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Abstract: The building sector is responsible for more than one-third of total global energy con-
sumption; hence, increasingly efficient energy use in this sector will contribute to achieving carbon
neutrality. Most existing building-energy-benchmarking methods evaluate building energy per-
formance based on total energy use intensity; however, energy usage in buildings varies with the
seasons, and as such, this approach renders the evaluation of cooling and heating energy difficult. In
this study, an information gain-based temporal segmentation (IGTS) method was used to identify the
seasonal transition times based on patterns of hourly weather and corresponding building energy use.
Twelve commercial buildings were considered for the study and four seasons were identified using
IGTS; base-load, cooling energy, and heating energy data were gathered. For the 12 buildings, the
estimated and measured heating and cooling energy during the summer and winter periods showed
a linear relationship (R2 = 0.976), and the average of those differences was 9.07 kWh/m2. In addition,
differences in the benchmarking results based on these energies were marginal. The results indicated
that the IGTS approach can be effectively used for determining the actual heating and cooling energy
consumption in buildings, as well as for energy benchmarking. This can, in turn, improve building
energy use, with positive implications for achieving carbon neutrality.

Keywords: energy use intensity; temporal segmentation; commercial building; benchmarking;
energy disaggregation

1. Introduction

The building sector accounts for over one-third of total global energy consumption
and is a major source of carbon emissions [1]. In 2019, the South Korean government
announced an increase in the greenhouse gas reduction target from 26.3% to 40% by 2030,
compared to the 2018 levels, as a part of the efforts to achieve carbon neutrality by 2050 [2].
In particular, the carbon emissions of the building sector in 2030 must be reduced by 32.8%
by designing energy-efficient buildings and using energy-saving/-efficient equipment [3].

Energy efficiency can be defined as the use of less energy to produce the same output;
hence, energy-efficiency indicators are used to indicate the energy consumption perfor-
mance level of energy-consuming systems [4]. Energy benchmarking can be effective in
promoting efficient energy use by comparing buildings with similar characteristics [5,6].
Energy use intensity (EUI), which can be defined in simple terms as normalized energy
use based on gross floor area, is commonly used as an energy-efficiency indicator in bench-
marking building energy [1,6]. For example, the Chartered Institution of Building Services
Engineers (CIBSE) uses EUI to benchmark the energy performance of similar buildings and
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performs a comparative assessment to rate the energy efficiency of the buildings [1,7,8].
Although EUI a straightforward parameter for determining building energy efficiency [9],
its meaning is ambiguous, and as such, it is not helpful for identifying opportunities and
prioritizing potential actions for more detailed analyses and full-scale audits [1,10,11].

Based on the data source and application, benchmarking approaches can be classified
into two types: empirical or simulation-based [1]. Empirical benchmarking, which uses
empirical data, is actively applied for operational rating, whereas simulation-based bench-
marking, which uses theoretical data, is utilized for asset rating, tailored benchmarking,
and scenario analysis [12,13]. Empirical benchmarking utilizes statistical techniques such
as ordinary least squares (OLS), stochastic frontier analysis (SFA), or data envelopment
analysis (DEA). OLS determines the best-fit regression curve based on factors including
building age, energy system, and floor area. The residual between the actual EUI and
the OLS-predicted EUI is a measure of the inefficiency of building energy use [4,5,14]. A
limitation of the OLS approach is that it calculates a fitted average function that provides
no direct quantitative information on energy inefficiency of the target building [5]. SFA
separates random error components from inefficiency components to achieve accurate mea-
sures of relative efficiency [15–17]. However, SFA may not be appropriate for determining
the efficiency of energy data in which outliers exist [5]. DEA is a multi-factor productivity
analysis method for assessing the relative efficiency of decision-making units (DMUs) [18].
For building efficiency benchmarking, a building is defined as a DMU when the aim is to
obtain an objective energy-efficiency score of that entire building [9]. While DEA is good at
estimating relative efficiency within a sample, it cannot explain some of the actual energy
use because certain factors are not testable in DEA [5].

