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Abstract: Uniaxial compressive strength (UCS) and the static Young’s modulus (Es) are fundamental
parameters for the effective design of engineering structures in a rock mass environment. Deter-
mining these two parameters in the laboratory is time-consuming and costly, and the results may
be inappropriate if the testing process is not properly executed. Therefore, most researchers prefer
alternative methods to estimate these two parameters. This work evaluates the thermal effect on the
physical, chemical, and mechanical properties of marble rock, and proposes a prediction model for
UCS and ES using multi-linear regression (MLR), artificial neural networks (ANNs), random forest
(RF), and k-nearest neighbor. The temperature (T), P-wave velocity (PV), porosity (η), density (ρ),
and dynamic Young’s modulus (Ed) were taken as input variables for the development of predictive
models based on MLR, ANN, RF, and KNN. Moreover, the performance of the developed models
was evaluated using the coefficient of determination (R2) and mean square error (MSE). The thermal
effect results unveiled that, with increasing temperature, the UCS, ES, PV, and density decrease while
the porosity increases. Furthermore, ES and UCS prediction models have an R2 of 0.81 and 0.90 for
MLR, respectively, and 0.85 and 0.95 for ANNs, respectively, while KNN and RF have given the R2

value of 0.94 and 0.97 for both ES and UCS. It is observed from the statistical analysis that P-waves
and temperature show a strong correlation under the thermal effect in the prediction model of UCS
and ES. Based on predictive performance, the RF model is proposed as the best model for predicting
UCS and ES under thermal conditions.

Keywords: thermal effect prediction model; uniaxial compressive strength; static Young’s modulus;
artificial neural network; multilinear regression
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1. Introduction

In recent years, investigations into and understandings of reservoir rock behaviour
under differing high temperatures (T) have become imperative for the safe implementation
of engineering projects [1–8]. The behaviour of rock under high temperatures is a major
concern in geological sciences, underground engineering, geothermal energy exploitation,
deep mining, nuclear waste disposal, engineering structures, and coal gasification. The
high temperatures alter and degrade the properties of the rock mass associated with these
engineering structures [9]. Granite, in particular, contains heat-producing radioactive
isotopes that raise the thermal gradient and stimulate the geothermal system (EGSs) up
to 350 ◦C [10–13]. This thermal stress dramatically affects the mechanical properties of
the reservoir rock. Furthermore, different heating conditions exhibit distinct mechanical
properties compared to the intact rock’s room temperature, affecting borehole stability.
Therefore, it is essential to study the high thermal mechanics and their effects on the
reservoir rock properties for the safe and efficient execution of the engineering project.

Previous research shows that rocks’ physical and mechanical properties are signifi-
cantly affected by increasing thermal conditions due to the alteration of mineral composition
and intergrain bonding [14–16]. Furthermore, the high temperature can cause a thermal
expansion in the rock-forming mineral, inducing thermal stress in the rock resulting in the
development of micro-cracks and propagating the existing cracks and length [15,17–24]. For
instance, Chen et al. [25] noted that the UCS and Young’s modulus (E) of rock are decreased
with the increases in temperature up to 1000 ◦C. Homand-Etienne and Houpert [14], and
Chen, Ni, Shao, and Azzam [25], concluded from their research that the UCS of granite
decreased slightly with an increase in temperature up to 400 ◦C, but a dramatic decline
in UCS was observed when the temperature exceeded 400 ◦C. Peng, Rong, Cai, Yao, and
Zhou [15] evaluated marble’s physical and mechanical properties and found that the UCS
and E both decrease with the increase in temperature. Considering the importance of UCS
and ES used as input parameters in the effective design and rock mass behaviour analysis,
it is essential to evaluate these parameters under high-temperature mechanics.

It is possible determine UCS and ES by both destructive and non-destructive meth-
ods [26]. The destructive testing for both parameters is time-consuming and expensive, and
the core sampling needs high precision, while the obtained results can be ambiguous [27,28].
Therefore, researchers have focused their attentions on non-destructive techniques. Several
studies have been conducted using various artificial intelligent (AI) techniques to predict
rock’s strength and stiffness properties [29]. In this regard, Manouchehrian et al. [26]
predicted UCS using texture as input variables based on ANN and multivariate statistics.
Likewise, [26,30] used porosity (η), PV, and ρ as input variables and predicted UCS and
ES based on ANNs and ANFIS. Abdi, Garavand, and Sahamieh [28] proposed the ANN
and MLR methods for predictive modeling of E using η in %, dry density (γd), P-wave
velocity (PV), and water absorption as input variables. It was found that the prediction
performance of ANN is better than MLR. Dehghan et al. [31] predicted UCS and Es based
on ANNs and MLR using PV, the point load index, the Schmidt hammer rebound number,
and η as input variables. Some cutting-edge machine learning models are also adopted to
predict UCS and Es. For example, Zhang et al. [32] proposed a beetle antennae search (BAS)
algorithm-based RF model to accurately and effectively predict the UCS of lightweight
self-compacting concrete (LWSCC). Matin et al. [33] used the RF model to select variables
within several rock properties and indexes, namely porosity (η), water content, Is (50),
p-wave velocity (PV), and rebound numbers (Rn), along with an effective model for the
prediction of UCS and E based on the RF preferred variables. Suthar [34] appraised the po-
tential of five modeling approaches, namely M5 model tree, RF, ANN, SVM, and Gaussian
processes (GPs) for predicting the UCS of stabilized pond ashes with lime and lime sludge.
Wang et al. [35] proposed an RF model to accurately predict the UCS of rocks from simple
index tests. Matin et al. [33] predicted E using RF, and multivariate regression (MVR) and
a generalized regression neural network (GRNN) were used for comparison. The results
revealed that RF performed well compared to MVR and GRNN. Ren et al. [36] developed
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several ML algorithms, namely k-nearest neighbors (KNN), naive Bayes, RF, ANN, and
SVM, to accurately predict rock’s UCS using ANN and SVM. Ghasemi et al. [37] evaluated
the UCS and E of carbonate rocks by developing a tree-based approach. According to their
findings, the applied method revealed highly accurate results. Saedi et al. [38] studied
the prediction of the UCS and E of migmatite rocks by ANN, ANFIS, and multivariate
regression (MVR). Shahani et al. [39] developed an XGBoost model to predict the UCS and
E of intact sedimentary rock. Armaghani et al. [40] developed a hybrid model based on
ANN and imperialist competitive algorithm (ICA) to predict UCS and E of granite rocks.
Although, the above-discussed literature has provided useful insights into predicting the
UCS and E by utilizing different machine learning approaches, there has been, to date,
no significant study documented which consider the thermal effect on the physical and
mechanical behaviors of rock. The temperature has a great effect on these physical and me-
chanical properties. Therefore, it is imperative to increase the performance of the proposed
model and to explore the use of a new input variable, i.e., temperature, in predicting the
UCS and Es.

