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Abstract: Predicting household vehicle ownership (HVO) is a crucial component of travel demand
forecasting. Furthermore, reliable HVO prediction is critical for achieving sustainable transportation
development objectives in an era of rapid urbanization. This research predicted the HVO using a sup-
port vector machine (SVM) model optimized using the Bayesian Optimization (BO) algorithm. BO is
used to determine the optimal SVM parameter values. This hybrid model was applied to two datasets
derived from the US National Household Travel Survey dataset. Thus, two optimized SVM models
were developed, namely SVMBO#1 and SVMBO#2. Using the confusion matrix, accuracy, receiver
operating characteristic (ROC), and area under the ROC, the outcomes of these two hybrid models
were examined. Additionally, the results of hybrid SVM models were compared with those of other
machine learning models. The results demonstrated that the BO algorithm enhanced the performance
of the standard SVM model for predicting the HVO. The BO method determined the Gaussian kernel
to be the optimal kernel function for both datasets. The performance of the SVM#1 model was
improved by 4.27% and 5.16% for the training and testing phases, respectively. For SVM#2 model,
the performance of this model was improved by 1.20% and 2.14% for the training and testing phases,
respectively. Moreover, the BO method enhanced the AUC of the SVM models used to predict the
HVO. The hybrid SVM models also outperformed other machine learning models developed in this
study. The findings of this study showed that SVM models hybridized with the BO algorithm can
effectively predict the HVO and can be employed in the process of travel demand forecasting.

Keywords: household vehicle ownership; support vector machine; bayesian optimization algorithm;
sustainable transport development

1. Introduction

When it comes to developing a more sustainable transportation system, it is important
to keep a close eye on the rapid growth in private motorized vehicle ownership and use,
which is a major source of air pollution in metropolitan areas, as well as a major contributor
to traffic congestion. Although the emergence of shared mobility has contributed to a
global decline in vehicle ownership [1], this effect is minimal [2]. The average number
of automobiles owned by a household in the United States is 1.88 [3]. Nearly 9% of
households lacked a car in 2017, indicating that nearly nine out of ten people in those
households had accessibility to one or more light vehicles [3]. Traffic congestion, pollution,
and deteriorating health are just a few of the negative effects of an increasing number of
people taking to the roads in their own vehicles [4,5]. The issue of how to curb the growth
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in automobile ownership in the United States has become a real challenge. Transport
policies explain the formation of a collection of agreements and recommendations aimed at
achieving particular socioeconomic and environmental goals, in addition to improving the
efficacy and reliability of the transportation system. The primary goal is to make sound
judgments about how to distribute transportation resources, as well as to manage and
control present transportation operations [6,7]. To satisfy the objectives of sustainability
goals and minimize the adverse effects of a high rate of vehicle ownership, it is required to
accurately predict motorized vehicle ownership and design an efficient allocation system
for city transport systems.

Traditional statistical methods, such as regression models, have been frequently used
to predict household vehicle ownership (VO). Nonetheless, it is difficult to utilize these
models to investigate the predictors of household vehicle ownership (HVO) owing to the
vast quantity of complex data on vehicle ownership. Regression models have to follow a
number of strict statistical assumptions in order to be valid for data on vehicle ownership.
These assumptions include the requirement for linearity in association modeling and the
absence of outliers [8,9]. Detecting the predictors using cross-product terms may also be
challenging, given that the interaction might take several forms [10].

In recent years, machine learning (ML) algorithms have progressively been utilized
instead of or in addition to statistical models, especially in light of the advancements in
artificial intelligence (AI). ML models, unlike statistical models, do not need a preexisting
connection between the target and input variables; rather, they discover complicated con-
nections between the dependent and independent variables by repeatedly generating a
transformation matrix based on input data. There is no need to predetermine the mathemat-
ical structure of the algorithm, which is a major advantage of machine learning. With ML
algorithms, the target variable may be predicted by spotting broad trends and patterns in a
set of data. It can also handle incomplete information, extreme values, and multicollinearity
among variables [11–13].