Simulation-based benchmarking can be used to conduct detailed comparisons and
assessments through the use of end-use results from simulations; however, it may not be
practical in terms of benchmarking owing to the requirements of significant time, cost,
and efforts to develop a simulation model. In addition, in building energy simulations,
inevitable discrepancies exist between predicted and actual energy performance [19,20],
which reduces the reliability of the simulation-based benchmarking results. Therefore, for
existing buildings, using empirical data to quantify energy efficiencies is preferable [19,21]. In
particular, end-use metering or sub-metering technology is a better solution for determining
the energy use of individual loads [19]. End-use metering provides highly useful, detailed
energy information; however, it is not cost-effective or technically practical because of the
use of mixed circuits for different end-users.

In this study, an information gain-based temporal segmentation (IGTS) method [22]
(an unsupervised segmentation technique) was applied to identify seasonal transition times
based on patterns of hourly weather and corresponding building energy use. Data from
12 commercial buildings were separately measured for eight end-uses of electric energy
(cooling, heating, hot water supply, lighting, fan-generated air movement, appliances,
indoor transportation, and auxiliary devices) and three end-uses of gas energy (cooling,
heating, and hot water supply). The data for each building and end-use were measured
hourly for over one year.

Figure 1 shows the relationship between the total energy (Total) and cooling and
heating energy (CoolHeat) during 2018 for the 12 target buildings. The coefficient of de-
termination (R2 = 0.271) showed that CoolHeat was weakly correlated with Total. This
indicated that measuring the efficiency of CoolHeat use based on total energy consumption
as a benchmark for determining EUI is not suitable. In terms of the thermal energy perfor-
mance of buildings, this study considered that CoolHeat is reducible, while others (Others)
including hot water supply (Shw), lighting (Light), air movement by fan (Vent), appliances
(App), indoor transportation (Trans), and auxiliary devices (Aux) are unreducible. Therefore,
in this study, benchmarking was conducted with respect to the total amount of CoolHeat,
which has the potential to be reduced.
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Figure 1. Scatter plot between energy use intensity (EUI) for Total and CoolHeat in 2018 for
12 target buildings.

The temporal segmentation results of IGTS were used to disaggregate CoolHeat without
installing any sub-metering devices. The authors estimated the heating/cooling energy
and base-load energy for the four seasons using IGTS; the estimated values were compared
with the actual cooling/heating energy values. In addition, energy benchmarking was
conducted based on the estimated heating/cooling energy. This was then compared with
the actual data to verify the efficiency of seasonal segmentation-based heating/cooling
energy estimation and benchmarking.

2. Data

A dataset comprising data from 12 commercial buildings in Seoul, South Korea, was
used (Figure 2). Table 1 shows descriptions of the 12 buildings, including year built, total
floor area, number of floors, and types of heating, ventilation, and air conditioning (HVAC)
systems. In particular, the 12 buildings mainly comprised office spaces; other commercial
facilities are described in Table 1. The data measurement period for each building ranged
from a minimum of 1 year and 10 months to a maximum of 2 years. The dataset included
sub-metered data for eight end-uses that were measured based on the Korean Institute of
Architectural Sustainable Environment and Building Systems (KIAEBS) S-7 protocol [23],
which was developed by referring to ISO12655 [24]. In particular, watt-hour meters, gas
flow meters, and calorimeters were installed in the 12 buildings in accordance with the
KIAEBS S-7 protocol. In this study, these eight end-uses consumed electric (Elec) energy and
the three end-uses considered (Cool, Heat, Aux) consumed gas (Gas); the different end-uses
of energy are described below.

• Cooling energy (Cool): energy used for space cooling in the building through central
cooling sources (e.g., chiller, cooling tower), pumps involved in cooling, individual
cooling systems (e.g., electric heat pumps, gas heat pumps), and their operation
and control.

