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Abstract: Urban water demand forecasting is beneficial for reducing the waste of water resources and
enhancing environmental protection in sustainable water management. However, it is a challenging
task to accurately predict water demand affected by a range of factors with nonlinear and uncertainty
temporal patterns. This paper proposes a new hybrid framework for urban daily water demand with
multiple variables, called the attention-based CNN-LSTM model, which combines convolutional neural
network (CNN), long short-term memory (LSTM), attention mechanism (AM), and encoder-decoder
network. CNN layers are used to learn the representation and correlation between multivariate variables.
LSTM layers are utilized as the building blocks of the encoder-decoder network to capture temporal
characteristics from the input sequence, while AM is introduced to the encoder-decoder network to
assign corresponding attention according to the importance of water demand multivariable time series
at different times. The new hybrid framework considers correlation between multiple variables and
neglects irrelevant data points, which helps to improve the prediction accuracy of multivariable time
series. The proposed model is contrasted with the LSTM model, the CNN-LSTM model, and the
attention-based LSTM to predict the daily water demand time series in Suzhou, China. The results
show that the hybrid model achieves higher prediction performance with the smallest mean absolute
error (MAE), root mean squared error (RMSE), and mean absolute percentage error (MAPE), and largest
correlation coefficient (R2).

Keywords: water demand forecasting; multivariate time series; convolutional neural network;
long short-term memory; attention mechanism; encoder-decoder network

1. Introduction

Urban water demand forecasting is crucial to reduce the waste of water resources
and increase environmental protection. Based on accurate water demand prediction, the
water supply system can meet suitable water demand through efficient water management
planning with lower energy consumption, which is a benefit for sustainable water resource
utilization [1]. Moreover, the growing population and economy, together with spreading
consumeristic urban lifestyles, places increasing pressure on water resources worldwide [2].
Managing daily water demand through forecasting can provide vital support to design
and optimal management of water distribution systems, which is an essential part of
creating a reliable, economical, and intelligent water supply system [3]. Urban water
demand prediction has gained much attention, as it results in considerable economic and
environmental benefits. Nevertheless, accurate prediction of water demand affected by
socioeconomic determinants and climate factors, including water price, population, income
growth, temperature, precipitation, and weather, is still a challenging task.
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The research on water demand forecasting has been carried out for decades, and many
classical algorithms and models have been developed, which can be divided into two
categories in general: statistical analysis models and artificial intelligence models [4]. The
statistical analysis models, such as autoregressive integrated moving average (ARIMA) [5]
and multiple linear regression (MLR) [6], have successfully shown their capability in
modeling long-term linear relationships of water demand time series. However, it is
difficult for these conventional forecasting models to capture the nonlinear and dynamic
dependence relationship between multiple variables. To deal with this problem, artificial
intelligence models such as support vector regression (SVR) [7], random forest (FR) [8], and
artificial neural networks (ANNs) [9] have been used in water demand prediction. Neural
network models can simulate biological neural network for information processing, and
they can fit the uncertainty and nonlinearity of data better than other prediction models [10].
Some novel neural network models for multivariate time series forecasting have been
proposed to improve the accuracy of water demand prediction. Xu et al. [11] proposed a
continuous deep belief neural network (CDBNN) model based on the chaotic theory to
forecast the daily water demand time series in ZhuZhou, China. Du et al. [12] proposed a
hybrid long short-term memory network (LSTM) model combined with discrete wavelet
transform (DWT) and principal component analysis (PCA) preprocessing techniques for
water demand forecasting, which had satisfactory performance both in catching the peaks
and the average prediction accuracy. However, these neural network models still have
difficulty in directly dealing with irrelevant or meaningless data points resulting from
abnormal conditions or recording errors. Furthermore, Ebtehaj et al. [13] stressed the
importance of preprocessing experimental data, which can result in higher accuracy of time
series forecasting. Hence, there is a need to propose a more accurate neural network model
that can consider correlation between multiple variables but neglect irrelevant data points
for water demand forecasting.

In recent years, with the development of deep learning technologies, some classical
neural network models have been successfully applied to time series forecasting, for
example, a novel time series forecasting model, named SeriesNet, which can fully learn
features of time series data in different interval lengths [14]. The method, based on a
multilayer LSTM network by using the grid search approach, can capture nonlinear patterns
in time series data for demand forecasting [15]. The recurrent neural network (RNN) can
model time series reliably by learning the long-term nonlinear relationships among the
sequential data. Hajiabotorabi et al. [16] presented a recurrent neural network (RNN) which
was improved by using an efficient discrete wavelet transform (DWT) for predicting a high-
frequency time series. Fekri et al. [17] proposed online adaptive RNN, an approach for load
forecasting capable of continuously learning from newly arriving data and adapting to new
patterns. Especially, an improved RNN known as LSTM has achieved excellent performance
in time series tasks such as petroleum production forecasting [18], volatility forecasting [19],
demand forecasting [15], and photovoltaic power forecasting [20]. However, the single
LSTM model finds it difficult to effectively use the time series information in historical data
to predict multivariable time series [21,22]. To overcome this shortcoming, deep LSTM
networks are proposed to improve the learning ability of sequence data by combining
multiple LSTM layers [23]. Different from RNN models that acquire temporal features on
the sequential learning process, convolutional neural networks (CNNs) use a nonlinear
filter to learn the representations among the dataset, which takes into consideration the
correlation between multivariate variables [24]. Wang et al. [25] proposed multiple CNNs
to efficiently extract the long- and short-period information of the multivariate time series.
Furthermore, CNN models can be combined with RNN models for multiple time series
forecasting. Khaki et al. [26] presented a deep learning framework using CNN and RNN
for crop yield prediction based on environmental data and management practices, which
significantly outperformed other popular methods such as LASSO, random forest, and
DFNN. Li et al. [27] used a multivariate CNN-LSTM model to forecast particulate matter
(PM2.5), which had the best results compared with the univariate LSTM model, multivariate
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LSTM model, and univariate CNN-LSTM model. Essien et al. [28] proposed a deep encoder-
decoder architecture based on convolutional LSTM and bidirectional LSTM for multistep
machine speed prediction, which enables the improvement of production scheduling and
planning. Although the above studies considered the influence of multivariable historical
data on prediction accuracy, they did not take into account the different contributions of
multivariable historical data in different periods [29].