Typically, HVO datasets consist of a large number of parameters, each of which could
have many classes. In addition, these datasets may be regularly updated as new data
becomes available or is requested. In addition, it is quite common for HVO datasets to be
incomplete or include missing information [14]. Such multivariate and under-sampling
data, as well as incomplete, erroneous, or ambiguous knowledge or data, can be effectively
managed by a Support Vector Machines (SVM) model [15–18]. Because of its ability to
quickly update its network based on given or inputted data, SVM is regarded as ideal for
transport-related learning and dynamic behavior (e.g., household vehicle ownership and
travel mode choice) [6,19,20].

Using SVM models in previous transport-related studies, particularly for HVO predic-
tion, was not without issues. SVM has three important hyperparameters, including kernel
function, penalty factor (C), and Gamma (γ), that impact the model’s capacity to generalize
and its accuracy [21,22]. The previous studies mostly employed software or tools with
predefined hyperparameters, which yielded less-than-optimal results.

Typically, hyperparameter optimization of SVM can be performed using random
search, grid search, and genetic algorithms (GA). However, there are apparent flaws in
these optimization approaches that might impair HVO prediction and, in turn, travel
demand forecasting. Because both random and grid searches are blind, they take a long
time to complete. Because GA is inclined to fall into local optimality, this makes them less
effective in the long run.

In recent years, the Bayesian Optimization (BO) method has been developed as a rapid
optimization technique for computation-intensive functions. It has been shown to be a
very successful method for managing several machine learning models, especially SVM
(e.g., [19,20]). Consequently, this prompted the authors to use the BO method, which offers
an accurate and efficient prediction of household vehicle ownership, in this work. This BO
optimization approach is used to optimize the SVM hyperparameters. The BO algorithm
can also remedy the shortcomings of existing optimization techniques to optimize the SVM
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hyperparameters by using Bayesian machine learning and Gaussian process regression.
This technique has not yet been used to optimize the SVM hyperparameters for HVO
prediction. In this work, the SVMBO model is used on two different sets of data from the
2017 US National Travel Survey (NHTS). This study shows how the application of the
BO algorithm can improve the performance of the SVM model for predicting the HVO.
This research mainly contributes to the investigation of artificial intelligence approaches in
predicting vehicle ownership to achieve a more sustainable society. In addition, another
contribution of this study is to suggest a new framework for decision-making in urban
transport management to predict household vehicle ownership.

The following is the order in which the paper is presented: Section 2 includes a
review of the literature on factors that influence HVO and methods for predicting HVO.
Section 3 presents the issues that led to this study as well as the main research question.
Section 4 presents the background of models used in this study, including the SVM, BO,
and evolutionary random forest (ERF). The data utilized in this study is also shown in this
section. Section 5 presents the results of input selection and optimized SVM models. These
results are discussed in Section 6. Finally, the paper has been summarized in Section 7.

2. Literature Review
2.1. Factors Influencing HVO

Previous studies have demonstrated that some components of the built environment
are linked to automobile ownership. Several studies have shown that areas with a higher
density of walking and cycling facilities or higher population density have a lower rate of
vehicle ownership [23–28]. It was also shown that higher levels of urbanization result in a
higher level of private vehicle ownership [29].

Generally, vehicle ownership is considered as a consequence of a household’s de-
mographic and socioeconomic characteristics [30]. It has been shown in several studies
that people with higher socioeconomic status tend to have more vehicles. In addition,
family size, the number of children, adults, and workers in a household all have a positive
relationship with the rate of household vehicle ownership [30–36].

2.2. Methods Used for HVO Prediction

The negative implications of private car ownership have prompted several studies
to simulate the variables that influence vehicle ownership (VO) and use. Furthermore,
obtaining an accurate prediction of vehicle ownership to achieve sustainability goals at-
tracts a lot of attention. The statistical approaches used in these investigations are mostly
aggregate and disaggregate approaches. Individual or household variables are used in
the disaggregate model to predict vehicle ownership at the individual or household level
(HVO), whereas the aggregate model includes district-level features [37,38]. VO patterns
and use patterns are often predicted using these models. A downside to these statisti-
cal models is that the dependent and independent variables must have a predetermined
connection. The performance of statistical models is significantly impacted by extreme
values, multicollinearity among independent variables, and incomplete information. Fur-
thermore, these models are unable to accurately estimate VO in order to evaluate future
policy options [39,40].

