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Abstract: The traditional multiple input multiple output (MIMO) systems cannot provide very high
Spectral Efficiency (SE), Energy Efficiency (EE), and link reliability, which are critical to guaranteeing
the desired Quality of Experience (QoE) in 5G and beyond 5G wireless networks. To bridge this
gap, ultra-dense cell-free massive MIMO (UD CF-mMIMO) systems are exploited to boost cell-edge
performance and provide ultra-low latency in emerging wireless communication systems. This paper
attempts to provide critical insights on high EE operation and power control schemes for maximizing
the performance of UD CF-mMIMO systems. First, the recent advances in UD CF-mMIMO systems
and the associated models are elaborated. The power consumption model, power consumption parts,
and energy maximization techniques are discussed extensively. Further, the various power control
optimization techniques are discussed comprehensively. Key findings from this study indicate an
unprecedented growth in high-rate demands, leading to a significant increase in energy consumption.
Additionally, substantial gains in EE require efficient utilization of optimal energy maximization
techniques, green design, and dense deployment of massive antenna arrays. Overall, this review
provides an elaborate discussion of the research gaps and proposes several research directions, critical
challenges, and useful recommendations for future works in wireless communication systems.

Keywords: cell-free massive mimo; ultra-dense CF-mMIMO; energy harvesting; energy efficiency;
spectral efficiency; power control; sleep mode; resource allocation; sustainable wireless networks

1. Introduction

The prevalence of massive devices and mobile applications has recently gained
widespread popularity in the wireless communication domain. The dramatic rate varia-
tions and inter-cell interference inherent in classical cell-based structures impose a heavy
burden on the existing wireless network infrastructure [1]. As a result, ultra-dense cell-
free massive multiple input multiple output (UD CF-mMIMO) has been identified as a
candidate wireless networking technology to cater to the continuous data traffic surge,
remedy the cell-edge performance issues, and guarantee unprecedented wireless network
link reliability [2]. However, the transitioning towards tetherless connectivity for a fully
mobile-networked society, achieving multiple orders of Energy Efficiency (EE) gains and
quality throughput, poses an increasingly important design criterion.
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The real-time requirements of connected devices and capacity demands of the current
wireless network infrastructure are increasing rapidly. The landscape of upcoming wireless
networks is envisaged to support pervasive interconnectivity, high transmission rates, ultra-
reliability, and low latency, spurring novel information and communication technologies
(ICT) and revolutionary ultra-dense (UD) wireless infrastructure [3]. The envisioned next-
generation wireless communication systems will integrate virtually everything into the
internet while accommodating novel technologies like virtual reality [4,5], machine-to-
machine (M2M) communications [6–8], vehicle-to-everything (V2X) [9], and device-to-
device (D2D) communications [10].

Essentially, the next-generation wireless networks will rely on the availability of higher
frequency bands, which brings more opportunities for multi-gigabit throughput and ex-
treme capacity [11–14]. Ultra-dense networks (where the density of the base stations (BSs) is
much higher than that of the network users) and/or massive multiple input multiple output
(mMIMO) (where large antenna arrays enhance the BSs) have been identified as enabling
technology to satisfy the vast requirements of next-generation wireless networks [2]. How-
ever, the service-quality variations and cell-edge issues inherent in the traditional cellular
network architecture pose a significant bottleneck for the mobile network operators [1,15].

Cell-free massive multiple input multiple output (CF-mMIMO), a practical incarnation
of distributed mMIMO, has become an intensive research topic in industry and academia.
CF-mMIMO can potentially mitigate significant pathloss variations and cell-edge perfor-
mance issues inherent in conventional cellular networks [16–21]. Despite the enormous
merits of CF-mMIMO, the outcry for environment-friendly designs and greener networking
solutions is alarming [22]. Adopting a distributed antenna array in CF-mMIMO systems
could dramatically increase the power consumption and the overall energy emissions of
wireless communication systems [23].

Consequently, the geometric outburst of digital signal processing (DSP) power con-
sumption, prohibitive radio-frequency (RF) circuit power costs, and energy costs of data
processing units have become a critical concern for mobile network operators [24]. As such,
Energy Efficiency (EE), expressed in bits/joule, has emerged as a dominant performance
index for benchmarking wireless communication systems [25]. Depicted in Figure 1 is a
typical illustration of the next-generation communication system. In this configuration, a
dearth of user equipment (UE) is jointly served by a large chunk of arbitrarily allocated
access points (APs), all connected to a central processing unit (CPU) that handles complex
signal processing [10,26].