In order to improve the prediction accuracy of deep neural network models for
multivariate time series forecasting, attention mechanism (AM) was introduced to consider
the different contributions of historical data at different time to data points [30]. AM is
included with the encoder-decoder networks to allocate corresponding attention according
to the importance of time series at different time to data points. The attention-based neural
network models have been utilized to enhance the impact of significant temporal features
in time series forecasting [31]. Liu et al. [32] proposed attention-based CNN to anticipate
the short-term traffic speed with considerable advantages. Ding et al. [33] applied the STA-
LSTM model based on LSTM and attention mechanism to flood forecasting. The STA-LSTM
model based on LSTM performed better than other classical neural network models, such
as FCN, CNN, GCN, and LSTM. Liu et al. [34] presented a dual-stage two-phase attention-
based RNN that was successfully applied to long-term prediction of multivariate time
series. Wang et al. [35] proposed the bidirectional LSTM model based on AM and rolling
update with higher accuracy, less computation time, and better generalization ability than
a single model. Among these attention-based encoder-decoder networks with different
neural networks as the framework, they all achieve excellent performance in multivariate
time series forecasting by using attention mechanism.

To the best of our knowledge, this paper is the first to propose an attention-based
CNN-LSTM model for the prediction of daily urban water demand. Firstly, the input of
this model is dependent on the correlation between the standardized water consumption
data and other variable sequences through the correlation coefficient. Then, the proposed
model uses 1D-CNN to extract features among the multivariable time series. Afterwards,
the LSTM layers learn the nonlinear information from the output of the CNN layers.
Furthermore, for the sake of assigning corresponding attention according to the importance
of time series at different time to data points, AM is introduced to the encoder-decoder
network using LSTM networks as their building block. Finally, the proposed hybrid model
is examined by actual available data composed of several daily variables of the water
plant in Suzhou, China, and compared with the LSTM model, CNN-LSTM model, and
attention-based LSTM. The major contributions of this paper are as follows.

(1) We propose a novel attention-based CNN-LSTM hybrid model consisting of multiple
deep learning technologies to predict daily urban water demand that is transformed
into multivariate time series by the correlation analysis and max-min method.

(2) Deep LSTM networks are used as the building blocks of the encoder-decoder network
to capture the historical and future information among multiple time series affecting
water demand.

(3) The CNN layers and AM are introduced to improve the performance of the encoder-
decoder network for water demand forecasting. The CNN layers can consider the
correlation between multivariate time series, while AM highlights important temporal
features and ignores irrelevant data points of water demand sequences.

The remainder of this paper is organized as follows. Section 2 defines the mul-
tivariate time series problem to be solved, portrays the forecasting framework of the
attention-based CNN-LSTM model, and illustrates the important component and process
details. The case study is described in Section 3, along with the description of model
data and its processing technology, as well as model evaluation criteria. Section 4 ex-
pounds the experiments conducted by using large datasets obtained from the water plant
through different forecasting models. The proposed model is evaluated and compared with
other methods, and the results are discussed correspondingly. Conclusions are presented
in Section 5.
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2. Methodology
2.1. Problem Description

In this part, we transform the water consumption forecasting problem into a time
series forecasting problem, and define the multivariable time series problem to be solved.
Time series data are generally a series of values (discrete or continuous form) collected at
different times. The observation interval of different types of time series data is usually
different and determined by the sensor specifications. In modern water plants, water
supply and other variables are recorded each hour or day, and are finally saved in the
databases. The corresponding definitions of water demand prediction are listed as follows.

Problem 1 (univariate time series forecasting): The daily water consumption data
have complex nonlinearity and dynamic updating, which makes it difficult to capture
the complex relationship among the collected time series. Traditional water demand
forecasting models often use water supply as a single input to predict the future trend of
water consumption. Given a univariate water supply time series X = (x1, x2, x3, . . . , xt),
the water demand forecasting problem is to predict the future p values of the sequence
Y = (y1, y2, y3, . . . , yp), using the values of input sequence X. Formally, there are

Y =
{

y1, y2, y3, . . . , yp
}
= M(X) = M{x1, x2, x3, . . . , xt} (1)

where M is the traditional univariate time series forecasting model, X is the input sequence
containing t values of daily water consumption, and Y is the output sequence containing
p prediction values of daily water consumption.