To date, several studies have employed ML algorithms to predict the HVO
(e.g., [6,36,41–45]). Table 1 shows a summary of these studies. The most common ML
techniques that have been employed by these studies were gradient boosting trees (GBT),
neural networks (NNs), decision trees (DT), random forest (RF), support vector machines
(SVM), k-nearest neighbors (kNN), and Naïve Bayesian (NB). Most of these models showed
better performance compared to the traditional statistical techniques. It also should be
noted that most of these studies used the default values for applying the ML models, which
may yield less-than-optimal results. Among those studies that employed an optimization
technique to fine-tune the hyperparameters, most studies used grid or random search, each
of which has its own shortcomings.
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The support vector machine (SVM) algorithm was employed in several studies to
analyze vehicle ownership and showed promising performance [41,42,46]. Abdul Muhsin
Zambang, Jiang, and Wahab [42] compared the performance of SVM with other ML tech-
niques in Greater Tamale. However, their study did not employ any algorithm to optimize
the SVM or other techniques’ hyperparameters. Basu and Ferreira [41] also conducted a
comparative study in Singapore to understand the VO. They used a grid search method to
optimize the hyperparameters of several ML models. Pineda-Jaramillo [46] investigated the
major factors that impact travel behavior among people with restricted mobility to promote
autonomous, healthy lives and healthy active transport modalities using ML and several
other ML techniques. He used a random search strategy to fine-tune the hyperparameters.
Despite the fact that these two last studies employed grid and random search to optimize
the hyperparameters of SVM, each of these methods has their own drawbacks that will be
explained in the Methodology section. Thus, it is necessary to apply efficient optimization
techniques to fine-tune the hyperparameters of ML models and improve the performance
of ML techniques in general and SVM in particular.

Table 1. Recent studies on the use of ML techniques for predicting the vehicle ownership.

Study Study Aim Model(s) Used Hyperparameter
Optimization

Chaipanha and
Kaewwichian [47]

To provide a way for balancing the data using
over- and under-sampling strategies. kNN, NB, DTs No

Manjushree, GH, Swamy
and Giridharan [6]

To apply ML models to forecast the household
characteristics that influence car ownership. DTs, RF, MNL No

Shao et al. [48]

To evaluate the nonlinear and interaction
impacts of the built environment and
motorcycles/E-bikes on automobile
ownership using GBDT.

GBDT Grid search

Pineda-Jaramillo [46]

To investigate the major factors that impact
travel behavior among persons with restricted
mobility to promote autonomous, healthy
lives and healthy active transport modalities.

NB, kNN, DTs, SVM, RF,
AdaBoost, NN, GBDT,
CatBoost

Random search

Kaewwichian [14] To remedy the imbalanced data problem in
automobile ownership datasets. DT, kNN, NB No

Abdul Muhsin Zambang,
Jiang and Wahab [42]

To approximate automobile ownership in
Greater Tamale. SGD, SVM, DT, RF, NB, kNN, No

Wang et al. [49] To anticipate ownership of electric vehicles. AdaBoost No

Sabouri, Brewer and
Ewing [36]

To investigate the association between
ride-sourcing services and household
vehicle ownership.

DT, RF No

Basu and Ferreira [41]

Through a comparison of econometric and
machine learning models, to comprehend
household automobile ownership
in Singapore.

DT, RF, NN, SVM, LR, SGD,
OLC Grid search

Ha, Asada and Arimura [43] To identify the variables that affect household
car ownership trends in Phnom Penh. RF, NN, MNL No

Tanwanichkul et al. [50] To approximate automobile ownership using
ML methods. DT, NN, MNL No

ML techniques: k-Nearest Neighbors = kNN; Naïve Bayes = BB; Decision Trees = DT; Random Forest (RF);
Multinomial Logistic Regression = MNL; Gradient boosting decision trees = GBDT; support vector machines
(SVM); Neural Networks = (NN); Stochastic Gradient Decent = SGD.

