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Abstract: One of the most common health problems that threaten the transportation infrastructure
construction workers in Hong Kong is heat stress. An effective way to reduce this problem is
to design a proper work–rest schedule, and the key issue is predicting the maximum working
duration given the different conditions of the workers and the surrounding environment, which is
the research question of this study. Air temperature, an important input feature, is also determined
by the maximum working duration itself, i.e., the input feature is a function of the prediction target.
Therefore, the prediction model developed is different from ordinary prediction models and is hard to
solve by standard statistical or machine learning models. For the prediction process, a trial-and-error
algorithm is proposed to derive a solution based on two theorems that are rigorously proved; there
exists a unique solution, and the solution is within a certain range in the prediction model. The
proposed model and its solution approach were constructed and validated using simulated data;
temperature data were collected from Hong Kong Observatory. The results showed that the mean
squared error (MSE), mean absolute percentage error (MAPE), and R2 of the test set were 0.1378,
0.1123, and 0.8182, respectively, showing that the prediction performance was generally accurate.
This study can help construction practitioners and governments to rationally design the work–rest
schedules of transportation infrastructure construction workers and thus protect them from the risks
brought about by heat stress.

Keywords: transportation infrastructure construction workers; maximum working duration; linear
regression; trial-and-error algorithm

1. Introduction

The Hong Kong construction industry is known for its “fast track” characteristic; its
business environment is highly complex and competitive, and severe penalties are imposed
on delays in schedules [1,2]. Therefore, construction workers in Hong Kong are prone to
high pressure and have to work for long and irregular hours to keep up with the schedule
in addition to performing demanding physical tasks characterized by excessive energy
expenditure and force demands, highly repetitive actions, and awkward postures [3]. A
factor that makes the situation worse is Hong Kong’s climate: high temperature and relative
humidity, low wind speed, and higher solar radiation levels than many other regions [4].
Consequently, construction workers in Hong Kong are more susceptible to health problems.
In recent years, Hong Kong has been planning to be built into a world-class smart city,
according to the Smart City Bluepoint for Hong Kong [5], in which smart mobility and smart
mobility infographics, as well as corresponding transportation infrastructure, are to be
constructed in the next few years. Therefore, it can be expected that an increasing number
of transportation infrastructure construction workers will be involved in this project in
Hong Kong, and their working environment and health deserve much attention.
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The Construction Industry Council (CIC), which is a statutory coordinating body
encompassing all the key sectors in the construction industry of Hong Kong, has made
sustained efforts to minimize the risk to site personnel working in hot weather to ensure the
safety and health protection of construction workers and enhance working efficiency and
productivity [6]. For example, the CIC published the Guidelines on Site Safety Measures for
Working in Hot Weather in 2013, which aimed to promote the good practice recommendations
of the CIC and provide guidance to the construction industry on measures that may be
taken to protect construction workers working in hot weather from suffering from heat-
related disorders [7]. One of the most common health problems faced by transportation
infrastructure construction workers is heat stress [8]. Heat stress can impose heavy risks on
transportation infrastructure construction workers’ health, increase the incident rate, and
reduce the enthusiasm and productivity of the workers [3]. Heat stress can even lead to
the lamentable death of construction workers. For example, heat stress caused four deaths
of construction workers at a construction site in Hong Kong in July 2011 [9]. In recent
years, due to global warming, June was 2022 tied as Earth’s warmest June on record, and
the highest temperature in the same period was recorded in many places in June and July
2022 around the world [10,11]. Consequently, heat stress is expected to become a more
stringent concern, jeopardizing the health and well-being of transportation infrastructure
construction workers.

Fortunately, heat stress is preventable by properly designing the work–rest schedules
of transportation infrastructure construction workers to improve their comfort, health, and
productivity [3]. One critical point of doing so is to estimate the maximum working duration
(MWD) of transportation infrastructure construction workers, where MWD refers to the
maximum duration of the period (e.g., 1.5 h or 3 h) in which a worker can work continuously
considering his/her physical conditions, such as the rating of perceived exertion and heart
rate. MWD is related to construction workers’ characteristics (age, weight, alcohol and
smoking habits, etc.), job nature, and the surrounding environment (temperature, relative
humidity, etc.). On the basis of the estimation of the MWD, construction workers’ working
and rest time can be optimized to reduce the risks brought about by heat stress [8].