Problem 2 (multivariate time series forecasting): Urban water demand is affected
by a series of socioeconomic determinants and climate factors. Therefore, water demand
depends not only on its past values but also on other variable values in some situations.
Due to the relevance and influence of other factors, forecasting daily water demand needs
to consider multiple variable values at the same time step. In order to model the temporal
water demand sequence, it is crucial to learn the correlation feature of the multiple variables
of multivariate time series. Multivariate time series forecasting of daily urban water
demand is expressed by the following formula:

yt+1
yt+2

...
yt+p

 = M


x1,1 x1,2 · · · x1,l
x2,1 x2,2 · · · x2,l

...
...

. . .
...

xt,1 xt,2 · · · xt,l

 (2)

where M, a multivariate series forecasting model, aims to predict output target values
(yt, yt + 1, . . . , yt + p) by learning a mapping from a sequence of input data {xi,j|i = 1, 2, . . . , t;
j = 1, 2, . . . , l}. {xi,j|i = 1; j = 1, 2, . . . , l} and {xi,j|i = 2, . . . , t; j = 1, 2, . . . , l} mean the
water demand time series and other influencing factors series, respectively; p expresses
the multistep forward prediction size; l represents the number of input variables; t denotes
the lookup size of history data. The details of input features are listed in Section 3.1
and Table 1.

Table 1. Summary of historical daily data.

Historical Data Feature Characterization

Consumption data L(d − 1), L(d − 2), . . . , L(d − n) Historical water demand series in the previous n days

Meteorological data

Max-T Daily maximum temperature
Min-T Daily minimum temperature

W-data Encode weather with different weather types according to local weather
forecast, such as cloudy, rainy, sunny, snowy, windy, foggy days, etc.
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Table 1. Cont.

Historical Data Feature Characterization

Date data
M-label 1 to 12 represent January to December, respectively
W-label 1 to 7 denote Monday to Sunday, respectively
H-label 1 label holidays, 0 label work days

2.2. Forecasting Framework

The overall architecture of the attention-based CNN-LSTM model is shown in Figure 1.
The proposed model is mainly composed of four components: CNN, LSTM, attention
component, and encoder-decoder network. Firstly, through normalization and correlation
analysis, a series of variables affecting water demand are selected and integrated into a
multivariate time series. Secondly, CNN layers perform two convolutional and pooling
operations to extract the spatial characteristics of the input data, which leads to removing
the noise and unstable components in the time series. Thirdly, the LSTM layer learns
the long-term nonlinear relationships among the output of the CNN unit. Furthermore,
attention-based LSTM not only considers past and future data information but also high-
lights the effective temporal features in time series. Fourthly, the test dataset is input into
the deterministic model to predict daily water consumption values.

Figure 1. The overall architecture of the attention-based CNN-LSTM hybrid model, (a) Input unit,
(b) CNN unit, (c) LSTM unit and (d) Output unit.

2.3. 1D-CNN as the Multivariable Feature Extraction Module

Convolutional neural networks (CNNs) are inspired by the receptive field of the animal
visual cortex and are widely utilized for image processing tasks. Different from those con-
volutional CNNs making use of a squared filter in image processing, the one-dimensional
CNN (1D-CNN) utilizes a rectangular filter to extract features of the multivariate time
series. The rectangular filter’s height and width are h and w, respectively; h is the number
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of water consumption input vectors processed in each filter, and w represents the number
of features of the input data. The 1D-CNN can accept the multivariate time series as input
and extract the temporal feature through convolution layers, ReLU layers, and pooling
layers. Figure 2 shows the process of 1D-CNN dealing with a multivariate time series.

Figure 2. The process of 1D-CNN dealing with a multivariate time series.

When the multivariate time series is input into the 1D-CNN, convolutional layers and
pooling layers of the network use sliding window to process the input. {xi,j |i = 1, 2, . . . , n;
j = 1, 2, . . . , l} represents a set of water consumption input vectors of 1D-CNN. Xi,j denotes
the jth variables value of the ith sample. N is the number of the training samples; l is the
number of variables affecting the target value. The convolutional layer applies convolution
operation to extract the original convolution features of the input data. The convolution
operation can be expressed by Equation (3).

O1
m =

(
X1

ij, X2
ij, . . . , Xm

ij

)−1
=


ReLU(b1

j + ∑k
j=1 w1

j ∗ xi,j)

ReLU(b2
j + ∑k

j=1 w2
j ∗ xi,j)

· · ·
ReLU(bm

j + ∑k
j=1 wm

j ∗ xi,j)

 (3)

where O1
m is the result of the first convolution layer processing multivariable time series;

Xm
ij is the feature map output from the mth rectangular filter; k represents the number of

convolution kernels; wm
j and bm

j are, respectively, the weight and the bias for the jth feature
map of the mth rectangular filter.
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To increase the nonlinear features of the CNN, ReLU is the activation function, which
can enhance the expression ability of the network [36]. The ReLU function is defined
as follows:

ReLU(x) =
{

0, x ≤ 0
x, x > 0

(4)

The pooling layer reduces the number of parameters and network computation costs
by cutting down the size of the incoming data from the convolutional layer [37]. The
max-pooling reserves the maximum value from each neuron cluster in the previous layer,
which is also beneficial to adjust overfitting. The max-pooling is described by Equation (5).

