000018
0.000015 0.000016 0.000039 0.00001 0.000012 0.000012 0.000014 0.000014 0.000016 0.000016
0.000015 0.000016 0.00001 0.00004 0.000014 0.00001 0.000011 0.000012 0.000014 0.000015
0.000016 0.000017 0.000012 0.000014 0.000035 0.000011 0.000013 0.000013 0.000015 0.000016
0.000017 0.000015 0.000012 0.00001 0.000011 0.000036 0.000012 0.000012 0.000014 0.000015
0.000017 0.000015 0.000014 0.000011 0.000013 0.000012 0.000038 0.000016 0.000016 0.000018
0.000018 0.000016 0.000014 0.000012 0.000013 0.000012 0.000016 0.00004 0.000015 0.000016
0.000019 0.000018 0.000016 0.000014 0.000015 0.000014 0.000016 0.000015 0.000042 0.000019
0.00002 0.000018 0.000016 0.000015 0.00016 0.000015 0.000018 0.000016 0.000019 0.000044

Bi0 0 0 0 0 0 0 0 0 0 0
B00 0

Appendix C

Table A7. The load demands (MW) of the IEEE 118-bus 14-generator test system [29].

Hour PD Hour PD Hour PD

1 10.0 9 14.9 17 14.5
2 12.0 10 13.8 18 15.2
3 11.0 11 15.0 19 14.7
4 10.0 12 16.5 20 14.5
5 10.2 13 15.1 21 13.1
6 12.0 14 14.3 22 12.6
7 13.5 15 13.1 23 12.5
8 14.1 16 14.6 24 12.0

Table A8. Generator and emission coefficients of the IEEE 118-bus 14-generator test system [46].

Unit Pmax
Gi Pmin

Gi ai(USD/h) bi(USD/MWh) ci(USD/(MW)2) αi βi γi

PG1 300 50 150 189 0.5 0.016 −1.5 23.333
PG2 300 50 115 200 0.55 0.031 −1.82 21.022
PG3 300 50 40 350 0.6 0.013 −1.249 22.05
PG4 300 50 122 315 0.5 0.012 −1.355 22.983
PG5 300 50 125 305 0.5 0.02 −1.9 21.313
PG6 300 50 70 275 0.7 0.007 0.805 21.9
PG7 300 50 70 345 0.7 0.015 −1.401 23.001
PG8 300 50 70 345 0.7 0.018 −1.8 24.003
PG9 300 50 130 245 0.5 0.019 −2 25.121
PG10 300 50 130 245 0.5 0.012 −1.36 22.99
PG11 300 50 135 235 0.55 0.033 −2.1 27.01
PG12 300 50 200 130 0.45 0.018 −1.8 25.101
PG13 300 50 70 345 0.7 0.018 −1.81 24.313
PG14 300 50 45 389 0.6 0.03 −1.921 27.119
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