• Heating energy (Heat): energy used for space heating in the building through central
heating sources (e.g., boiler), pumps involved in heating, individual heating systems
(e.g., electric heat pumps, gas heat pumps), and their operation and control.

• Hot water supply (Shw): energy used to produce and transport hot water for building
domestic water services by central hot water sources (e.g., boilers) and pumps carrying
hot water.
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• Lighting (Light): Energy used by the main lighting equipment composed of separated
branch circuits.

• Air movement by fan (Vent): energy used for cooling, heating, ventilation, and air
circulation by fans in mechanical systems (e.g., air handling unit, outdoor unit, fan
coil unit).

• Appliances (App): energy used by office appliances, auxiliary heaters, electric fans,
water purifiers, and non-identifiable energy use in circuits.

• Indoor transportation (Trans): energy used by indoor transportation devices (e.g.,
escalators, lifts, etc.)

• Auxiliary devices (Aux): energy used by main pumps for water supply.

Table 1. Descriptions of the 12 target buildings.

Index Year Built Total Floor Area
(m2)

No. of Above-
ground/Underground

Floors
HVAC System Service Water

System
Commercial

Facilities

bldg.#01 1995 22,471 19F/B7
• Absorption

chiller-heater
• CAV, FCU

• Electric
water heater • Coffee shop (1F)

bldg.#02 1983 10,517 10F/B2
• Steam boiler,

turbo chiller
• CAV, FCU

• Steam
boiler

• Gym, exhibition
hall (B1)

• Bank, retail
store (1F)

bldg.#03 1968 2482 7F/B1
• Absorption

chiller-heater
• PAC, FCU

• Electric
water heater

• Sauna (B1)
• Printing house

(1F)

bldg.#04 2008 31,787 20F/B6
• Absorption

chiller-heater
• VAV, FPU

• Steam
boiler • Cafeteria (5F)

bldg.#05 1990 1265 5F/B1
• Hot water boiler,

compression
chiller

• Hot water
boiler • Retail store (1F)

bldg.#06 1971 4034 4F/B1 • EHP
• Electric

water heater • Gym (4F)

bldg.#07 2006 29,547 21F/B5
• Absorption

chiller-heater
• CAV, FCU

• Steam
boiler

• Restaurant,
hospital (B1)

bldg.#08 2012 2544 6F/B2 • EHP

• Hot water
boiler, solar
water
heating

• Cafeteria (1F)

bldg.#09 2008 1633 5F/B1
• EHP, Hot water

boiler, PAC
• Hot water

boiler • Office only

bldg.#10 1967 2408 4F/B2
• Steam boiler,

EHP
• Electric

water heater • Retail store (1F)

bldg.#11 1995 7124 11F/B4 • EHP • Electric
water heater

• Billiard rooms,
restaurant (B1)

• Restaurant (1F)

bldg.#12 2007 19,973 12F/B5

• District heating
and cooling,
EHP

• CAV, FCU

• District
heating

• Billiard rooms,
gym (B1)

• Bank (1F)

CAV: constant air volume system; FCU: fan coil unit system; PAC: packaged air conditioner; VAV: variable air
volume system; FPU: fan powered unit; EHP: electric heat pump system.
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Figure 2. Location of the 12 commercial buildings in Seoul, South Korea. Numbers in the circular
markers are the indexes of the target buildings (Table 1). NB. the marker of bldg.#03 is overlapped
with that of bldg.#10.