(x 1
ij, x2

ij, . . . , xm
ij

)−1
= (max(∑k

j=1 y1
ij), max(∑k

j=1 y2
ij), . . . , max(∑k

j=1 ym
ij ))
−1 (5)

2.4. LSTM as the Temporal Characteristic Extraction Block

RNNs are capable of simulating time series properly by capturing the long-term
nonlinear relationships of the historical data [38]. However, standard RNNs suffer from the
vanishing or exploding gradient problem when increasing the length of sequence. LSTM is
a special kind of RNN with gate mechanism and memory cells, which remarkably improve
the performance of RNNs. There are three kinds of gates inside each LSTM cell: input
gate, forget gate, and output gate, and these gates determine the state of each memory cell
through using sigmoid as the activation function to make information transmit selectively.
The memory cell retaining the long-term status ct is the key structure of each LSTM cell.
The internal structure of a single LSTM cell is shown in Figure 3.

Figure 3. The internal structure of a single LSTM cell.

Equations (6)–(8) describe the operation of the three gates for the input of each LSTM
unit. Equations (9)–(11) suggest the cell states ct and the hidden states ht of each LSTM unit
at time t.

it = σ(Wi·[ht−1, xt] + bi) (6)

ft = σ
(

W f ·[ht−1, xt] + b f

)
(7)

ot = σ(Wo·[ht−1, xt] + bo) (8)

c′t = tanh(Wc·[ht−1, xt] + bc) (9)

ct = ft � ct−1 + it � c′t (10)

ht = ot � tanh(ct) (11)

where Wf, Wi, Wc, and Wo represent the weight matrices of LSTM; bf, bi, bc, and bo denote
the bias vector of LSTM; ft, it, and ot are forget gate, input gate, and output gate vectors at
time t; ct−1 and c′t mean, respectively, the previous cell state and a new candidate value.
σ(z) and tanh(z) are utilized as the activation functions, as shown below:

σ(z) =
1

1 + e−z (12)
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tanh(z) =
ez − e−z

ez + e−z (13)

2.5. Attention-Based Encoder-Decoder Network of Feature Learning Module

The encoder-decoder network is widely used in machine translation, which encodes
the source sequence into a fixed-length vector and generates the translation using the de-
coder network [34]. With its excellent performance in the text translation field, the encoder-
decoder network has been applied to effectively deal with the challenging sequence-to-
sequence prediction problems recently [39]. Time series forecasting tasks generally involve
the framework: a sequence of one or multiple input time steps converted to a sequence of
one output time step. In order to consider past and future data information, the Bi-LSTM
network is selected as the structural blocks of the encoder-decoder network to process
sequence data. From the perspective of the model architecture, the encoder LSTM encodes
the input sequence into a fixed-length vector, and the decoder LSTM decodes the fixed-
length vector and outputs the predicted sequence. The structure of the encoder-decoder
network based on deep LSTM networks is shown in Figure 4.

Figure 4. The structure of the encoder-decoder network based on deep LSTM networks.

Attention mechanism (AM) comes from the simulation of attention characteristics of
the human brain [35]. The core idea of AM is to allocate corresponding attention according
to the importance of information, which greatly improves the reception sensitivity and
processing speed of information in the concentration area. AM is commonly used to
optimize the sequence processing model by allocating correlative attention weight to the
features extracted from the input sequence [33]. Since the encoder-decoder network fails
to work well in predicting long sequences, AM is introduced to generate a vector based
on a weighted sum of all the encoded information [37]. The encoder LSTM generates the
encoding information sequence {h1, h2, . . . , hT} from the input sequence {x1, x2, . . . , xT}.
The decoder LSTM takes the {hT, hT−1, . . . , h1} and output {ŷ1, ŷt, . . . , ŷT}, which is the
predicted sequence. AM is used to allocate corresponding attention weight to the input
features at different time. The architecture of the attention-based deep LSTM model is
shown in Figure 5.

et is the attention score, which is determined by the relevancy between ht and dt−1,
and αt and Ct are the attention weight and weighted feature of the ith element of in-
put datasets, respectively. The process of attention value calculation is described by
Equations (14) to (16).

et = vt·tanh(We·ht + Ue·dt−1 + b) (14)

αt =
exp(et)

∑T
t=1 exp(et)

(15)

Ct = ∑T
t=1 αt·ht (16)
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Once Ct is computed, the decoder LSTM takes Ct and dt−1 as the input to output ŷt,
which is the predicted water consumption value at the time t. Wd and bd represent the
weight matric and bias vector of the decoder LSTM.

Figure 5. The architecture of the attention-based deep LSTM model.