3. Research Motivations and Aims

The issues that motivated this research can be explained as follows: (1) a high rate
of vehicle ownership has a negative effect on traffic and air pollution; (2) it is required to
predict private vehicle ownership accurately to manage its adverse effects; (3) traditional
statistical methods are unable to accurately predict vehicle ownership; (4) SVM can be
considered an effective method to predict private vehicle ownership; and (5) BO is an
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efficient optimization algorithm, but it is not sufficiently examined for optimizing the
SVM hyperparameters in the field of transportation research. In light of the problems that
led to this study, the analysis of the collected data focused on answering the following
research questions: (1) how does BO improve the performance of the SVM model to predict
household vehicle ownership? (2) How does the optimized SVM model help decision
makers to mitigate the adverse effects of vehicle ownership?

4. Methodology

This study employed the BO algorithm to optimize the parameters of SVM to predict
the HVO. A flow diagram of this investigation can be found in Figure 1. To test our
approach first, two datasets from the US National Household Survey were employed.
Second, the data were split into training and testing subsets. Third, a feature selection
using evolutionary random forest was applied to the data in each dataset. Fourthly, SVM
and SVMBO models were trained and evaluated for each dataset. Finally, the best model in
terms of performance was identified and introduced.

Sustainability 2022, 14, x FOR PEER REVIEW 5 of 17 
 

predict private vehicle ownership accurately to manage its adverse effects; (3) traditional 
statistical methods are unable to accurately predict vehicle ownership; (4) SVM can be 
considered an effective method to predict private vehicle ownership; and (5) BO is an ef-
ficient optimization algorithm, but it is not sufficiently examined for optimizing the SVM 
hyperparameters in the field of transportation research. In light of the problems that led 
to this study, the analysis of the collected data focused on answering the following re-
search questions: (1) how does BO improve the performance of the SVM model to predict 
household vehicle ownership? (2) How does the optimized SVM model help decision 
makers to mitigate the adverse effects of vehicle ownership? 

4. Methodology 
This study employed the BO algorithm to optimize the parameters of SVM to predict 

the HVO. A flow diagram of this investigation can be found in Figure 1. To test our ap-
proach first, two datasets from the US National Household Survey were employed. Sec-
ond, the data were split into training and testing subsets. Third, a feature selection using 
evolutionary random forest was applied to the data in each dataset. Fourthly, SVM and 
SVMBO models were trained and evaluated for each dataset. Finally, the best model in 
terms of performance was identified and introduced. 

 
Figure 1. Flow diagram of this study. 

4.1. Data 
This research chose two datasets at random from the US 2017 National Household 

Travel Survey (NHTS). These datasets are from two US states: Maine (ME) and Nevada 
(NV). The NHTS is one of the most important sources of transportation research in the 
United States, and numerous studies have used it to analyze transportation issues (e.g., 
[51–55]). The NHTS tracks daily non-commercial travel across all modalities, as well as 
the characteristics of the travelers, their households, and their vehicles. This dataset con-
tains more than 400 variables. The authors selected household vehicle ownership (HVO) 
as the dependent variable and 14 additional factors as the independent variables for this 

Figure 1. Flow diagram of this study.

4.1. Data

This research chose two datasets at random from the US 2017 National Household
Travel Survey (NHTS). These datasets are from two US states: Maine (ME) and Nevada
(NV). The NHTS is one of the most important sources of transportation research in
the United States, and numerous studies have used it to analyze transportation issues
(e.g., [51–55]). The NHTS tracks daily non-commercial travel across all modalities, as well
as the characteristics of the travelers, their households, and their vehicles. This dataset
contains more than 400 variables. The authors selected household vehicle ownership (HVO)
as the dependent variable and 14 additional factors as the independent variables for this
research. The selection of these input variables was based on a comprehensive literature
study. Two classes comprise the target variable (HVO): households with one vehicle and
households with more than one vehicle. Table 2 provides a list of the variables utilized in
this investigation. The distribution of the target variable’s classes is shown in Figure 2.
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Table 2. Variables utilized in this research.