This current research was carried out in the following three steps: (1) microscopic
observation was performed on thin sections of various rock samples treated at differ-
ent thermal conditions. (2) Secondly, the physical and mechanical properties of marble
were investigated under the influence of temperature. (3) Finally, using physical and
mechanical properties, such as T, PV, ρ, η, and Ed as input variables, the UCS and Es were
predicted using different statistical and computational intelligence methods, including
MLR, ANN, RNN, and RF. The results of this study will serve to help researchers to better
understand the thermal effect on the physical and mechanical properties of rocks in a
sweltering environment.

2. Regional Geological Setting

Northward subduction of the Indian Plate under the Kohistan Island Arc results in
upper amphibolite, blueschist, and eclogite facies under metamorphic conditions. These
high-grade metamorphic rocks form exposures from west to east in the Kotah/Loe Sar
domes. At the main mantle thrust (MMT), as well as in Indus syntaxis and Nanga Parbat,
there is a rapid exhumation and crustal anatexis of the Indian affinity plutonic, oceanic,
and metasedimentary rocks, as shown in Figure 1a. The grade of metamorphism and
deformation decrease south of the main collisional front at the MMT. The Khairabad/Panjal
thrust tectonically separates the more enormous Himalayan crystalline rocks from unmeta-
morphosed sedimentary rocks. For this reason, dimension stones including marble, granite,
granodiorites, nephrite, gabbro, quartzite, and serpentine exist between the MMT and
Khairabad/Panjal Thrust presented in Figure 1a. The current research focuses on the ~
Late to Middle Mesozoic Nikanai Ghar marble of the Nikanai Ghar Formation that crops at
24 to 27 Km south of the main convergent Indian plate margin at 34.501177” N, 72.288059”
E in the southernmost limbs of the Kotah and Loe Sar domes in the Buner district, as shown
in Figure 1b. The Nikanai Ghar marble, which is spread over 700 km2 and belongs to the
Alpurai Group metasediments, comprises marble, dolomite, and phyllites developed as a
result of a high geothermal gradient associated with active crustal thickening and anatectic
processes under the Barrovian metamorphic conditions between ca. 39 Ma and 28 Ma [41].
The total estimated marble in the district of Buner is 100 million tons. These marbles vary
in color as well as in grain size [42]. The Nikani Ghar marble has a mainly fine to medium
grain size. The marble individual bed thickness is 0.5–3.0 m, and the lateral extension
(length) varies from 1.5–3.0 Km.
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Figure 1. (a) Geological map of greater/higher and sub-Himalayan rocks [43]. (b) Detailed 
geological map of the Lower Swat after [44]. 

Figure 1. (a) Geological map of greater/higher and sub-Himalayan rocks [43]. (b) Detailed geological
map of the Lower Swat after [44].

Regional geological map as presented in Figure 1a show the distribution of the
greater/higher-, lesser-, and sub-Himalayan rocks. South of the convergent plate margin
between the Indian plate and Kohistan Island Arc, high temperature and pressure con-
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verted limestone stratigraphic units of the greater Himalaya into marble. Indian plate
basement rocks are exposed in the cores of Indus syntaxis and Nanga Parbat. The MMT
separates the Indian plate from the Kohistan Island Arc. The MKT is the convergent plate
boundary between the Kohistan Island Arc and Karakoram microplate [44].

A detailed geological map is presented in Figure 1b of the Lower Swat, showing the
main stratigraphic and structural components of the northernmost convergent plate margin
of the Indian Plate. Crustal thickening, metamorphism, and partial melting of the middle
crust resulted in the Barrovian metamorphic conditions during the prograde burial of
the Indian affinity rocks beneath the Kohistan Island Arc. Marble, quartzite, schist, and
gneisses developed from limestone, sandstone, shale, and granite protoliths, respectively
(after Hussain et al. 2004 [44]).

3. Experimental Design
3.1. Rock Specimen

In this research, marble specimens were collected from Buner, Khyber Pakhtunkhwa,
Pakistan, which has the coordinates 34.501177′ ′ N, 72.288059′ ′ E. The representative rock
specimens were collected in boulder form from different points within the quarry. The
cylindrical core samples (with dimensions of 54 × 108 mm) were prepared according to
the International Standard of Rock Mechanics (ISRM) [45,46]. To avoid the nonparallelism
between ends of the samples, the maximum allowable deviation of ±0.3 in length and
±0.5 were kept. The specimen’s ends were carefully ground and polished within 0.03 mm.
The rock processing and testing scheme are shown in Figure 2.
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Figure 2. Schematic flowsheet of samples preparation and sample testing, as follows: (a) core bit
machine for core extraction, (b) furnace for heating sample, (c) universal testing machine (UTM) for
UCS, (d) cylindrical core before cutting and polishing, (e) cylindrical core after cutting and polishing,
(f) core sample under compression in UTM, (g) core cutting & polishing instrument (h) the PUNDIT
for P-waves, and (i) core samples after failure.

3.2. Heating Procedure

The samples were heated in a furnace with a maximum operating temperature of
1200 ◦C and a power of 10 kW, as shown in Figure 2b. A total of 64 samples were heated at
different predetermined temperatures in a furnace for 24 h and then cooled down gradually
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to room temperature. The predetermined temperatures were divided into ten groups,
namely 25 ◦C, 200 ◦C, 250 ◦C, 300 ◦C, 350 ◦C, 400 ◦C, 450 ◦C, 500 ◦C, 550 ◦C, and 600 ◦C,
and each group contained an average of 6 samples.

3.3. Samples Characterization

Representative samples were properly prepared, before being subjected to different
types of analytical techniques for mineralogical evaluation. Thin-section study was carried
out under an optical reflection microscope (Nikon Microphoto-FXA, Type 118) for mineral
identification. The X’Pert PRO MPD instrument (with the specifications of Cu Kα, 40 mA
current, and 40 kV voltage) was used for XRD analysis to determine the minerals; crystal
size and mineral composition. A scanning electron microscope (SEM) with an energy
dispersive X-ray spectrometer (SEM-EDX), with a specification of 6610LV+ OXFORD X-
max, Japan, and an energy range 0–20 KV, was used for the determination of morphology
and mineral microstructure element distribution in the specimen. Major oxides’ element
percentage was determined in the marble sample including SiO2, Fe2O3, CaO, Al2O3, MgO,
MnO, Na2O, and K2O and loss of ignition was assessed by X-ray fluorescence (XRF).