A transportation infrastructure construction worker’s personal habits and job nature
do not change during one day’s work, but the surrounding environment changes and is
highly related to the MWD itself. Taking temperature as an example, the temperature value
might be different at different time points over the MWD, and thus its average value is
used as a feature to predict MWD, i.e., MWD is a function of the average temperature.
Furthermore, because average temperature is also related to time, it can also be regarded as
a function of MWD, indicating that the prediction target can influence the feature value in
return in the MWD prediction model.

The above characteristic distinguishes the problem of the MWD prediction problem
from other prediction models; the prediction targets of the latter have (nearly) no influence
on the input features [12–15]. Consequently, standard prediction models based on statistics
and machine learning methods cannot be applied directly to capture such mutually re-
stricted relationships in an explicit manner (i.e., represented by a specific equation) [16–21].
To address this issue, this study developed a linear regression model to predict transporta-
tion infrastructure construction workers’ MWD with the average temperature during this
period (which was calculated by collecting and averaging the surrounding temperature
values several times) as an input feature, as well as other static input features, including
personal habits and job nature. We first showed that the coefficients in the linear regression
model could be estimated using the least squares method. Then, to predict the MWD of a
worker, we rigorously proved that there must be a unique solution to the linear regression
model and showed the range of the solution. Finally, a trial-and-error approach to estimate
the functions of the MWD and the average temperature as well as the average temperature
and MWD was proposed.

The novelty and contribution of this study are summarized as follows. It developed
a linear regression model to predict the MWD of construction workers while considering
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the interrelationship between the average temperature as an input feature and the MWD
as the prediction target. To achieve this, two theorems of the prediction model were first
proposed and rigorously proved, and then a trial-and-error method was developed to
find the solution to the MWD and the average temperature during the MWD that satisfy
the prediction model. The proposed model and its solution are expected to predict the
MWD of transportation infrastructure construction workers more accurately and thus
help industrial practitioners and governments better design the work–rest schedule of
transportation infrastructure construction workers.

2. Literature Review

Several prediction models have been developed in the existing literature to predict
various conditions of construction workers. A number of studies have aimed to predict con-
struction workers’ physical conditions and heat-related risks. For example, Chan et al. [8]
developed a heat stress model to predict construction workers’ physiological responses
in hot weather based on the wet bulb globe temperature index. Yabuki et al. [4] devel-
oped a construction worker heatstroke prevention system, which consisted of a thermal
environment prediction system predicting the changes in the thermal environment and a
core body temperature prediction system predicting the changes in construction workers’
core body temperature. Lazaro and Momayez [22] validated the performance of the heat
strain prediction model to predict the core body temperature and water loss of construction
workers. Safety is another major issue in construction worker management. Kwon and
Kim [23] presented a construction worker accident prediction model based on association
rule generation by collecting and analyzing data from environmental sensors. Kim et al. [24]
predicted construction workers’ inattentive behaviors to hazards by collecting and assessing
their biosignal reactivity from a virtual road construction environment using classification
models in machine learning. Gao et al. [25] proposed a virtual reality-based system to pre-
dict construction workers’ safety behavioral tendencies on the basis of personality factors.
Another stream of research aims to predict the performance of construction workers. For
example, Chih et al. [26] predicted the impact of the supervisor–worker relationship on con-
struction workers’ psychological, behavioral, and performance outcomes. Aryal et al. [27]
predicted physical fatigue represented by Borg’s rating of perceived exertion of construction
workers by collecting their skin temperature and heart rate from wearable sensors.

3. Problem Statement

A transportation infrastructure construction worker usually starts work at 7:30 and
has a lunch break at or before 13:00 (after a total of 5.5 h) on a working day. However,
due to the scorching and humid weather as well as exhaustion, it is highly likely that the
MWD of a worker is less than 5.5 h. To predict a certain transportation infrastructure
construction worker’s MWD considering the surrounding factors, a historical data set on
several transportation infrastructure construction workers’ MWDs as well as auxiliary
data were first collected and then used to construct an MWD prediction model. The
auxiliary data, or features, included but were not limited to each worker’s age, height (cm),
weight (kg), alcohol drinking habits (never, sometimes, or always), smoking habits (never,
sometimes, or always), the average surrounding temperature during the working period
(◦C), and job nature (bar bender and fixer, carpenter, concreter, or plumber).