Variable Description Type

Independent variable
HHVEHCNT The number of household vehicles Binary (1, >1)
Dependent variables
HHFAMINC Income of household ($) Categorial
SIZE Size of household Continuous
HOMEOWN Home ownership Binary
NUMADLT How many adults live in the household? Continuous
WRKCOUNT How many workers does the household have? Continuous
YOUNGCHILD How many children live in the household? Continuous
DRVRCNT How many drivers does a household have? Continuous
TRPHHACC How many household members are on the trip? Continuous
TRPHHVEH Is the household vehicle used for the trip? Binary
BIKE_DFR How inadequate is bicycle infrastructure? Categorial
HBPPOPDN Density of population Categorial
URBANSIZE What is the size of the urban area around the household? Categorial
URBRUR Does the household live in an urban or rural area? Binary
WALK_DEF How inadequate is walking infrastructure? Categorial
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4.2. Support Vector Machines (SVM) and Bayesian Optimization (BO) Algorithm

SVM is a statistically based machine learning methodology that combines many
methodologies, including relaxing variables, maximum interval hyperplane, and kernel
function. It is appropriate for solving classification issues involving limited samples,
inhomogeneity, and high dimensions [56]. SVM was increasingly used in the area of
transportation planning and engineering as interdisciplinary integration developed. A non-
linear transformation is utilized to convert the input space samples into a high-dimensional
feature space, and then an optimum classification plane is found that divides the character-
istic space samples in a linear fashion. This is the main idea [57,58]. In investigations of
HVO, the likelihood of having one or more vehicles corresponds well to the features of the
method for handling binary classification issues.

The space from the hyperplane to the closest sample point is known as the margin.
The broader the margin, the greater the classifier’s capacity for generalization. The ob-
jective of SVM is, thus, to identify the hyperplane that maximizes the margin, namely
the optimum hyperplane. Every spot on the hyperplane on either side of the margin
is termed a support vector, and the categorization border is decided exclusively by the
support vectors, not additional data or the quantity of data. Because of this, optimizing
SVM’s hyperparameters is very essential. SVM’s kernel type, C, and gamma are the most
important hyperparameters. The kernel, as previously said, transforms the raw data into a
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feature space representation. Adding a penalty for each incorrectly categorized data point,
hyperparameter C regulates the exchange between the decision boundary and correctness.
In some kernel types, gamma is a parameter that is connected to C. Gamma has no influence
on C if it is huge. It is comparable to a linear model if the gamma is small. C influences the
model in the same manner.

The adjustment of learning parameters and model hyperparameters is often a consid-
eration in the implementation of ML algorithms [59]. Model or training process qualities
are defined by hyperparameters, which have a substantial impact on the model’s ultimate
outcome [60]. Many machine learning algorithms use BO as a technique for selecting the
best hyperparameters. Clearly, BO outperforms many optimization techniques, including
GAs, particle swarm optimization algorithms, and other advanced AI algorithms [60,61].

In order to optimize noisy black-box functions, BO is used as a global optimization
technique. When used for hyperparameter optimization, BO creates a probabilistic model
of the function, translating hyperparameter values to the objective as assessed by the testing
set. By repeatedly assessing a feasible hyperparameter combination based on the present
model and then modifying it, BO seeks to collect samples that reveal as much information
about this function and, more specifically, the position of the ideal. It maintains a balance
between exploration and exploitation.

Using Bayesian machine learning and Gaussian process regression, this parameter
optimization strategy employs a proxy for the objective and assesses the uncertainty in
that proxy before determining the location of the sample using an acquisition function
produced from the proxy. Typically, the issues that the BO algorithm encounters are:

D∗ = argd∈Vmax f (d) (1)

where V shows the candidate set of d.
At each iteration of the sequential optimization problem, BO is required to choose the

most optimum observation value. Using the Gaussian Process (GP), it is possible to tackle
this critical issue according to the following equation:

f (d) ∼ GP(µ(d)), n(d, d∗)) (2)

The kernel function is denoted by n(d, d∗), while the mean function is denoted by
µ(d). The Gaussian kernel function has the following form:

n(d, d∗) = exp
(
−1

2
‖ d− d∗ ‖ 2

)
(3)

Instead of using the original value, the BO algorithm returns a new value for each
hyperparameter. This was followed by the development of a new hybrid model (SVMBO).