3.4. Ultrasonic Test

A portable ultrasonic nondestructive digital indicating tester (PUNDIT) was used to
compute the ultrasonic parameters,0such as ultrasonic P-wave velocity. This is shown in
Figure 2e. The Ed and PV were determined by an empirical relation [24].

3.5. Universal Testing Machine (UTM)

The mechanical properties of marble were determined in the laboratory by UTM, as
shown in Figure 2g. The maximum capacity of machine is 250 KN. The UCS, ES, shear, and
bulk modulus were determined for each predetermined temperature.

3.6. Intelligent Models
3.6.1. Multiple Linear Regression (MLR) Model

It is routine to use MLR to forecast the relationship between important parameters. It
is understood that MLR is an expanded variant of basic linear regression, which is utilized
in prediction modes with several predictive variables. In this study, MLR model design for
UCS and ES is based on five parameters, such as T, PV, ρ, η, Ed, as shown in Table 1.

Table 1. Basic descriptive statistics for the original data set.

Parameter Minimum Maximum Mean Std. Deviation Mean Std. Error

T 25 600 328.12 168.77 21.09
Ed 22 82 43.08 14.91 1.86
N 9 29 16.80 5.21 0.65
P 3 3 2.69 0.02 0.01

PV 3 6 4.22 0.65 0.08
UCS 63 115 84.72 18.72 2.34

Es 8 66 24.77 15.41 1.93

The multilinear regression result general equation is given as follows:

Y = c + b1X1+b2X2+b3X3 + . . . . . . . . . . bnXn (1)

where, Y, c, X1 to Xn, and b1 to bn are the dependent variable, constant, independent
variable, and partial regression coefficient, respectively [47,48].
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3.6.2. Artificial Neural Network (ANN) Model

An ANN plays a significant role and considered as an intelligent tool for solution of
complex engineering-based problems in geotechnical engineering [49,50]. In this research,
the multi-layered perception (MLP) is used. It is composed of three layers, as follows:
(1) an input layer which is used to give data to the network; (2) a hidden layer which
uses an algorithm and collection of features, the neurons, and the hidden layer selected
on trial and error methods [51]; (3) an output layer which gives the output of the input
data. Each layer contains many neurons depending on the specific application. Each layer
neuron is in connection to the next successive layer and each link carries a weight [52].
Furthermore, several algorithms are used for the ANN model. Nevertheless, the most
efficient is backpropagation (BP), which is used in many engineering problems due to its
simple training function.

A supervised learning technique must be used throughout the training phase to ensure
the accuracy and effectiveness of any classification and task in ANN. A group of examples
are used in the training of the BP algorithm’s networking to connect and link the nodes and
to identify the parametric function, also referred to as weight inadequate methods. In order
to minimize the discrepancy between the actual output and the anticipated output, the
mean square error (MSE) is repeatedly lowered. Additionally, training aids in identifying
each iteration weight [53]. When training various kinds of networks, the BP method
is often used. Previous research has shown that the BP method takes into account and
assumes a random value. This random value is then used by the NN operation to compute
output. The weight value will be adjusted in order to cut down on the margin of error,
and this procedure will be repeated as many times as necessary until the minimal result is
reached [54]. The model must be trained, and a wide number of scholars have provided
specifics of how this might be accomplished [55–57].

ANN Code Compilation in MATLAB

As shown in Figure 3a, our research constructed self-generated ANN code for n
numbers of networks while preserving the same training and activation function for a
single loop. This code includes a loop function that may run for as many networks as the
user resembling. This code’s activation function was fixed in general, but the data’s nature
could be altered. In this scenario, the code was run once for 100 networks. For each network
in a loop, the number of neurons increased with each successor and, thus, network1 had
one neuron, network2 had two, and so forth. Different algorithms are available for ANN,
but the most efficient is BP with the Levenberg–Marquardt algorithm suggested by Ullah
et al. [58]. He conducted a detailed study on types of learning algorithms available for
ANN. Rao and Kumar [59] concluded that the Levenberg–Marquardt (LM) is more efficient
and takes less of a time epoch, while giving better results as compared to other algorithms.
Therefore, LM was used in the current model for both the hidden and output layers.

The fundamental structure in this study consists of five inputs (T, PV, ρ, η, and Ed)
and two outputs (UCS and ES), as illustrated in Figure 3b. The dataset consisted of 60 data
points in total. The data was separated into the following three sections: training (75%),
testing (15%), and validation (15%).
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3.6.3. Random Forest Regression

The random forest regression (RFR) method was created to aid in predicting hanging
wall stability, because it can explain the non-linear relationship between inputs and outputs
without relying on statistical assumptions. This made it possible to pinpoint the procedure.
The RFR approach is used rather often in geotechnical engineering [60], but also used for
the stability of rock pillars, landslide susceptibility assessment, soil liquefaction potential,
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and for ground settlement prediction [58–62]. However, no research was documented
that was associated with the use of the RFR algorithm on the prediction of the hanging
wall’s stability.

Two of the most important aspects of RFR are known as the decision tree (DT) approach
and the bagging methodology. Depending on the datasets, the DT approach may be used to
solve problems relating to classification as well as regression. When using the DT approach,
the feature space will first be segmented into sub-regions. Iterative partitioning is carried
out up to the point when the termination condition is met. During the construction of
a DT, three different components are produced, namely branches, internal nodes, and
exterior nodes. Nodes inside the network are always linked to decision functions, which
are responsible for determining which node should be visited after the current one. In
a DT, the nodes that are no longer divided are referred to as the output nodes. These
nodes are also sometimes called terminals or leaf nodes. Because there are problems with
classification, every external node will be assigned a class label. This label will be used to
classify the data that is associated with that node. When building a DT, branches are used
to connect the many nodes, both internally and externally.