3. Application Example
3.1. Data Description

For the purpose of this study, one water plant in China, in the city of Suzhou, was
utilized to develop the water demand model. The water plant, in Figure 6, takes the Taihu
Lake as the water source and adopts regional water supply mode. Its water supply pipeline
is 4200 km long, realizing the networking water supply of the whole city. The water supply
area is about 1176 square kilometers. The annual water supply volume is 220 million cubic
meters, which supplies water for about 510,000 urban residents. The daily water demand
and other variables for 1674 days from 1 January 2016 to 31 July 2020 were collected from
the water plant in Suzhou city. These data consist of consumption data, meteorological
data, and date data, as shown in Table 1.

Figure 6. The water plant location map of the case study.
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In urban water supply systems, water consumption generally includes domestic water
for residents, production water for industrial and mining enterprises, and public utilities.
The water demand of users does not change dramatically; however, due to some special
circumstances, such as water pipe break, pipe network change, etc., these factors will cause
the water supply company to stop temporarily supplying water to a certain area. In some
cases, users’ special requirements for water will increase water supply. Figure 7 depicts the
distribution of water demand in different years and during holidays and working days.
It can be seen from the figure that the water demand data in these different ranges have
almost the same mean value and median, but there is a large difference in the distribution
of outliers.

Figure 7. The box plot of water demand in 2016, 2017, 2018, 2019, holiday, and weekday.

The water demands in different months show some changes, most of which are
affected by climate change. Figure 8a shows the average daily water consumption of each
month in 2016, 2017, 2018, and 2019. It can be seen that water demand changes regularly
in different months of the three years. As expected, the maximum water consumption
usually occurs during hot seasons, such as July and August. In addition, Figure 8b shows
that there is a relatively obvious relationship between daily water consumption and daily
temperature in August 2016.

Figure 8. (a) The average daily water consumption of each month in 2016, 2017, 2018, and 2019.
(b) Water demand, Max-T, and Min-T for August 2016.
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Data division is a significant process that needs to be addressed in the LSTM network.
The obtainable data is generally divided into training subset, validation subset, and testing
subset. These three subsets must have the same pattern, which gives LSTM network the
ability to learn the historical data. In this study, our water demand data are divided into
training set, verification set, and test set according to the ratio of 8:1:1. Figure 9 describes
the plots of water demand time series for training, validation, and testing period alongside
statistical characteristic charts.

Figure 9. The plots of water demand time series for total, training, validation, and testing period
alongside statistical characteristic charts. (a,b) are diagram and box plots for training, validation and
testing sets, (c–f) are frequency histogram of total, training, validation and testing water demand.
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3.2. Preprocessing Techniques

(1) Normalization

In order to compare and weigh variables of different sizes and units, these data
need to be normalized to values between 0 and 1. This approach is able to improve the
efficiency of prediction and prevent the overflow occurrence of individual data during the
calculation process [35]. All the collected historical data need to be normalized to facilitate
subsequent analysis and processing. In this study, min-max normalization was utilized,
and its calculation formulas is as follows:

x′ij =
xij − xmin

j

xmax
j − xmin

j
(17)

y′i =
yi − ymin

ymax − ymin (18)

where xij
′ and xij are the normalized and original values of the jth input variable of the

ith input sample, respectively. yi
′ and yi are the normalized and original values of the ith

output sample, respectively. xj
min and xj

max are the minimum and maximum values of the
jth input variable of all ith put samples, respectively. ymin and ymax are the minimum and
maximum values of all output samples, respectively.

(2) Selection of explanatory variables

With regard to water demand prediction, the selection of suitable explanatory variables
as model input data has a great influence on evolving an appropriate forecast model. On
the one hand, selecting variables that have a great impact on water demand as input data
can improve the performance of the prediction model. On the other hand, the number
of variables selected determines the number of CNN’s input nodes, thus affecting the
structure of the proposed model.

Our purpose is to predict water demand in this study. Based on the previously
normalized historical daily data, correlation analysis was applied to quantify the correlation
effects between water consumption data at a certain time and other variable data. The
process of selection of explanatory variables is as follows.

In the first stage, Pearson correlation coefficient was employed to analyze the cor-
relation among different daily data. The normalized water demand data was divided
into seven datasets with the same length. Among them, L(d) represents the daily water
demand dataset, and L(d − n) denotes the corresponding daily water demand dataset
of the previous n days, respectively. The Pearson correlation analysis results between
the water consumption of the previous n days and that of the current day are shown in
the Table 2.

Table 2. Pearson correlation coefficient of water consumption in different days.

Consumption L(d) L(d − 1) L(d − 2) L(d − 3) L(d − 4) L(d − 5) L(d − 6)

L(d) 1 0.920 ** 0.879 ** 0.857 ** 0.831 ** 0.802 ** 0.782 **
L(d − 1) 0.920 ** 1 0.920 ** 0.879 ** 0.857 ** 0.831 ** 0.802 **
L(d − 2) 0.879 ** 0.920 ** 1 0.920 ** 0.879 ** 0.857 ** 0.831 **
L(d − 3) 0.857 ** 0.879 ** 0.920 ** 1 0.920 ** 0.879 ** 0.857 **
L(d − 4) 0.831 ** 0.857 ** 0.879 ** 0.920 ** 1 0.920 ** 0.879 **
L(d − 5) 0.802 ** 0.831 ** 0.857 ** 0.879 ** 0.920 ** 1 0.920 **
L(d − 6) 0.782 ** 0.802 ** 0.831 ** 0.857 ** 0.879 ** 0.920 ** 1

** Correlation is significant at the 0.01 level (two-tailed).

It can be seen from Table 2 that the water consumption value of the latest day has the
strongest correlation with that of the current day. With the increase of interval days, the
correlation between the historical water consumption data and the water consumption of
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the day is decreasing. Therefore, the water consumption data of the latest day is selected as
the input to predict the current daily water consumption.