In South Korea, the seasons have distinct characteristics and are generally divided
into four categories, each with a fixed three-month interval, regardless of region: spring
(March–May), summer (June–August), fall (September–November), and winter
(December–February). The hourly weather data of Seoul were provided by the OpenAPI
of the Korea Metrological Administration [25] (Figure 3). These data were merged with the
dataset of the 12 buildings. The cooling and heating systems are operated in summer and
winter (SW); however, the actual periods of cooling and heating energy use depend on the
operation policy of each building and are different from those based on general seasonal
classification. For example, Figure 4 shows the total electric and gas energy use of bldg.#01
and bldg.#02 (which were randomly selected), indicating that the energy use generally
increased for cooling in summer and heating in winter, but also that periods of increase or
decrease in energy use differed between the two buildings. In other words, inferring the
use of cooling and heating energy based solely on the simplistic classification of seasons
would be problematic.

Figure 3. Hourly (a) outdoor air (OA) temperature and (b) solar radiation in Seoul.



Sustainability 2022, 14, 11095 6 of 14

Figure 4. Energy use intensity (EUI) for total gas and electric energy use for (a) bldg.#01 and
(b) bldg.#02.

3. Methods
3.1. Information Gain-Based Temporal Segmentation (IGTS)

Sadri et al. [22] reviewed temporal segmentation approaches (e.g., dynamic program-
ming, heuristic approaches, probabilistic) to split time series into non-overlapping intervals,
and proposed a new approach, the IGTS method, which considers multiple time series
regardless of their heterogeneity and varying correlation between multiple sensor channels.
In their study [22], the IGTS method was applied to determine transition times in human
activities and daily routines based on heterogeneous sensor data (e.g., RFID tags, movement
detection, daily life routine, smartphone logs). In the present study, the IGTS method was
used to identify the transition time in seasonal operations from a dataset that included
building energy use and weather data.

IGTS measures the amount of information in various segments of interest based on the
concept of Shannon entropy. In particular, IGTS calculates the entropy of the distribution
for each segment and then obtains the information gain to quantify the average reduction
in entropy caused by splitting the time series for segmentation. The expected reduction
in entropy (L) caused by segmentation (H

(
sj
)
) is calculated by the cumulative sum (Fi) of

observations (ci) as follows:

L = H(S)−
k

∑
i=0

|si|
|S| H(si) (1)

H
(
sj
)
= −

m

∑
i=0

pji log pji (2)

pji =
Fi
(
tj
)
− Fi

(
tj−1

)
∑m

p=1 Fp
(
tj
)
− Fp

(
tj−1

) (3)

Fi(t) =
t

∑
j=1

cij (4)
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where H(S) is the entropy of the entire time series; k is the number of segments; |si| is the
length of the ith segment; S is the entire time series as a segment; m is the number of time
series; and cij is the jth observation of the ith time series.

The best segmentation has the highest information gain. Dynamic programming
(DP) optimization is applied to find a segmentation that maximizes the information gain

(Equation (1)). DP minimizes the weighted entropy, i.e.,
k
∑

i=0

|si |
|S|H(si), instead of maximizing

information gain.
In this study, the IGTS method was used to determine the seasonal transition time for

the four seasons, which reflects the seasonal patterns of building operations. The input data
for IGTS were multivariate time series, including hourly outdoor air temperature, hourly
solar radiation, hourly electric energy, and hourly total energy (i.e., the sum of total electric
and gas energy). Only the dataset for the year 2018 was considered, because some target
buildings did not collect data for the entire year of 2017. Estimating the optimal number
of segments is still an ongoing problem, and Sadri et al. [22] determined the number of
segments using information gain as an evaluation metric. In this study, the main aim
was to classify the four seasons based on the seasonal patterns for annual energy use.
Therefore, based on IGTS, the number of segments corresponded to the number of seasons
in the dataset.