In spite of the fact that the DT method may be beneficial in a variety of applications,
including civil engineering, Breiman [61] claims that the RFR algorithm is a more effective
strategy than the DT method. This is the case despite the fact that the DT method can be
used to the study of a variety of different topics. It has been shown to be more reliable than
the use of a single tree in a range of data mining applications [62–64]. The RFR technique
is a sort of ensemble learning that makes predictions based on bagging the data. Bagging
is the foundation of this strategy. In the process of RFR, many of the samples collected
via the bagging method are joined with those gathered through other methods to form a
collection of decorrelated DTs. The results of averaging all of the DTs are employed, and
this is done so that the quality of the modelling may be improved without resorting to
overfitting. Figure 4 presents an overview of RF’s general architectural makeup. In this
figure, the value n denotes the total number of trees, while the numbers k1, k2, etc., up to
and including kn, denote the results of each individual DT.

Sustainability 2022, 14, 9901 9 of 27 
 

 

liquefaction potential, and for ground settlement prediction [58–62]. However, no 
research was documented that was associated with the use of the RFR algorithm on the 
prediction of the hanging wall’s stability. 

Two of the most important aspects of RFR are known as the decision tree (DT) 
approach and the bagging methodology. Depending on the datasets, the DT approach 
may be used to solve problems relating to classification as well as regression. When using 
the DT approach, the feature space will first be segmented into sub-regions. Iterative 
partitioning is carried out up to the point when the termination condition is met. During 
the construction of a DT, three different components are produced, namely branches, 
internal nodes, and exterior nodes. Nodes inside the network are always linked to decision 
functions, which are responsible for determining which node should be visited after the 
current one. In a DT, the nodes that are no longer divided are referred to as the output 
nodes. These nodes are also sometimes called terminals or leaf nodes. Because there are 
problems with classification, every external node will be assigned a class label. This label 
will be used to classify the data that is associated with that node. When building a DT, 
branches are used to connect the many nodes, both internally and externally. 

In spite of the fact that the DT method may be beneficial in a variety of applications, 
including civil engineering, Breiman [61] claims that the RFR algorithm is a more effective 
strategy than the DT method. This is the case despite the fact that the DT method can be 
used to the study of a variety of different topics. It has been shown to be more reliable 
than the use of a single tree in a range of data mining applications [62–64]. The RFR 
technique is a sort of ensemble learning that makes predictions based on bagging the data. 
Bagging is the foundation of this strategy. In the process of RFR, many of the samples 
collected via the bagging method are joined with those gathered through other methods 
to form a collection of decorrelated DTs. The results of averaging all of the DTs are 
employed, and this is done so that the quality of the modelling may be improved without 
resorting to overfitting. Figure 4 presents an overview of RF’s general architectural 
makeup. In this figure, the value n denotes the total number of trees, while the numbers 
k1, k2, etc., up to and including kn, denote the results of each individual DT. 

 
Figure 4. A simple sketch of a regression using a random forest. 

3.6.4. k-Nearest Neighbor 
The k-nearest neighbor (KNN) method is simple, powerful, and straightforward to 

implement [65]. In the same way that ANN and RF are used for classification and regression, 
so, too, is this technique. The following are some benefits associated with using this method: 
1. It is straightforward to grasp and put into practice. 

Final Result 

Tree 1 Tree 2 
Tree n 

Instance 

… 

K1 K2 Kn … 

Averaging 

Figure 4. A simple sketch of a regression using a random forest.

3.6.4. k-Nearest Neighbor

The k-nearest neighbor (KNN) method is simple, powerful, and straightforward
to implement [65]. In the same way that ANN and RF are used for classification and
regression, so, too, is this technique. The following are some benefits associated with using
this method:

1. It is straightforward to grasp and put into practice.
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2. When it is employed for classification and regression, it can learn non-linear decision
boundaries, and it can also invent a highly flexible choice limit by adjusting the value
of K. Both of these capabilities are available when it is applied.

3. The KNN architecture does not have a step that is specifically dedicated to training.
4. Since there is only one hyperparameter, which is denoted by the letter K, adjusting

the other hyperparameters is quite simple.

The essential concept behind KNN is to locate a group of “k” samples (for example,
by applying distance functions) that are close in distance to unknown samples in the
calibration dataset. This may be accomplished by searching for groups of samples that
are similar to each other. In addition, KNN determines the class of unknown samples
by calculating the average of response variables and then comparing those results to the
“k” samples [66]. As a consequence of this, the value of k is critically important to the
performance of the KNN [67]. For the purpose of the regression issue, the three distance
function, which computes the distance between neighboring points and is presented in the
following Equations (2)–(4), is utilized:

F(e) =

√√√√ f

∑
i=0

(xi − yi)
2 (2)

F(ma) =
f

∑
i=0
|xi − yi| (3)

F(ma) =

(
f

∑
i=0

(|xi − yi|)
q) 1

q

(4)

where F(e) stands for the Euclidean function, F(ma) stands for the Manhattan function,
F(mi) stands for the Minkowski function, xi and yi stand for the ith dimension, and q stands
for the order between the points x and y.

4. Experimental Results
4.1. Physical Properties

The temperature significantly affects the physical properties of a rock specimen, as
shown by Peng et al. [15]. As the temperature increases, and at the maximum temperature
of 600 ◦C, the color of the sample changes from milky white to gray. It is believed that, as the
temperature increases, the composition and color of the samples changes accordingly. The
percentages of mineral constitution of samples at room temperature and 600 ◦C temperature
were noted to be different. These variations are confirmed through XRD and XRF, as shown
in Table 2 and Figure 5a,b. The XRD and XRF results revealed that the samples are mainly
composed of calcite, dolomite, and other minerals traces, as shown in Table 2. The increase
in temperature has an inverse effect on the intensity of calcite, which is confirmed from the
results of the XRD and XRF, as shown in Figure 5a,b. Moreover, it is clear from Table 2 that
the temperature increase does not influence the composition of marble. For each mineral,
some differences in mineral composition result from the heterogeneity of the marble as
described in Table 2, which is in agreement with the previous studies [68,69].

Table 2. Average group XRF analysis of samples at different temperatures.

Temperature
(◦C)

SiO2
(%)

TiO2
(%)

Al2O3
(%)

Fe2O3
(%)

MnO
(%)

MgO
(%)

CaO
(%)

Na2O
(%)

K2O
(%)

P2O5
(%)

LoI
(%)

25 0.405 0 0.352 0.121 0.012 0.373 53.892 2.552 0.012 0.000 42.28
200 0.404 0 1.5 1 0.014 2.17 52.89 2.2 0.012 0.000 41.81
400 0.5 0 2.45 2.3 0.34 2.37 50 3.1 0.71 0.000 38.23
600 0.51 0 3.1 2.6 0.4 2.80 48.9 3.3 0.82 0.000 37.58
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Figure 5. (a) The XRD peak at a different temperature and (b) the XRF analysis at different
temperature ranges.