In the second stage, Spearman correlation coefficient was utilized to analyze the
correlation between normalized consumption data and other factors data. The water
consumption is affected by a series of factors such as socioeconomic determinants and
climate. Through correlation analysis, the impact of these collected influential factors data
on water demand is quantitatively expressed. The Spearman correlation analysis results
between the historical water demand data and other collected influential factor data are
shown in Table 3.

Table 3. Spearman correlation coefficient of collected influential factors data.

Factors L Max-T Min-T W-Data M-label W-Label H-Label

L 1.000 0.473 ** 0.444 ** −0.025 0.395 ** 0.020 −0.031
Max-T 0.473 ** 1.000 0.963 ** 0.007 0.335 ** 0.000 −0.022
Min-T 0.444 ** 0.963 ** 1.000 0.034 0.358 ** −0.005 −0.024
W-data −0.025 0.007 0.034 1.000 −0.007 0.016 0.013
M-label 0.395 ** 0.335 ** 0.358 ** −0.007 1.000 0.003 −0.026
W-label 0.020 0.000 −0.005 0.016 0.003 1.000 0.686 **
H-label −0.031 −0.022 −0.024 0.013 −0.026 0.686 ** 1.000

** Correlation is significant at the 0.01 level (two-tailed).

It can be seen from Table 3 that there is a clear correlation among L, Max-T, Min-T,
and M-label. By analyzing the correlation results of the collected data of various factors,
the highest temperature, the lowest temperature, and months have a greater impact on
the water demand than the weather and holidays. Therefore, the dataset composed of L,
Max-T, Min-T, and M-label was chosen to predict the daily water demand.

In the final stage, based on the previous correlation analysis results, the variables with
strong correlation with current water demand were selected as the input data of the model.
L, Max-T, Min-T, and M-label of the latest day were designated as the input of the model to
forecast the daily water consumption.

3.3. Experimental Setup

The experimental programming language was Python 3.7 and the programming
software was Jupyter Notebook. The experiment was carried out on a personal computer
with an Intel Core i7-7700 (2.80 GHz) CPU, 8 GB of memory, and Microsoft as 64-bit
Windows 10 ultimate operating system. Our attention-based CNN-LSTM model was
developed with Keras 2.3.1, which is a high-level neural networks API running on the top
of TensorFlow.

The selection of model structural parameters is the key to establishing a good training
model. The parameters of the deep learning model and method are mainly divided into
elementary parameters and super parameters. The elementary parameters, such as weight
matrix W and bias b, are determined by random initialization. The super parameters, such
as layers and layers size, are confirmed by adjusting parameters several times to choose
the best result. The proposed model mainly includes two CNN layers (two convolutional
layers and two pooling layers), three LSTM layers, one attention layer, and three dropout
layers. The dropout layers were appended to randomly delete half of the data after each
processing, which reduces the data processing scale and prevents overfitting. Based on
the previously selected variables, the size of the model input window was 1 × 4 (the step
size was 1, the number of features was 4). The Adam optimizer was utilized to adjust
the parameters in the model training process with a learning rate of 0.001 and the loss of
indicator MAPE.

In order to verify that the ensemble learning can improve the prediction performance
of the proposed hybrid attention-based CNN-LSTM model (A-based CNN-LSTM), we
conducted comparison experiments using the LSTM model, CNN-LSTM model, and
attention-based LSTM (A-based LSTM). The main parameters of the four forecasting
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models are shown in Table 4. These models used the same previously processed variables
to predict the water demand in the same 100 days, respectively. The training histories of
different models are shown in Figure 10.

Table 4. Main structure of different predictive network models.

Model Batch Size Learning Rate Epochs Layers Hidden Layers Size

LSTM 20 0.002 200 4 LSTM (48,16)
CNN-LSTM 20 0.001 160 6 CNN (6,3), LSTM (24,4)

A-based LSTM 30 0.001 300 7 LSTM (24,24), AM (24)
A-based CNN-LSTM 30 0.001 250 8 CNN (6,3), LSTM (24,24,24), AM (24)

Figure 10. Training history of different models.

3.4. Evaluate Criterions

The statistical criteria parameters provide a method to measure prediction accuracy,
so prediction errors have great influence on the choice of suitable models and in providing
insights in advising alterations to present models to minimize deviations in future predic-
tions [40]. Several evaluation metrics were used to judge the models’ performance, such as
mean absolute error (MAE), root mean squared error (RMSE), mean absolute percentage
error (MAPE), and correlation coefficient (R2). The definitions of the indicators are

MAE =
1
N

N

∑
i=1
|yi − ŷi| (19)

RMSE =

√√√√ 1
N

N

∑
i=1

(yi − ŷ)2 (20)

MAPE =
1
N

N

∑
i=1

|yi − ŷi|
yi

× 100% (21)

R2 = 1− ∑N
i=1(yi − ŷi)

2

∑N
i=1(yi − y)2 (22)
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where N is the number of data series, y is the means of actual water consumption, p is the
number of feature, and yi and ŷi are the actual water consumption and prediction demand
at time t, respectively.