It was noted that all the features were fixed for a construction worker except for the
average surrounding temperature during the working period, as it is correlated with the
MWD, which is also the prediction target. Suppose that there are a total of n features
collected to predict workers’ MWD. The feature vector is denoted by x = (x1, ..., xn) and
the prediction function is denoted by f (x) = f (x1, ..., xn). Without the loss of generality, we
denote by x1 the average surrounding temperature during the whole working period. That
is, x1 is a function of f (x) and can be represented by x1( f (x)). Features x2 to xn are fixed for
each worker. Then, f (x) can be turned into a more intuitive form: f (x) = f (x1( f (x)), ..., xn).
The following two properties hold for functions f (x) and x1( f (x)):
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Property 1. f (x) is strictly decreasing in x1( f (x)). This is because, following domain knowledge,
given that all other conditions are equal, when the lowest temperature is no less than a certain value
(e.g., 28.4 ◦C, which is the average minimum temperature in July 2022 in Hong Kong [28], a higher
average surrounding temperature would reduce transportation infrastructure construction workers’
MWD, as a higher temperature would increase a worker’s intensity of subjective effort, stress, or
discomfort felt during physical activity [8], and thus shorten the maximum period that a worker
could work continuously [29].

Property 2. x1( f (x)) is strictly increasing in f (x). This is because the maximum working period
of a transportation infrastructure construction worker in the morning is from 7:30 to 13:00. During
this period, the temperature increases as time goes by [30], while the lowest temperature should be
no less than a certain threshold in the summertime in Hong Kong (e.g., 28.4 ◦C in July 2022 (Hong
Kong Observatory, 2022)). Therefore, the average temperature during a worker’s MWD x1( f (x)),
which is from 7:30 to 13:00, strictly increases as f (x) increases.

An illustration of functions f (x) and x1( f (x)) based on Property 1 and Property 2
is shown in Figure 1. The x-axis represents the average temperature during the MWD,
and the y-axis represents the MWD. Function x1( f (x)) is represented by line AB, and it
increases in f as the temperature increases as the working time accumulates. In particular,
A = (T0, 0) shows that the temperature is T0 when the construction worker starts to work
at time 0 (i.e., 7:30). B = (T, 5.5) shows that the average temperature is T at 13:00 when
the lunch break starts. Function f (x), which is linearly decreasing with x1, is represented
by Line CD. In particular, point C = (T0, h) shows that the maximum value of f is h
hours (must be larger than 0 h and can be either larger or no larger than 5.5 h), as it is
associated with the lowest average temperature. The value of f for point D is negative, as a
construction worker cannot continuously work for 5.5 h without a break when the overall
average temperature is T.
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Figure 1. An illustration of functions f and x1.

4. Development of a Prediction Model for MWD

We assume that f (x) has a linear relation with x, shown as follows:

f (x) = f (x1( f (x)), ..., xn)
= b0 + b1x1( f (x)) + b2x2 + ... + bnxn,

(1)

where b0 to bn are coefficients that need to be learned from data. Given a data set consisting
of historical working records (including values of all features and the MWD as the target) of
construction workers, x1( f (x)) is a fixed value and f (x) (i.e., MWD) is known. Therefore,
x1( f (x)) can be treated as a normal feature in the model training (i.e., parameter estimation)
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process. Then, the coefficients of the MWD prediction model in Equation (1) can be
estimated using standard algorithms for coefficient estimation in the linear regression, such
as the least squares method [31], and the values of b0 to bn can be obtained.

The prediction process using the MWD prediction model in Equation (1) is different
from that using a normal linear regression model as well as other machine learning models,
as the predicted MWD, i.e., f (x), can influence the average temperature during this period,
i.e., x1( f (x)), as an input feature. In return, the function x1( f (x)) also determines the value
of f (x). It should also be mentioned that, as the surrounding temperature information is
constantly collected for a construction worker whose MWD needs to be predicted, the value
of x1( f (x)) can be calculated when a specific f (x) is given. In other words, both functions
are mutually restricted from each other, as they have opposite monotonicity properties to
each other. Meanwhile, for a given worker whose MWD needs to be predicted, all the other
features of this worker, i.e., x2 to xn, are known. Therefore, we can simplify the function
x1( f (x)) to x1( f (x1)) or x1 and the function f (x) to f (x1) or f . The solution to the MWD
prediction problem shown in Equation (1) is denoted by (x∗1( f ∗(x∗1)), f ∗(x∗1)) or (x∗1 , f ∗)
for short. The following two theorems hold.

Theorem 1. There exists a unique solution.