The XRD result shows that the rock is mainly composed of calcite and dolomite. The
trends in Figure 5a,b show a decrease in the intensity of calcite as temperature increases. The
increase in temperature also significantly increased the crystallite size that is determined
using the Scherer formula. The result for different temperatures and crystallite size shows
that the crystallite size increases with the increase in temperature, as presented graphically
in Figure 6.
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Figure 6. Crystallite size variation with temperature.

4.2. Micro Crack Analysis

The optical microscopy studies revealed that the grain of the marble is homogeneous.
The samples are mainly composed of calcite and show the euhedral shape of crystals with
perfect rhombohedral cleavages. Figure 5 depict that the calcite minerals and grain are
considerably affected by thermal heat. The crack in the mineral and at the boundary of
interlock increase with temperature as shown in Figure 7a, while minerals boundary and
their interlock at high resolution were shown in Figure 7b. When temperature increases
from 25 ◦C to 600 ◦C, more micro-cracks were produced, which also propagated along the
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existing crack lengths. The samples at room temperature (25 ◦C), as shown in Figure 7a,b,
contains no cracks and the grains are well cemented. While increasing the temperature from
room temperature to 200 ◦C and 400 ◦C, the separation of some grains, more cracks, and,
especially, micro-cracks at grain boundaries were observed in Figure 7a,b. Furthermore,
when the temperature was increased to 600 ◦C, the trans-granular micro-cracks were
detected, as shown in Figure 7a,b.
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Figure 7. Optical microscopy at different temperatures. (a) SEM images for crack propagation;
(b) Micrograph of the thin section.

4.3. P-Wave Analysis

The wave velocities traveled differently in the specimens at different temperatures,
and this is shown in Figure 6. It can be seen from Figure 8 that the velocity of the wave
travel decreases with the temperature increase. This decrease is due to the micro-crack
generation, and to the existence of a crack and its extension in length, because wave velocity
is sensitive to different mediums. When a crack occurred in rocks, the wave velocity spread
slower in air than solid rocks, a pattern which is matched with the experimental results.
The trend is presented in Figure 8.
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4.4. Effect of Temperature on Stress–Strain Curve

The two parameters of rocks that play a significant role in engineering structure
stability are UCS and ES. The temperature effect on the stress–strain behaviors is shown in
Figure 9a. A gradual increase in temperature has decreased both the UCS and ES. Figure 9a
shows the complete stress–strain curve at different temperatures. The pre-peak stress–strain
is significantly influenced by temperature. Temperature variation illustrated a significant
influence on stress–strain relations. The initial deformation of the non-linearity pattern
increases in the stress–strain curve as the temperature increases. The stress–strain curves
shape reveals that, as the temperature increases, the number of micro-cracks is increased
and, as a result, the stress decreased. This is in agreement with the changes in material
properties from brittle to ductile. The marble rock’s overall ductility increases with the
increase in thermal heat, showing a strong agreement with the results of [15].
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Figure 9. (a) Stress–strain curve, (b) porosity and PV curve, (c) UCS and strain curve and (d) all static
and dynamic moduli at a different temperature.

The marble test results are summarized in Table 3. The result revealed the average
UCS, ES, PV, and ρ inverse relation with the increase in temperature, while the strain,
as well as η, shows a direct relationship, as indicated in Figure 9b,c. The value of UCS
decreased at the temperature range of 25–200 ◦C, but showed an increase at 200–300 ◦C,
which shows a resemblance to a previous study [70]. On the other hand, at temperatures
above 300 ◦C, the UCS decreased again. The increase in η and decrease in PV are in strong
agreement with [71]. Overall, the ES decreased with an increase in temperature, as shown
in Figure 9d.
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Table 3. Average physico-mechanical properties of marble rock.

S. No
T

(◦C)
PV

(km/s)
ρ

(gr/cm3)
n

(%)

Dynamic Moduli Static Moduli Strain
UCS

(MPa)Ed
(GPa)

Kd
(GPa)

Gd
(GPa)

Es
(GPa)

Ks
(GPa)

Gs
(GPa)
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1 25 5.49 2.711 12.15 77.83 48.304 35.086 61.62 42.792 24.453 1.83 113
2 200 5.03 2.707 12.56 47.73 28.393 19.577 24.5 17.229 9.699 4.16 105
3 250 4.98 2.698 15.79 44.32 27.403 18.018 22.32 15.966 8.808 4.25 107
4 300 4.87 2.695 16.02 41.90 26.642 16.932 20.9 15.145 8.228 4.30 109
5 350 4.78 2.689 16.51 41.37 25.370 15.041 18.32 13.754 7.167 4.36 80
6 400 4.67 2.685 17.09 40.75 24.287 13.524 16.32 12.477 6.365 4.47 73
7 500 4.48 2.681 19.78 40.00 23.682 12.744 15.34 12.117 5.950 4.75 69
8 600 4.35 2.68 24.49 39.13 22.404 11.091 13.24 10.712 5.116 5.80 63

5. Prediction Models of UCS and ES
5.1. Preliminary Data Analysis

This study consists of the parameters T, PV, ρ, η, Ed, UCS, and Es for machine learning
and a statistical approach. The T, PV, ρ, η, Ed are used as input for the prediction of UCS
and Es. The statistical analysis of the inputs and outputs data is described in Table 4.

Table 4. Multiple linear regression model summaries for UCS and ES.

Model Variables Coefficient Std. Error T p-Value R2

UCS

C 186.017 95.212 1.954 0.056

0.905

T(◦C) −0.116 0.013 −9.053 0.038
Ed (GPa) −0.232 0.133 −1.747 0.086
η (%) 0.078 0.216 0.359 0.721

ρ (gr/cm3
) −24.410 36.162 −0.675 0.502

PV (km/sec) 2.694 2.898 0.930 0.356

ES

C −164.932 108.981 −1.513 0.136

0.817

T(◦C) 0.003 0.015 0.235 0.036
Ed (GPa) 0.657 0.152 4.325 0.000
η (%) −0.098 0.248 −0.397 0.693

ρ (gr/cm3
) 49.318 41.391 1.192 0.238

PV (km/sec) 6.890 3.317 2.078 0.042

A correlation matrix is a descriptive statistical tool that informs us about the variance
and covariance of regressions that are included in the prediction model. It is often used
in conjunction with other statistical matrices. Correlation, on the other hand, describes
the regression variations with each other in predictive analysis. In general, the correlation
matrix explains the variation of each variable. This can be shown in Figures 10 and 11 with
correlation and pairwise correlation, respectively. This revealed that the inputs variables
have negative relationship, positive relationship, and no relationship with outputs and
each other. For example, temperature and density have a negative relationship, but this
relationship is weak, PV have a positive correlation, while other inputs and output have a
negative correlation. Figures 10 and 11 enable a researcher to easily understand the effect
of inputs on output results of the predicted model. The greater the negative or positive
relationship, the greater will be the importance in model efficiency.
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Figure 11. Correlation matrix of inputs and outputs.