4. Results and Discussions
4.1. The Prediction Results of Different Models

In order to verify the effect of the proposed attention-based CNN-LSTM model, LSTM
model, CNN-LSTM model, and attention-based LSTM model were selected for compassion,
predicting the load values in the same 100 days, respectively. The performance comparison
of actual consumption and predicted values of these four models is shown in Figure 11.
The forecast trends of the four models are all close to the real trend. For some peak values
of actual water demand, it can be found that the prediction value of the LSTM model is the
closest, and then attention-based LSTM model, CNN-LSTM model in turn. Compared with
the other three models, the hybrid model proposed in this paper has the lowest sensitivity
to individual peaks.

Figure 11. Water consumption forecasting results of models.

Box plots were used to analyze the data distribution of the actual water demand
and the predicted water demand for each model. Figure 12 displays the box plots based
on actual values and predictive values of different models. In terms of the overall data
distribution, the predicted water demand of LSTM model is basically consistent with
the actual water demand. Compared with other models, the distribution of water de-
mand predicted by the attention-based CNN-LSTM hybrid model is more concentrated.
However, the median and mean predicted by the proposed hybrid model are close to the
actual values.

In order to further describe the prediction effect of four models on each data point, the
prediction results and scatter plots of each model for 100 days of water consumption are
shown in Figure 13. Figure 13a,c,e,g indicate that the predicted values of each model follow
the changes of actual water consumption. It can be seen from Figure 13b,d,f,h that the
prediction accuracy of each model for a few outliers is low, and there are linear relationships
between the observed values and the predicted values of each model. Moreover, the
correlation between the observed values and the predicted values of the attention-based
CNN-LSTM hybrid model is the strongest, followed by the attention-based LSTM model
and CNN-LSTM model. The LSTM model, which is sensitive to the peak values, has the
worst correlation between the predicted and observed values at each time point.
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Figure 12. The box plots of actual values and predictive values for different models.

Figure 13. Cont.
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Figure 13. Forecasting results and scatter plots of the four models. Panels (a,b) are the LSTM
model, (c,d) are the CNN-LSTM model, (e,f) are the attention-based LSTM model, and (g,h) are the
attention-based CNN-LSTM model.

For the sake of accurately evaluating the prediction performance of different models at
each data point, the percentage relative error of the actual values and the predicted values
were calculated as follows:

δt =
|yi − ŷi|

yi
× 100% (23)

where yi and ŷi are the actual and predicted water consumption value at time t, respectively.
Figure 14 exhibits the relative errors distribution of each model in the same 100 points.

From Figure 14, it can be easily seen that the percentage relative error of the four models
for each time point data is mostly less than 6%. This reveals that the proposed model has
the lowest outlier value compared with other models. In addition, the proposed model
demonstrates better performance than other models in terms of the maximum, the median,
and the minimum of error. Furthermore, the proposed model ensures more stable ability
through a smaller distance between Q1 and Q3.

Figure 14. Relative errors distribution of each model.

The number and location of outliers were determined by data analysis based on
the box plot of 100 real water demand values. Figure 15 shows the distribution of these
abnormal data in the 100 days of water consumption.

Analyzing the predicted values of these outliers for different models can evaluate the
performance of these models. There are 11 outliers in the data of these 100 time points,
which are water consumption on the 1st, 2nd, 3rd, 4th, 5th, 6th, 7th, 8th, 28th, 29th, and 69th
days, respectively. Forecasting results of different models for outliers are shown in Figure 16.
As can be seen from Figure 16, the attention-based LSTM model and attention CNN-LSTM
hybrid model have good prediction effect on the continuous outliers in previous days,
which are all less than the lower limit.
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Figure 15. The distribution of these outliers. Panel (a) is the box plot of the actual 100 days water
consumption, (b) is the distribution of outliers in red dots.

Figure 16. Forecasting results of different models for outliers, (a) LSTM model, (b) CNN-LSTM
model, (c) attention-based LSTM model and (d) attention-based CNN-LSTM model.

In order to accurately represent the prediction effect of each model on the outliers,
the relative errors between these outliers and the predicted values of each model were
calculated. Among the prediction results of outliers by different models, the MAPEs of
the LSTM model, CNN-LSTM model, attention-based LSTM model, and attention-based
CNN-LSTM hybrid model were 4.90%, 5.11%, 4.59% and 4.88% respectively. Figure 17
exhibits the relative errors between actual outliers and predicted values at each data point.
It can be seen from Figure 17 that the relative error of these four models in predicting the
abnormal water consumption on the 1st, 2nd, 3rd, 4th, 5th, 6th, 7th, and 8th days is less
than 6%. However, the four models have the largest relative errors in predicting water
consumption on the 28th day, which is more than 10%.