4.3. Models’ Performance Assessment

This study employed a confusion matrix, accuracy, receiver operating characteristics
(ROC) curve, and area under the ROC curve (AUC) to evaluate the performance of the
models developed in this study. The confusion matrix, which is also called the matrix
of error, is used to figure out how well a classifier works. The approach can statistically
represent the accurate rate of 0-value forecasts, the correct rate of 1-value forecasts, and
the total forecast rate in the model’s findings. The ROC curve is an exhaustive measure
of response sensitivity and particular factors. The greater the accuracy of the model, the
nearer the curve is to the top left corner. AUC has a range of [0, 1]. In general, the closer
AUC gets to 1, the more accurate the model is.

5. Results

This section presents the results of optimizing the SVM models to predict house-
hold vehicle ownership using the Bayesian Optimization (BO) algorithm and two distinct
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datasets (corresponding to steps 1 and 2 in the Methodology section). The results of using
ERF to select inputs are shown in the first sub-section (corresponding to step 3 in the
Methodology section). The results of the SVM and optimized SVM models are shown in
the second sub-section (corresponding to steps 4 and 5 in the Methodology section). In the
second sub-section, these models were also evaluated on their performance using different
criteria (corresponding to step 5 in the Methodology section).

5.1. Input Selection

This study employed an evolutionary random forest model for input selection. Sev-
eral previous studies successfully implemented this technique for input selection in other
research domains (e.g., [62,63]). ERF selected the most relevant predictors of HVO in each
dataset. Eight inputs were selected by the ERF model in each dataset (Figure 3). Some
parameters have been tuned and used to develop the ERF model. These parameters, along
with the selected inputs in both datasets, are shown in Figure 3. There are some common
variables that have emerged as important in both models, including home ownership
(HOMEOWN), household income (HHFAMINC), count of drivers in the household (DRVR-
CNT), and population density category (HBPPOPDN). For the NV and ME datasets, model
accuracy was 94.45%, and for the ME dataset, it was 95.10%.
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The emergence of four aforesaid inputs in both datasets shows the importance of these
variables in predicting HVO. This finding confirms that of previous studies that reported
the importance of home ownership [44], household income [30], number of drivers in the
household [44], and population density category [23–26] for HVO forecasting.

5.2. SVM and SVMBO Models’ Development and Assessment

In this work, two SVM models were used to predict the HVO across two datasets.
The first SVM model, designated SVM#1, was applied to the ME dataset, while the second
SVM model, designated SVM#2, was applied to the NV dataset. The author developed the
models by using 414 and 260 training data points (representing 70% of the total data in each
dataset) from the ME and NV datasets, respectively. In addition, 5-fold cross-validation
was implemented at this stage. Subsequently, the SVM models were evaluated utilizing
178 and 112 datasets (representing 30% of the total data in each dataset), respectively, of
ME and NV datasets. It should be noted that the authors developed SVM models and their
optimized variants using different common proportions, including 70:30, 80:20, and 90:10.
However, in both datasets, the 70:30 ratio yielded the highest improvement in models’
accuracy. Figure 4 shows how the SVM model’s ability to predict the HVO in two datasets
became better after the BO algorithm was added. The linear kernel was used to develop
these models. Table 3 displays the training and testing accuracy of these models. The
accuracy (%) of both training and testing for these two models is fairly similar.
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Table 3. Confusion matrix and accuracy (%) of training and testing phases.

Dataset Model
Train Test

Actual
Prediction Accuracy (%) Prediction Accuracy (%)

1 2 1 2

ME dataset
SVM#1

1 66 24
91.3

30 10
87.12 12 312 13 125

SVMBO#1 1 78 12
95.2

28 12
91.62 8 316 3 135

NV dataset
SVM#2

1 71 8
91.2

28 14
83.92 15 166 4 66

SVMBO#2 1 69 10
92.3

31 11
85.72 10 171 5 65

The Bayesian Optimization (BO) approach was used to enhance the performance of
two SVM models that predict the HVO using identical training and testing datasets. The
goal of the BO method for SVM-based hybrid models is to find the best values for the SVM
model’s hyperparameters “C” and “gamma”. These parameter ranges were set between
0.001 and 1000. The following is the primary procedure for optimizing SVM parameters
utilizing BO optimization techniques:

• Processing and preparing data: randomly dividing the dataset into a training set and
a testing set with an appropriate ratio (70:30).

• Assessment of fitness: before optimizing the target parameter value, estimate, and
assess the fitness function.