Proof. As shown in Figure 1, there must exist a solution to the MWD prediction model
in Equation (1) considering the coordinates and relations of the four points determining
the two functions. Figure 1 also shows that, due to the monotonicity property of the
two functions, a unique solution exists, which can also be mathematically proved by
contradiction. Suppose there are two solutions, (x#

1, f #) and (x&
1 , f &). Note that we must

have x#
1 6= x&

1 , because otherwise f # = f & and thus they are the same solution. Without the
loss of generality, assume x#

1 < x&
1 . As x1( f (x)) is strictly increasing in f (x), we can have

f # < f &, where the relationship between these two solutions is shown in Figure 2. �
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Therefore, it can be concluded that there is a unique solution to the MWD prediction
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in Equation (1).

Proof. Theorem 2 can be proven by contradiction. Assume x∗1 < min(x#
1, x1( f #)). As

f is strictly decreasing in x1, we can have f ∗ > max( f #, f (x1( f #))). However, as x1 is
strictly increasing in f , we have x∗′1 > max(x#

1, x1( f #)), which is contradictory to the
assumption. Assume that x∗1 > max(x#

1, x1( f #)); we can have f ∗ < min( f #, f (x1( f #))), as
f is strictly decreasing in x1, and thus x∗′1 < min(x#
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which is also contradictory to the assumption. A similar situation also applies to f ∗ when
f ∗ < min( f #, f (x1( f #))) and f ∗ > max( f #, f (x1( f #))). �

Theorem 2 shows that in solution (x∗1 , f ∗) to the MWD prediction model, x∗1 and
f ∗ restrict each other by their mutual monotonicity relationships, as Equation (1), which
involves both functions, needs to be satisfied. Therefore, the values of both functions are
within certain range that is determined by its original value and the value calculated given
the value of the other function.

On the basis of Theorems 1 and 2, (x∗1 , f ∗) in Equation (1) can be solved by the trial-
and-error method shown in Algorithm 1.

Algorithm 1 Trial-and-error method to find (x∗1 , f ∗)

Initialize a sufficiently small f0 (i.e., smaller than f ∗). Define f̂0 = f0 and f̂−1 = f0;
Set the tolerance gap t = 0.01 and the current gap g = inf;
k = 0;
while g > t:
k = k + 1;
fk = f (x( f̂k−1)); // predict the initial value of f using the final predicted value in the last round
if fk−1 ≥ f̂k−1:
fk = max( fk, f̂k−2);
else:
fk = min( fk, f̂k−2);

f̂k =
f̂k−1+ fk

2 ;

g =
∣∣∣ f̂k − f̂k−1

∣∣∣;
Return f ∗ = f̂k.
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x( f̂k−1) is a function to calculate the average temperature given the working duration
f̂k−1 of a specific day. Algorithm 1 guarantees that the current gap is no larger than half of
the gap in the last round. In particular, fk is the initial predicted value, and f̂k is the final
predicted value for f in this round. fk is used to control the range of f̂k by considering the
updating direction of f , i.e., the two possible relationships between f̂k−2 and f̂k−1. To be

more specific, when fk−1 > f̂k−1, and recall that f̂k−1 =
f̂k−2+ fk−1

2 , we have f̂k−2 < f̂k−1,
which means that the value of f increases in the last round of updating. Further considering
that function x1 is linearly increasing in f and f is linearly decreasing in x1, we can expect
that fk−1 > fk. Therefore, there are three possible positions of fk, as shown in Figures 4–6.
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In Figure 3, fk ≤ f̂k−2. To guarantee that the gap in the current round k is no more
than half of the gap in the last round k− 1, we need to require that fk is no smaller than
f̂k−2, and thus the value of fk is constrained to fk = max( fk, f̂k−2) = f̂k−2, as shown by the
bottom of Figure 3. Then, the predicted value of f in this round, i.e., f̂k, is shown by the
green dot, and the gap in the current round is equal to half of the gap in the last round.

In Figure 4, f̂k−2 < fk ≤ f̂k−1, and the current gap is smaller than half of that in the last
round. If in the next round of solution updating is needed, the “if” condition in Algorithm
1 holds. Similarly, in Figure 5, f̂k−1 < fk < fk−1, and the current gap is also smaller than
half of that in the last round. If in the next round of solution updating is needed, the “else”
condition in Algorithm 1 holds.