Sustainability 2022, 14, 11086 19 of 22

Figure 17. Relative errors of outliers in each model.

In order to show the prediction effect more accurately, six evaluation indexes are
introduced to evaluate the four prediction models. Four evaluation indexes, MAE, RMSE,
MAPE, and R2, are introduced to describe the improvement of the proposed method
compared with the contract methods, and are shown in Table 5.

Table 5. Performance evaluations of different models.

Models MAE/m3 RMSE/m3 MAPE/% R2

LSTM 7528.95 10,074.99 2.34 0.854
CNN-LSTM 6550.08 9131.56 2.03 0.880
Attention-based LSTM 6269.18 8727.57 1.94 0.890
Attention-based CNN-LSTM 5773.90 7251.52 1.77 0.924

4.2. Discussions

In this paper, some classical deep learning models and methods, consisting of CNN
model, LSTM model, encoder-decoder network, and AM, were integrated to improve the
prediction accuracy of daily water demand. For verifying the superiorities of the attention-
based CNN-LSTM hybrid model, LSTM model, CNN-LSTM model, and attention-based
LSTM were selected as the comparison models to predict the daily water demand time
series in Suzhou, China. The proposed model achieves higher prediction performance with
the following four indices: MAE = 5773.90, RMSE = 7251.52, MAPE = 1.77%, and R2 = 0.924.

The four prediction models based on deep learning models and methods can anticipate
the trend of real water demand (Figure 13). At the same time, the introduction of CNN
model or AM is conducive to improving the performance of the prediction model in terms
of six evaluation criterions (Table 5). Therefore, the attention-based CNN-LSTM hybrid
model shows excellent performance compared with the contrast models that are applicable
to time series forecasting. However, there are some differences in the performance of
each model at each time point. As the structure of the model becomes more complex, the
distribution of the predicted value of the model is more concentrated (Figure 12). It may
be that the improvement of the learning ability of the model enables the forecast model to
highlight the general distribution of actual water consumption. The prediction effect of
the single LSTM model in some peaks values is better than other prediction models, which
makes the overall prediction trend of the single LSTM model seem to be closer to the actual
water demand (Figure 13a,c,e,g). Meanwhile, the correlation between the actual value and
the predicted value of the LSTM model is the weakest (Figure 13b,d,f,h). The LSTM model
is affected by some outliers due to the ability to learn the long-term nonlinear relationship
of time series. Because the CNN model can remove the noise and unstable components
from the data and take into consideration the correlation between multivariate variables,
the introduction of the CNN model enhances the correlation between the predicted value
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and the actual value of the prediction models. Similarly, AM can underline the important
time series characteristics and reduce the influence of some outliers on the prediction effect.

It is worth noting that the deep learning models with strong learning ability still have
certain errors. As shown in Figure 17, the relative errors of the four models are mostly less
than 6%, and their average relative errors are between 2% and 3%. According to the fact
that the average relative error of outliers is larger than the overall average relative error
of the load values in the 100 days, it can be concluded that these outliers have a certain
impact on the prediction performance of the model. Moreover, the prediction accuracy of
the four models for water consumption on the 28th and 69th days is relatively low, and the
relative error of the two days is more than 6% (Figure 17). The water demand on the 28th
day and the 29th day varies greatly compared with that on the latest day, which makes the
models unable to accurately predict the load values of these two points. Since the variables
of the latest day are used as input to the model, the four models that can learn the long-
term nonlinear relationship also find it difficult to predict the very few rapidly changing
load values.

Among the various water demand forecasting models, the proposed hybrid attention-
based CNN-LSTM model has the characteristics of considering the correlation between
multiple variables and ignoring irrelevant data points, which improves the prediction
accuracy of the daily water demand and can provide measurement support for pumps
scheduling in water supply system. Once the water supply data listed in Section 3.1
has been collected, the proposed model can be easily solved for real problems using
optimization software. In addition, a system can be designed for decision-makers to
display the forecast results in visualization with more advanced application.

5. Conclusions

Urban water demand prediction is beneficial for the design and optimal management
of water distribution systems. Short-term water consumption prediction helps to identify
appropriate options to maintain a balance between water supply and demand. In this
paper, a hybrid framework called the attention-based CNN-LSTM model is proposed to
predict daily water demand time series of the water plant in Suzhou, China. The proposed
model is contrasted with the LSTM model, CNN-LSTM model, and attention-based LSTM,
and the predicted load values of these models are consistent with the actual water demand.
Among these models, the proposed model has better prediction performance in terms of
MAE, RMSE, MAPE, and R2. The results show that the attention-based CNN-LSTM hybrid
model not only has excellent performance in predicting daily water demand, but also
has certain reference significance for the application of deep learning technology in time
series forecasting.

A very small number of daily water consumption data rapidly change, which leads
to the decline of the overall accuracy of the attention-based CNN-LSTM hybrid model for
daily water demand forecasting. For the sake of working out this problem, several different
statistical techniques should be applied to select a suitable model input with better forecast
performance. In future work, with the development of deep learning technology, some
new intelligent models and methods can be introduced to improve the prediction accuracy
of fluctuating water demand data.
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