• Adjustment of parameters: update the optimization criteria satisfied by the parameters
based on every iteration’s finding.

• Halt condition inspection: once the optimization stop condition is fulfilled, the optimal
parameters are determined.

It should be mentioned that 100 iterations were used to train the models. Figure 5
depicts the progress of optimization of the SVM hyperparameters, as well as the mini-mum
classification error. At 92 iterations, SVMBO#1 achieved a minimum classification error of
0.051, while SVMBO#2 obtained a minimum classification error of 0.077 at 77 iterations.
SVMBO#1’s greater iteration rate than SVMBO#2 may be attributed to this model’s larger
data size.
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Table 4 shows the hyperparameters for the two SVM-optimized models that provide
the best evaluation value of BO for each model. As can be seen, the Gaussian kernel was
chosen as the best kernel function for developing SVMBO models to predict the HVO. The
gamma values of these two models are quite similar. Moreover, the average training time
for these two models is 375.55 s. Clearly, training an optimized SVM model requires more
time compared to training a standard SVM model.

Table 4. Models’ parameters and training times.

SVM#1 SVMBO#1 SVM#2 SVMBO#2

Population size * 414 414 260 260
Kernel function - Gaussian - Gaussian
Gamma - 5.3103 - 4.1209
C - 53.4787 - 9.4636
Training time (sec) 1.2986 324.5 3.8578 424.6

* Samples used for models’ building.
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Table 2 shows the confusion matrix and accuracy (%) of the developed standard and
hybrid SVM models. In both the training and testing stages, the BO technique enhanced the
predictive accuracy of the SVM models for HVO in both datasets of this study. These results
illustrate the efficacy of the BO approach in enhancing the HVO prediction performance of
the SVM model.

Figures 6 and 7 show the ROC and AUC for all models developed in this research.
Figure 6 illustrates the dispersion of the AUC values of the two models (SVM#1 and
SVMBO#1) applied to the ME dataset during the course of the iterative procedure, while
Figure 7 shows the AUC values of the two models (SVM#2 and SVMBO#2) applied to the
NV dataset. AUC values greater than 0.9 are commonly regarded as excellent [64]. Both
optimized SVM models achieved an AUC higher than 0.9. Additionally, the BO algorithm
made the AUC of SVM models that predict the HVO better for both datasets (ME and NV)
and training and testing phases.
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The testing accuracy of the SVMBO#1 and SVMBO#2 models was compared to that of
several machine learning approaches, such as artificial neural networks (ANN), single DT,
bagged DT, boosted DT, and KNN. The outcome of this comparison is shown in Figure 8.
The improved SVM models built in this work to predict the HVO outperformed other ML
models for both datasets. This demonstrates the effectiveness of the model created for this
research in predicting the HVO.
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6. Discussions

The superior performance of SVMBO models over other ML approaches and the regu-
lar SVM model may be credited to the technique’s ability to completely use information
from previous iterations to identify the next possible parameter choice [65,66]. This study’s
results corroborate those of prior research that indicated satisfactory outputs for other vari-
ations of the SVM model for different datasets to predict vehicle ownership (e.g., [20,42,51]).
This investigation revealed, however, that the Gaussian kernel is the most effective kernel
function for forecasting the HVO. This finding is unique, according to the authors’ best
knowledge. Compared to other studies that employed SVM optimized by an optimization
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method, the SVMBO model achieved greater training and testing accuracy than that of Basu
and Ferreira [41] (training accuracy = 86.91% and testing accuracy = 66.89%), which utilized
a grid search strategy. This shows that the BO approach can be a better way to improve
the performance of the SVM model for predicting the HVO than traditional optimization
algorithms, such as grid search.

Implications for Academic and Policy-Making

Concerning the academic contributions, this research for the first time investigated
Bayesian Optimization algorithms to improve the performance of a machine learning
algorithm to predict household vehicle ownership. The findings of this study can be a
starting point for other researchers to apply the BO to improve other ML algorithms to
solve other transportation problems. In addition, this research proposes a novel framework
for decision-making in urban mobility management in order to anticipate household car
ownership. Our study also has a wide range of practical applications, including more
effective policymaking.