3.2. Estimation of Cooling and Heating Energy

CoolHeat was estimated as follows. First, for each of the 12 buildings, the IGTS
determined the seasonal transition time during 2018 divided into four seasons in the given
sequence: winter→ spring→ summer→ fall→ winter. Second, Others was determined
based on the characteristics of seasonal energy use. The authors assumed that CoolHeat is
season-dependent, while Others is season-independent and used at occupants’ discretion
throughout the year. For spring and fall, in which CoolHeat consumption is not significant,
the statistical value of daily Total was regarded as daily Others. Specifically, daily Others
was subjectively set to the 25th quantile for the set of daily Total during spring and fall,
considering the intermittently used CoolHeat. Third, for SW, daily CoolHeat was estimated
as daily Total, and daily Others was excluded. Finally, estimated CoolHeat in SW was
compared with the actual measurements and benchmarking results.

4. Results
4.1. Temporal Segmentation for Estimation of Heating and Cooling Energy

Table 2 shows the temporal segmentation results of the IGTS that determines the
seasonal transition times based on patterns of outdoor air temperature, solar radiation,
electric energy, and total energy (sum of electric and gas energy). For bldg.#09, the winter–
spring transition was the earliest; in other words, compared to the other buildings, the
transition from a period of high energy use for Heat to low energy use occurred earlier in
bldg.#09. For bldg.#07, the transition from spring to summer occurred earliest; that is, the
transition period from the season of low energy use (Others) to that of high energy use
(Cool) was the shortest. In addition, the building with the longest period of relatively high
energy use in the summer was bldg.#10 (194 days), while those with the shortest periods
were bldg.#5 and bldg.#6 (74 days each).
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Table 2. Temporal segmentation results of the 12 target buildings.

Index
Winter Spring Summer Fall Winter

Start End Start End Start End Start End Start End

bldg.#01 1 January 22 March 23 March 27 May 28 May 18
September

19
September 28 October 29 October 31

December

bldg.#02 1 January 1 March 2 March 31 May 1 June 20
September

21
September 25 October 26 October 31

December

bldg.#03 1 January 22 March 23 March 17 June 18 June 18
September

19
September 30 October 31 October 31

December

bldg.#04 1 January 22 March 23 March 27 May 28 May 18
September

19
September

18
November

19
November

31
December

bldg.#05 1 January 22 March 23 March 24 June 25 June 6
September

7
September

04
November

05
November

31
December

bldg.#06 1 January 9 March 10 March 24 June 25 June 6
September

7
September

11
November

12
November

31
December

bldg.#07 1 January 14
February

15
February 13 May 14 May 20

September
21

September
4

November
5

November
31

December

bldg.#08 1 January 9 March 10 March 27 May 28 May 19
September

20
September

18
November

19
November

31
December

bldg.#09 1 January 12
February

13
February 27 May 28 May 19

September
20

September 28 October 29 October 31
December

bldg.#10 1 January 8 March 9 March 15 April 16 April 26 October 27 October 18
November

19
November

31
December

bldg.#11 1 January 28
February 1 March 27 May 28 May 18

September
19

September
18

November
19

November
31

December

bldg.#12 1 January 8 March 9 March 17 June 18 June 18
September

19
September

18
November

19
November

31
December

A carpet plot allows us to easily identify the patterns of energy use by visual inspec-
tion [26]. Figure 5 shows the carpet plots of the temporal segmentation results (orange:
spring, dark cyan: summer, light green: fall, red: winter), allowing the reader to intuitively
understand the patterns of energy use. The operating hours of most target buildings were
similar, starting at 8:00 and ending at 18:00; however, the timings for some buildings varied
(e.g., bldg.#04, bldg.#06, and bldg.#10 operated from 04:00 to 16:00, from 06:00 to 20:00, and
from 07:00 to 16:00, respectively). In addition, as shown in the color legends of the carpet
plots, each building had a different EUI. For some buildings, Total during winter was higher
than that during summer (bldg.#06, bldg.#08, bldg.#10, and bldg.#12), while for others, the
reverse was true (bldg.#02, bldg.#04, bldg.#05, and bldg.#07). In particular, in bldg.#04, the
time at which energy use decreased became earlier during the transition from winter to
spring, and the level of energy use became insignificant, regardless of the time during the
day. During the transition from spring to summer, energy use in the afternoon started to
increase gradually, and the time when energy use started shifted to the morning. Therefore,
the results (Table 2, Figure 5) show that the IGTS can determine the temporal segments that
reflects the characteristics of seasonal energy use through changes in energy use patterns in
an entire year, even though the energy usage was intermittent during the day.