5.2. MLR Prediction Models

Two different multilinear regression equations were developed for the prediction of
UCS and Es, respectively. These can be mathematically expressed using Equations (5) and (6),
as follows:

UCS = 186.017− 0.116T− 0.232Ed + 0.078η− 24.41ρ+ 2.694Pv (5)

Es = −164.9 + 0.003T + 0.657Ed − 0.098η+ 49.318ρ+ 6.890Pv (6)

where UCS is uniaxial compressive strength (Mpa) and Es is the static Young’s modulus
(GPa), T is temperature (◦C), Ed is the dynamic Young’s modulus (GPa), η is porosity (%), ρ
is density (gr/cm3), and PV is P-wave velocity (km/s).

The fundamental descriptive statistic of the original data is shown in Tables 3 and 4.

Importance of Variable in MLR Models

The MLR model for the UCS has a high coefficient of determination (R2) between the
actual and predicted UCS (R2 = 0.90), as shown in Figure 12a. In the UCS model, out of five
independent variables, two variables are highly correlated with UCS, namely T and PV,
and give a significant value less than (p = 0.05), while the other three parameters, namely ρ,
η, and Ed, have less significance because of their P-value is greater than 0.05. The ES model
gives an effective coefficient of determination (R2 = 0.817), as shown in Figure 12b. In this
model, out of five parameters, the two parameters which are highly correlated with ES are
PV with a significance value (p = 0.042), and T, with significance value (p = 0.036), while Ed
is worthless. The other two variables, porosity and density, have a significance level more
than 0.05, namely η (0.693) and ρ (0.238). These models revealed that the PV and T have
a dominant effect on both models of UCS and ES, while the other three parameters have
shown no obvious significance in both models.
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are shown in Figure 13a,b for the UCS and ES models. The good regression is achieved in 
training and validation, and testing values between the predicted and measured values of 
UCS as shown in Figure 13b. In the case of ES, the regression values of the predicted and 
measured show high validation regression values, as presented in Figure 13a. The plot 
draws from the ANN model are shown in Figure 14a,b. A good R2 value (0.95) between 
the predicted and measured UCS is found as shown in Figure 14a. Figure 14b shows a 
relatively lesser coefficient of determination value (0.85) between predicted ES and 
measured ES, as compared to predicted and measured UCS. 
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5.3. Network Phases and Regression Model

Each phase of the ANN, i.e., training, validation, testing, and the regression values
are shown in Figure 13a,b for the UCS and ES models. The good regression is achieved in
training and validation, and testing values between the predicted and measured values
of UCS as shown in Figure 13b. In the case of ES, the regression values of the predicted
and measured show high validation regression values, as presented in Figure 13a. The plot
draws from the ANN model are shown in Figure 14a,b. A good R2 value (0.95) between the
predicted and measured UCS is found as shown in Figure 14a. Figure 14b shows a relatively
lesser coefficient of determination value (0.85) between predicted ES and measured ES, as
compared to predicted and measured UCS.
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5.3.1. Network Performance and Accuracy 
The network performance and accuracy are evaluated by means of MSE (mean 

squared error) value. The MSE value decreases as the number iteration increased by 
increasing the neuron number of the hidden layer. For each model of UCS and ES, the MSE 
is evaluated separately. The optimum regression model is achieved through a lesser MSE 
value at 250 and 300 epochs for UCS and ES, respectively, as shown in Figures 15 and 16. 
This also revealed the number of iteration and number of neuron play key role in the 
accuracy achievement of the model.  that The neuron convergence analysis shows that the 
optimum regression and least MSE for UCS and ES are obtained on 5 and 7 neurons, 
respectively, as shown in Figure 17. 
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Figure 15. The UCS neural network performance for the selected network. (a) 50, (b) 80, (c) 250, 
and (d) 600. 

Figure 14. (a) The ANN scatter plot between the predicted and measured UCS and (b) scatter plot
between the predicted and actual ES.

5.3.1. Network Performance and Accuracy

The network performance and accuracy are evaluated by means of MSE (mean squared
error) value. The MSE value decreases as the number iteration increased by increasing the
neuron number of the hidden layer. For each model of UCS and ES, the MSE is evaluated
separately. The optimum regression model is achieved through a lesser MSE value at
250 and 300 epochs for UCS and ES, respectively, as shown in Figures 15 and 16. This
also revealed the number of iteration and number of neuron play key role in the accuracy
achievement of the model. that The neuron convergence analysis shows that the optimum
regression and least MSE for UCS and ES are obtained on 5 and 7 neurons, respectively, as
shown in Figure 17.
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Figure 17. The optimum performance of network under different number of neurons; (a) UCS and 
(b) Es. 

5.3.2. Importance of Variable in ANN Models 
The importance of the ANN independent variable for UCS and ES is shown in Figure 

18a,b. In Figure 18a, it seems that the Ed, PV, and T show a strong relation with ES, while ρ 
and η show a weak relation to ES. The independent variable, such as T, PV, and Ed, have a 
strong relation with UCS, the most important of which is temperature, as shown in Figure 
18b. Moreover, ρ and η have a very low relation to UCS. 
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Figure 16. The ES neural network performance for the selected network. (a) 50, (b) 100, (c) 300, and
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5.3.2. Importance of Variable in ANN Models 
The importance of the ANN independent variable for UCS and ES is shown in Figure 

18a,b. In Figure 18a, it seems that the Ed, PV, and T show a strong relation with ES, while ρ 
and η show a weak relation to ES. The independent variable, such as T, PV, and Ed, have a 
strong relation with UCS, the most important of which is temperature, as shown in Figure 
18b. Moreover, ρ and η have a very low relation to UCS. 
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Figure 17. The optimum performance of network under different number of neurons; (a) UCS and
(b) Es.