By contrast, when f̂k−1 < fk−1, the situations are the exact opposite of the situations
in which f̂k−1 > fk−1, where the current gap equals half of the gap in the last round when
fk ≥ f̂k−2 and is less than half of the gap in the last round when fk−1 < fk < f̂k−2. After
finding f ∗, the corresponding x∗1 can be calculated, and thus the solution to construction
workers’ MWD prediction model (x∗1 , f ∗) can be obtained.

5. Case Study

A case study based on simulated data is presented in this section. A construction
worker’s age, height, weight, alcohol drinking habits, smoking habits, and job nature
are assumed. We required that the difference between the construction worker’s height
(cm) and weight (kg) was between 9l0 and 110. The average temperature was calculated
according to daily weather information in Hong Kong in August 2022 according to the Hong
Kong Observatory (https://www.hko.gov.hk/en/cis/dailyExtract.htm?y=2022&m=08,
accessed on 1 September 2022). Specifically, the minimum and maximum temperatures on
each day in August 2022 in Hong Kong were found, and the hourly temperatures from 7:30
to 13:00 were assumed on the basis of the minimum and maximum temperature values.
We assumed that the temperature was identical for one hour, i.e., 7:30 to 8:29 had the same
temperature, 8:30 to 9:29 had the same temperature, etc., and the hourly temperature was
between the minimum and maximum temperature values and increased as time went
by. Then, the average temperature during the MWD (in minutes) could be calculated
accordingly. We required that the MWD of each worker satisfied Equation (2):

0.2%×max(1, (t− 25))×MWD + ε = 100% (2)

https://www.hko.gov.hk/en/cis/dailyExtract.htm?y=2022&m=08


Sustainability 2022, 14, 11096 9 of 12

We set the base temperature to 25 ◦C, which is a temperature that makes people feel
comfortable. t is the temperature, which can be different in different periods within the
MWD. We further assumed that if the surrounding temperature was no more than 25 ◦C,
working for one minute would increase the fatigue degree of a construction worker by 0.2%.
Otherwise, working for one minute would increase the fatigue degree by 0.2%× (t− 25).
When the fatigue degree reached 100%, the MWD of the construction worker was reached.
ε is a random term following the normal distribution with a mean of zero and variance
of 0.001.

Based on the above assumptions, we generate a data set consisting of 310 records
by using one day’s temperature information in August 2022 in Hong Kong to generate
10 records. The descriptive statistics of the data set formulated are shown in Tables 1 and 2.

Table 1. Descriptive statistics of continuous variables in the data set.

Feature Way of Generation Min Value Mean Value Max Value Standard Deviation

Age
Assumption: a
random integer
between 28 to 65

28 48.24 65 10.58

Height (cm)
Assumption: a
random integer

between 155 to 185
155 170.03 185 9.06

Weight (kg)
Assumption: a
random integer
between 55 to 85

55 69.99 85 8.20

Average
temperature

Calculated from
Hong Kong
Observatory

considering the
daily highest and

lowest temperatures
in August 2022

25.84 27.80 29.95 0.94

MWD Calculated by
Equation (2) 1.68 5.50 3.18 0.97

Table 2. Descriptive statistics of categorical variables in the data set.

Feature Way of Generation Distribution

Alcohol drinking habits * Assumption: a random integer in
set {0,1,2} 0: 104, 1: 96, 2: 110

Smoking habits ** Assumption: a random integer in
set {0,1,2} 0: 94, 1: 112, 2: 104

Job nature ***

Assumption: a random variable
with any of the following binary

features to be 1 and the other three
to be 0: is_bar_bender_and_fixer,

is_carpenter, is_concretor, and
is_plumber

is_bar_bender_and_fixer = 1:
74, is_carpenter = 1: 88,

is_concretor = 1: 79,
is_plumber = 1: 69

Note *: 0 = none, 1 = sometimes, 2 = often; **: 0 = none, 1 = sometimes, 2 = often; ***: this feature has four
values: bar bender and fixer, carpenter, concretor, and plumber. It is discretized into four binary features:
is_bar_bender_and_fixer, is_carpenter, is_concretor, and is_plumber.

The whole data set was randomly divided into a training set containing 80% of the
records (i.e., 248 records) and a test set containing 20% of the records (i.e., 62 records). The
coefficients in Equation (1) were estimated by the least squares method, and the equation
took the following form:

f (x) = f (x1( f (x)), ..., xn)
= 5.2174 + 0.0094x1( f (x)) + (−0.0704)x2 + 0.1365x3 + (−0.0836)x4 + (−0.0069)x5
+(−0.0090)x6 + 0.0085x7 + 0.0394x8 + (−0.0389)x9 + (−4.2270)x10.