Figure 5. Cont.
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Figure 5. Carpet plots depicting temporal segmentation results of total energy for the 12 target
buildings; (a–l) denote buildings 1–12, respectively.

Figure 6a shows the relationship between measured CoolHeat in 2018 and the CoolHeat
during the SW periods determined through IGTS. With R2 = 0.994, CoolHeat in the SW
periods can be regarded as the total amount of CoolHeat use in buildings. Figure 6b
shows a scatterplot of the measured and estimated CoolHeat during SW according to the
procedure detailed in Section 3.2. Although there was a difference between the measured
and estimated values, considering R2 = 0.976, estimated CoolHeat based on the IGTS can be
considered to sufficiently describe measured CoolHeat.
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Figure 6. Scatterplots for CoolHeat. (a) Energy measured during 2018 and during summer and
winter (SW) by information gain-based temporal segmentation. (b) Measured and estimated CoolHeat
during SW.
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4.2. Benchmarking Based on Estimated Heating and Cooling Energy

Table 3 shows the values and benchmarking rankings for Total, measured CoolHeat,
and estimated CoolHeat for SW (which is the target period of this study), and for the entire
year of 2018. While the ranks of Total were different for the whole year and the SW period
in some buildings (e.g., bldg.#01, bldg.#02, bldg.#04, bldg.#05, bldg.#07, bldg.#08, bldg.#09,
and bldg.#012), the ranks of CoolHeat were not. Hence, it can be inferred that CoolHeat
exhibits seasonal variations. Therefore, it is necessary to independently compare and
evaluate the CoolHeat rather than Total or EUI.

Table 3. Comparison of Total, measured CoolHeat, and estimated CoolHeat.

Index Segmentation
Total CoolHeat (Measured) CoolHeat (Estimated)

Energy
(kWh/m2)

Rank
(-)

Energy
(kWh/m2)

Rank
(-)

Energy
(kWh/m2)

Rank
(-)