5.3.2. Importance of Variable in ANN Models

The importance of the ANN independent variable for UCS and ES is shown in
Figure 18a,b. In Figure 18a, it seems that the Ed, PV, and T show a strong relation with ES,
while ρ and η show a weak relation to ES. The independent variable, such as T, PV, and Ed,
have a strong relation with UCS, the most important of which is temperature, as shown in
Figure 18b. Moreover, ρ and η have a very low relation to UCS.
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“max_depth”, were subjected to a range of different values. Before calculating the 
maximum averages of predictions, the number of estimators refers to the number of 
decision trees that were constructed by the random forest regression model. The model 
becomes more computationally costly as the number of trees increases, but it also provides 
improved performance. The depth of each decision tree that makes up a random forest is 
represented by the maximum depth hyperparameters. The model is overfitted, since it 
was given a value for the maximum depth hyperparameter that was very high. The 
optimum value of n_estimators, max_depth, and random_state is described in Table 5. 
Furthermore, the predicted value at this optimum parameter’s value has a high 
correlation coefficient (R2 = 0.97) for USC and ES, as shown in Figure 19. 
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Figure 18. Independent variable importance chart from ANN model; (a) UCS, (b) ES. Key is as follows:
ρ density; η porosity; T: Temperature; Pv: p-wave velocity, and Ed: dynamic Young’s modulus.

5.4. Random Forest

The Scikit-Learn package in Python was used to construct the random forest regression
(RFR) and k-nearest neighbor’s regression (KNN) models. It is a Python package that
contains several different machine learning algorithms that are easily accessible for use in
various applications. At the beginning of this research project, the data were normalized in
order to adapt the values that were measured on various scales to a standard scale. After
this, the models were trained on 70% of the data, and the remaining 30% of the data was
split into two equal portions, namely the testing set (15%) and the validation set (15%).
The hyperparameters were fine-tuned with the help of the testing set. In the RFR model,
the hyperparameters, referred to as “n_estimators” and “max_depth”, were subjected to
a range of different values. Before calculating the maximum averages of predictions, the
number of estimators refers to the number of decision trees that were constructed by the
random forest regression model. The model becomes more computationally costly as
the number of trees increases, but it also provides improved performance. The depth of
each decision tree that makes up a random forest is represented by the maximum depth
hyperparameters. The model is overfitted, since it was given a value for the maximum
depth hyperparameter that was very high. The optimum value of n_estimators, max_depth,
and random_state is described in Table 5. Furthermore, the predicted value at this optimum
parameter’s value has a high correlation coefficient (R2 = 0.97) for USC and ES, as shown in
Figure 19.

Table 5. Optimized RFR hyperparameters.

Parameters Values Details

n_estimators 100 Number of trees in RFR
max_depth 12 Maximum depth of tree

random_state 32 Random state
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Figure 19. RFR Scatter plot between predicted and measured for UCS and ES. (a) UCS; (b) ES. 

5.5. k-Nearest Neighbor 
In the KNN model, the number of neighbors, denoted by the variable “n_neighbors,” 

was subject to change. When making a forecast, the number of neighbors that should be 
included in the averaging process is specified by a hyperparameter referred to as the 
“number of neighbors.” When the value of the n_neighbors hyperparameter is increased 
to a large number, the method becomes more accurate but also more computationally 
intensive. The grid search approach was used in order to arrive at the ideal values for the 
hyperparameters. The grid search approach determines the optimal combination by 
testing a broad variety of possible values for each hyperparameter that is being changed 
and then selecting one of those values. However, when working with huge datasets, it is 
computationally costly to pick the optimal combination of hyperparameters by selecting 
a broad range for each hyperparameter. This is done in order to maximize the accuracy of 
the results. In order to determine a workable range for each hyperparameter, the value 
was played about with on a number of different levels while the other hyperparameters 
remained the same. The range of values within which the “number of estimators” and 
“max depth” hyperparameters have an effect on the RFR model’s performance. Table 6 
has a description of the ideal combination of n neighbors and metric values. In addition, 
the projected value at this optimal value for the parameters has a good correlation 
coefficient (R2 = 0.94), as can be shown in Figure 20. This is the case for both USC and ES. 
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Figure 19. RFR Scatter plot between predicted and measured for UCS and ES. (a) UCS; (b) ES.

5.5. k-Nearest Neighbor

In the KNN model, the number of neighbors, denoted by the variable “n_neighbors,”
was subject to change. When making a forecast, the number of neighbors that should
be included in the averaging process is specified by a hyperparameter referred to as the
“number of neighbors.” When the value of the n_neighbors hyperparameter is increased
to a large number, the method becomes more accurate but also more computationally
intensive. The grid search approach was used in order to arrive at the ideal values for
the hyperparameters. The grid search approach determines the optimal combination by
testing a broad variety of possible values for each hyperparameter that is being changed
and then selecting one of those values. However, when working with huge datasets, it is
computationally costly to pick the optimal combination of hyperparameters by selecting
a broad range for each hyperparameter. This is done in order to maximize the accuracy
of the results. In order to determine a workable range for each hyperparameter, the value
was played about with on a number of different levels while the other hyperparameters
remained the same. The range of values within which the “number of estimators” and
“max depth” hyperparameters have an effect on the RFR model’s performance. Table 6 has
a description of the ideal combination of n neighbors and metric values. In addition, the
projected value at this optimal value for the parameters has a good correlation coefficient
(R2 = 0.94), as can be shown in Figure 20. This is the case for both USC and ES.
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Table 6. Optimized KNN hyperparameters.

Parameters Values Descriptions

n_neighbors 5 Number neighbors
Metric Minkowski The distance metric to use

6. A Comparative Evaluation of Statistics and Intelligent Techniques

The comparison of correlation efficiencies of various developed models was used in
this study to improve the performance of predicted models. Through this comparison, the
subsequent performance indices, such as R2, MAPE, RMSE, and VAF, were evaluated. An
excellent model can be represented by performance indices as, R2 = 1, MAPE = RMSE = 0,
and VAF = 100%. The performance indices were calculated using Equations (7)–(10),
as follows:

R2 =
∑n

i=1 (y i)
2 −∑n

i=1 (y i−k′i
)2

∑n
i=1 (y i)

2 (7)

MAPE =
1
2∑n

i=1

∣∣∣∣yi−k′i
yi

∣∣∣∣×100 (8)

RMSE =

√
∑n

i=1 (y i−k′i
)

n
(9)

VAF =

1−
var(y− k ′

)
var(y)

 x 100 (10)

where, y is the actual value, and k′ is the predicted value.
Table 7 describe the performance indices of all models. This shows that the MLR gives

a lower coefficient of determination for both predicted parameters, while RFR gives a high
coefficient of determination for UCS and ES. On the basis of this performance indices, the
RFR performed well.