It is significantly necessary to answer both casual and predictive inquiries in order to
offer policy formulations. For example, a transportation policymaker in a metropolitan
area who wishes to combat traffic congestion may need to determine if limiting the number
of private automobiles would provide the intended outcomes. This is just an illustration of
a causal question. However, other decision-making that may contribute to lower usage of
private vehicles, such as whether it is essential to establish infrastructure to accommodate
walking, biking, and public transit usage in areas where it does not exist, whether it is
critical to enhance the existing facilities, and how to develop those that must be created,
only requires a reliable forecast for the likelihood of lower usage of private vehicles. This
example illustrates Kleinberg et al. [67] definition of “policy prediction problem”.

Researchers in the area of transportation may use ML techniques to forecast future
travel trends and identify previously unknown passenger behavior patterns. These results
and forecasts may aid decision-makers in locating ideal solutions that improve the reliability
and efficiency of transport systems. In a way that no other algorithms could, ML algorithms
could analyze a person’s travel history, determine their habits, and provide suggestions for
how they can improve their travel habits in the future.

The current research confirms the benefits of the suggested SVMBO model, which
might be used by transportation and vehicle ownership policymakers. The SVMBO algo-
rithm can assure transport decision-makers and researchers that their predictions using
this approach are among the most accurate possible, since the BO’s strong characteristics
are utilized to determine the optimal SVM’s hyperparameters.

7. Conclusions

Fine-tuning of the SVM hyperparameters to obtain the highest possible predictive ac-
curacy has been a common challenge for researchers in several fields of research. However,
the successful use of BO to optimize the SVM hyperparameters in a number of research
areas led to this method being used to find the best value for the SVM hyperparameters.

To address the need for an accurate prediction of household vehicle ownership while
also meeting the objectives of sustainability goals, this study investigated how the BO
algorithm can improve the performance of the SVM model in predicting household vehicle
ownership. The findings of this study may assist decision-makers in fairly predicting motor-
ized vehicle ownership and designing an efficient allocation system for urban transportation
systems in order to reduce issues, such as traffic congestion and major air pollution.

This research is among the rare studies in the field of transportation that improve
the performance of ML techniques using the BO algorithm. The results of this study
may serve as a benchmark for future work on improving other ML algorithms for use in
research in this field. The results of our research can be used in many ways, such as to
improve policymaking.
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The SVMBO model was applied to two distinct datasets from the US National House-
hold Travel Survey (NHTS) to obtain a more comprehensive assessment. As a result,
two optimized SVM models, SVMBO#1 and SVMBO#2, were developed. The results of
these two hybrid models were analyzed using the confusion matrix, accuracy, ROC, and
AUC. The outcomes of hybrid SVM models were also compared to the outcomes of other
ML models. The findings of this research can be summarized as follows:

• These two models took 375.55 s on average to train.
• The SVMBO approach outperformed the traditional SVM model in predicting the HVO.
• The BO technique concluded that the Gaussian kernel was the best kernel function for

both datasets.
• The BO method enhanced the performance of the SVM#1 model by 4.27% and 5.16%,

respectively, throughout the training and testing phases.
• For the SVM#2 model, the performance of this model was improved by 1.20% and

2.14% for the training and testing phases, correspondingly.
• The AUC of the SVM models used to predict the HVO was improved by using the

BO technique.
• In this study, the optimized SVM models did better than the other machine learning

models that were applied.

This study concludes that the performance of an SVM model to predict household
vehicle ownership can be enhanced by employing robust optimization methods such
as BO. This study lends support to prior research that attempted to demonstrate the
efficacy of artificial intelligence algorithms in predicting vehicle ownership for a more
sustainable society. Next, we will look at how more complex optimization strategies
affect the fine-tuning of hyperparameters in different machine learning models to predict
vehicle ownership.

The study has limitations in addition to its contributions to the literature. The effective-
ness of the SVMBO model to predict the HVO was tested using two datasets in this research.
Although the authors believe that these two datasets are sufficient for this assessment,
future studies might include other datasets from the same or alternative data sources to
appraise the SVMBO model’s capacity to forecast HVO. The SVMBO was developed for
the binary classes of HVO in this research. Future studies may use this approach to forecast
when HVO has more classes.
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