bldg.#01
SW 65.9 5 41.3 8 51.7 8

Yearly 79.0 3 43.1 8 - -

bldg.#02
SW 30.7 2 17.1 4 25.5 5

Yearly 40.9 1 18.9 4 - -

bldg.#03
SW 133.5 10 104.6 12 114.1 12

Yearly 157.4 10 112.7 12 - -

bldg.#04
SW 69.8 6 59.0 10 63.5 10

Yearly 80.2 5 63.8 10 - -

bldg.#05
SW 30.4 1 10.9 2 14.3 1

Yearly 58.2 2 12.8 2 - -

bldg.#06
SW 67.0 11 28.2 7 49.7 7

Yearly 90.1 11 34.4 7 - -

bldg.#07
SW 26.6 3 5.8 1 15.3 2

Yearly 40.0 4 6.2 1 - -

bldg.#08
SW 31.2 4 17.3 5 19.1 4

Yearly 43.9 6 20.5 5 - -

bldg.#09
SW 46.8 8 24.0 6 36.7 6

Yearly 67.9 9 29.2 6 - -

bldg.#10
SW 85.3 12 71.1 11 77.7 11

Yearly 102.5 12 85.0 11 - -

bldg.#11
SW 39.1 7 12.0 3 16.9 3

Yearly 61.9 7 15.0 3 - -

bldg.#12
SW 53.5 9 42.6 9 58.2 9

Yearly 66.9 8 47.2 9 - -

When comparing the rankings of estimated CoolHeat with those of measured CoolHeat
for the SW period, rankings for bldg.#05 and bldg.#07 interchanged from 2 to 1 and
1 to 2, respectively. Similar observations were made for bldg.#02 and bldg.#08, for which
the ranks changed from 4 to 5 and from 5 to 4, respectively. However, the estimated
CoolHeat adequately described the measured CoolHeat (Figure 6b, Table 3), while the other
benchmarking ranking results, based on estimated and measured CoolHeat, were the same
(Figure 7). Therefore, the estimation method for CoolHeat based on IGTS sufficiently infers
measured CoolHeat in a time- and cost-effective manner.
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Figure 7. Benchmarking rank comparison between measured and estimated CoolHeat.

5. Limitations

The authors used hourly data obtained from 12 commercial buildings located in Seoul,
South Korea. Less than 3% of the data for each building were missing (bldg.#06: 0.6%,
bldg.#07 and bldg.#09: 0.1%, bldg.#08: 2.8%, bldg.#11: 0.4%, and others: 0.0%), and the
missing values were interpolated. In addition, data that exceeded the 99.9% quantile were
regarded as outliers and were replaced with interpolated values.

In South Korea, patterns in building energy use are distinct, based on seasonal changes.
In this study, the IGTS determined the seasonal transition times based on the patterns of
weather and building energy use. Therefore, the estimation method for CoolHeat applied in
this study was limited to buildings with distinct changes in CoolHeat patterns depending
on the seasons or weather conditions.

In addition, the estimation of CoolHeat by the IGTS at different temporal resolutions
(such as daily or monthly intervals) needs to be further investigated. Finally, Others
was defined as the 25th quantile for the set of daily Total during the spring and fall as
determined by the IGTS, considering intermittently used CoolHeat. To improve the accuracy
of estimated CoolHeat, it is necessary to improve the disaggregation algorithm used in the
IGTS for Others.

6. Conclusions

Energy benchmarking of existing buildings is performed based on the annual total
energy use; hence, it is difficult to evaluate relative energy efficiency with respect to cooling
and heating that reflects the thermal characteristics of buildings. To overcome this problem,
end-use metering has been considered for empirical benchmarking to quantify energy
efficiency; however, it is not cost-effective or technically practical because of the use of
mixed circuits for different end-users in existing buildings.

In contrast to energy benchmarking for existing buildings, this study sought to estimate
and benchmark CoolHeat, using an energy dataset from 12 commercial buildings located in
Seoul, South Korea. The buildings were sub-metered for eight end-uses (Cool, Heat, Shw,
Light, Vent, App, Trans, and Aux). In particular, the IGTS was applied to identify seasonal
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transition times based on patterns of hourly weather and corresponding building energy
use. The IGTS classified the four seasons using hourly time-series data for weather (e.g.,
outdoor air temperature, wind speed, and solar radiation) and energy use (e.g., electric
energy and total energy). Others (that is energy except for CoolHeat) was defined based
on the energy use in spring and fall, and finally, CoolHeat in SW was estimated. Although
each building had different operation characteristics depending on the season (e.g., cooling
dominant or heating dominant), as well as different periods for cooling and heating, the
IGTS was able to distinguish the transition time of changes in the operating patterns of
the buildings. For the 12 buildings, the estimated and measured CoolHeat in SW showed a
linear relationship (R2 0.976), and the average of those differences was 9.07 kWh/m2. In
addition, the differences in the benchmarking results based on estimated and measured
CoolHeat were not significant.

This study showed that CoolHeat estimation based on the IGTS can efficiently represent
actual CoolHeat without requiring any sub-metering devices. Additionally, it can be used
for benchmarking to determine the relative thermal energy performance of a building. The
target buildings were mixed-use buildings, i.e., offices and commercial facilities. It should
be noted that the results of this study are limited to 12 target buildings for which hourly
data were measured. As such, further verification for various types of buildings with
unclear energy use patterns with respect to the seasons or weather conditions is required.
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