(3)



Sustainability 2022, 14, 11096 10 of 12

Then, model performance was evaluated on the test set using Algorithm 1. The mean
squared error (MSE), mean absolute percentage error (MAPE), and R2 of the test set were
0.1378, 0.1123, and 0.8182, respectively, showing that the prediction performance was
generally accurate.

6. Conclusions and Future Research

To build Hong Kong into a world-class smart city, a large number of transportation
infrastructure construction workers are expected to become involved in the related projects,
and their working environment and health should be paid close attention to. Due to
the scorching and humid climate and the “fast track” nature of construction projects in
Hong Kong, these transportation infrastructure construction workers are prone to heat
stress, which imposes a heavy risk to their health and working status. The potential
risks of heat stress can be reduced by designing reasonable work–rest schedules for the
workers. This study aimed to deal with one critical point in work–rest schedule design: the
prediction of the MWD of transportation infrastructure construction workers considering
their personal habits, job nature, and the surrounding environmental conditions. The
surrounding temperature is a critical feature for MWD prediction and varies as time goes
by on a working day. Therefore, the average temperature during the whole working period
was considered as a feature to predict the MWD. In return, the MWD also influences the
value of the average temperature as an input feature. This characteristic of the MWD
prediction problem distinguishes it from ordinary prediction models in which the target to
be predicted has (nearly) no influence on the features. Therefore, standard statistical and
machine learning methods cannot be directly applied.

To deal with this issue, this study first developed a linear regression model for MWD
prediction with the average temperature as one of the inputs. The coefficients of the linear
regression model were estimated by ordinal least squares in the model construction stage.
In the prediction stage, a trial-and-error algorithm was proposed to find the function forms
of the MWD and the average temperature and of the average temperature and the MWD as
the model solution based on two properties of the model: there is a unique solution to the
model whose range is between an upper bound and a lower bound. The proposed model
and its solution approach can help construction practitioners and the governments to better
predict construction workers’ working status and thus protect them from the risks brought
about by heat stress.

There are some limitations to this study. First, relative humidity, an important influence
factor on the transportation infrastructure construction workers’ MWD, was not considered
in this study. It should also be mentioned that relative humidity has a similar characteristic
to the average temperature, as it is highly related to the MWD while it is also influenced by
the surrounding temperature [32]. In addition, the data used in the case study are not real
data but simulated ones, which may not be able to reveal the performance of the proposed
model and its solution accurately and comprehensively. Moreover, linear regression is a
relatively elementary model to address prediction tasks. More sophisticated and accurate
machine learning models for regression can be developed for MWD prediction.

Therefore, there are several directions for future research. First, real data collected
from construction workers in Hong Kong can be used to construct the model and evaluate
model performance. Then, the model and situation of construction workers in Hong Kong
can be compared with those in similar cities, such as Singapore, to validate the model’s
relevance and generate more useful managerial insights. In addition, more features that
could influence construction workers’ MWD can be used to predict the MWD. For example,
the lowest and highest temperatures of one day could be incorporated as normal features
(i.e., the target is not a function of them) for MWD prediction, as they can also influence
construction workers’ MWD because a day’s lowest temperature usually occurs before and
during sunrise (i.e., just before the start of the work), and the highest temperature usually
occurs at noon (i.e., around the lunch break). In addition, relative humidity, which is also a
function of the prediction target, i.e., MWD, and is highly dependent on the surrounding
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temperature, can be considered as a feature together with the average temperature. In this
case, the model training process would not be influenced much and would be similar to the
model proposed in this study. However, the test process could be much more complex, as
the average humidity and temperature and the MWD are interrelated. One viable way to
predict the MWD of a specific construction worker would be to first calculate the specific
function forms of the relative humidity and the MWD and of the temperature and the
MWD, then input the specific function forms into the prediction model (and there is only
one unknown parameter in the prediction model), and finally calculate the corresponding
MWD. Another viable way is similar to the solution proposed in this study: the properties
of the model would be derived first, and the existence, uniqueness, and range of the
solutions would then be figured out. Finally, proper algorithms, such as the trial-and-error
method, could be developed to find the values of the MWD together with the average
humidity and temperature over this period.
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