Table 7. Performance indices of the developed models.

Predicted Paramter Models R2 MSE MAPE (%) VAF (%)

UCS

MLR 0.90 23.15 31.53 90.23
ANN 0.94 0.14 1.18 94.23
RFR 0.97 2.04 0.25 97.22
KNN 0.94 3.02 0.94 94.01

ES

MLR 0.81 27.15 34.53 81.02
ANN 0.86 0.54 2.18 86.03
RFR 0.97 2.04 0.25 97.22
KNN 0.94 3.02 0.94 94.23

7. Discussion

(1) Predictive models were developed for UCS and ES based on statistical (MLR) and
intelligent models (ANNs, RFR, and KNN). The accuracy and performance of models
are satisfactory on the basis of MSE, MAPE, VAF, and R2. The MSE, MAPE, VAF of the
MLR is greater than that of the intelligent models. The intelligent models have shown
a better prediction performance than the statistical model due to its MSE, MAPE, VAF
values and high R2 value. The MSE, MAPE, VAF, R2 values of the MLR are fixed, while
the MSE, MAPE, VAF and R2 of the intelligent model are varied. It depends on the neuron
optimization in the hidden layer for ANN and the hyperparameters. The MSE, MAPE, and
VAF of a prediction model can improve through trial and error methods using an intelligent
model. The intelligent model’s optimization needs an expert person who can know the
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tuning the of hyperparameters number, and how to fine-tune hyperparameters to obtain
more reliable results.

(2) The intelligent models with high correlation for UCS and ES respectively are better,
as shown in Figure 14a,b, Figure 19a,b, and Figure 20a,b, than MLR. In this research work,
ANN gives 5% for UCS and 4% for ES, RFR give 7% for UCS and 16% for ES, and gives
4% for UCS and 13% for ES, meaning that the intelligent model is more accurate than the
MLR. Furthermore, RFR give 7% for UCS and 16% for ES, which is more accurate than the
statistical model and has 4-5% high accuracy than ANN and KNN. The models are based
on limited data and only valid to a specific area. The models can extend to a generalized
form in the future to take a large amount of data on different rocks. Temperature and
P-wave velocity are strongly correlated in both models. The three other input parameters
play a worthless role in the equation. This work result is strongly supported by existing
research [35]. It suggested PV, ρ, and η as input variables and, after prediction, revealed
that only P-wave velocity has a strong correlation, and the other input variables have a
worthless contribution. This study is based on thermal effect; therefore, the temperature is
considered as an input parameter that has a strong influence on the mechanical and physical
properties of rock. Furthermore, in these modes, the temperature and P-wave velocity
both have a strong correlation with output, and the other three independent parameters
are meaningless in the model. The performance of this model is better than in the model
developed by Torabi-Kaveh, Naseri, Saneie, and Sarshari [26].

(3) After a comparative analysis of results obtained from MLR and the intelligent
model, it is concluded that the intelligent model gives effective results as compared to MLR
in predicting UCS and ES. The variable performance in both MLR and the intelligent model
shows that the T and PV played an active role in the prediction models, while the ρ, η, and
Ed have a less active predictive role.

(4) An important factor in marble’s anisotropic behaviour is its temperature state,
which may directly influence the material’s characteristics and cause the cohesiveness
along the grain boundary to weaken [15]. Although anisotropy has a significant impact
on the physico-mechanical behaviour of intact and discontinuous geomaterials, it is of-
ten neglected in day-to-day geoengineering practice. This is despite the fact that it is an
essential property. The presumption that anisotropic rocks have isotropic properties can
primarily be explained by the following factors: (i) the complicated structure of anisotropic
elasticity theory; (ii) the increased number of moduli required to describe the deformational
behaviour of anisotropic materials; (iii) the significant challenges associated with the reli-
able sampling and testing of anisotropic geomaterials; (iv) the inherent difficulties of back
analysis methodologies related to anisotropic rock. There are extremely few examples of
completely isotropic rocks and soils in the natural world. Numerous rock properties, such
as thermal conductivity, coefficient of thermal expansion, and other physical (electrical,
magnetic, etc.) characteristics, as well as the deformational and strength characteristics of
soils and rocks, may be directionally reliant on antecedent endogenetic (primary) or exoge-
netic (secondary) causes that occur at micro-, meso-, and macroscales. This may be the case
for many rock properties, including thermal conductivity, coefficient of thermal expansion,
and other physical properties (electrical, magnetic, etc). The former refers to the processes
of sedimentation, compaction, and lithification that are responsible for the formation of
sedimentary rock formations (such as limestones, sandstones, and other similar rocks),
whereas the latter refers to environmental factors, such as pressure, temperature, chemical
solutions, and other similar elements that are also responsible for the transformation of
various rock types (i.e., diagenesis, metamorphosis, weathering, etc.). Crystallographic
preferred orientations (textures) of the rock components, grain shape fabric, and microcrack
fabric are principally responsible for influencing the anisotropic physical features of intact
rocks at the microscopic and mesoscopic scales, respectively. At the macroscopic level,
the anisotropic character of discontinuous rocks is reflected in the foliation, cleavage, and
fractures that make up these rocks [71]. The influence of anisotropic characteristics will be
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taken into consideration in the prediction model that uses computer tomography in the
near future.

8. Conclusions

The following conclusions are drawn from the research:

1. The physical and mechanical properties are greatly affected by the increase in tempera-
ture from 200–600 ◦C due to the generation and propagation of micro-cracks. The poros-
ity is increased, while PV is decreased with the increase in temperature. The strength
properties i.e., UCS and ES, of rock also decrease with the increasing temperature;

2. The behavior of the stress–strain curve is changed from brittle to ductile when the
temperature is increased;

3. The MLR predictive models for UCS and ES give a performance coefficient of 0.90%
and 0.81%, respectively. The intelligent models i.e., ANN, RFR, and KNN for UCS
and ES give a performance coefficient, revealing that the model for UCS is (5–7%) and
ES is (4–16%) better than the statistical model (MRL models).

4. The model’s important feature revealed that the temperature and PV have a significant
role in prediction models;

5. Based on comparative analysis of MLR, ANN, RFR, and KNN, it has been pro-
posed that RFR model is suitable for use in the prediction of UCS and ES under
thermal treatment.
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