Gracia-Morales et al. [27] proposed an insightful switch on/off algorithm to minimize
the global carbon footprint emanating from cellular network equipment. Ahmed et al. [28]
characterized the network capacity, energy efficiency, and design constraints of UD infras-
tructure. Similarly, Dai and Yu [29] proposed the implementation of precoding techniques
to improve the EE performance of CF-mMIMO. Nguyen et al. [30] investigated the uplink
EE of CF-mMIMO by introducing a novel closed-form algorithm with a zero-forcing (ZF)
precoder to resolve a multi-objective total EE maximization problem. In another related
study, Hamdi and Qaraqe [31] considered the feasibility of incorporating energy harvesting
and energy exchange capabilities into CF-mMIMO networks.

Power control in CF-mMIMO is of particular interest and a significant figure of merit
to optimize the network performance and realize uniform quality of service (QoS) for
all users, including those at the cell-edge [32]. Moreover, power control techniques are
essential to deal with interference and pilot contamination issues inherent in CF architec-
tures [33]. Results from existing reports on the actual performance of CF-mMIMO with
power control optimization techniques, reveal that proper power allocation can greatly im-
prove the net throughput, max-min fairness, spectral efficiency (SE), and EE of CF-mMIMO
systems [34–38]. More precisely, Ngo et al. [39] demonstrated that max-min power control
could moderately improve the lowest user throughput. Andrea et al. [40] illustrated a deep
learning-based power control approach, which is capable of addressing the sum-rate and
minimum-rate maximization problem in CF-mMIMO. The results reported in [34] indicate
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that the EE performance of CF-mMIMO can be enhanced significantly with proper power
control. The findings of the work [41] revealed that insightful power allocation algorithms
could effectively optimize the sum SE of CF-mMIMO systems.
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Figure 1. Illustration of a typical next-generation communication system.

Nonetheless, the existing works of literature on CF-mMIMO systems lack research
attempts that jointly optimize EE and power control. In light of the above, this paper
aims to bridge this gap by considering green networking solutions and sustainable power
allocation strategies in UD CF-mMIMO systems. In particular, the paper attempts to
identify contemporary research trends, unearth key research challenges, and guide future
research in this domain. A concise roadmap of this study is presented in Figure 2. The
noteworthy contributions of the review paper are outlined as follows:

� The fundamental structure of CF-mMIMO and its corresponding system model
is described.

� A panoramic view of the power consumption model and power consumption parts
is highlighted.

� A comprehensive analysis of selected green communication techniques is discussed.
� An exhaustive study of current trends in power control techniques for CF-mMIMO

systems is presented.
� Critical open research issues are identified, and future research directions for energy-

efficient power control schemes in CF-mMIMO systems are elaborated.
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The structure of the paper is as follows: Section 2, “Related Work”, discusses prior
works on energy-efficient power control schemes in emerging wireless communication
networks. Section 3, “Overview of Ultra-Dense Cell-Free Massive MIMO Systems”, sum-
marizes the foundational background on CF-mMIMO systems and the associated system
model, including the Uplink (UL) training and Downlink (DL) payload data transmission.
Further, the power consumption model, power consumption parts, and an exhaustive
analysis of selected EE maximization techniques are presented in Section 4, “Energy Effi-
ciency”. Similarly, insightful power allocation strategies for performance maximization are
discussed in Section 5, “Power Control”. Section 6, “Open Research Issues”, provides a
clear path for future investigations in wireless communication. Finally, a concise conclusion
is drawn in Section 7, “Conclusion”.

2. Related Work

The need to minimize the global carbon footprint and address interference issues
associated with wireless communication networks has gained significant, widespread re-
search interest in the past few years. Many innovative green networking techniques, EE
maximization schemes, interference detection and mitigation techniques, and connectivity
management strategies have been proposed [42–44]. The schemes are designed to facilitate
efficient wireless networks to meet the growing traffic demand and guarantee the continuous
evolution of wireless systems. Specifically, in [45], Tang et al. characterized the EE of simul-
taneous wireless information and power transfer (SWIPT)-aided non-orthogonal multiple
access networks. As a step further, Alageli et al. [46] considered the distinctive combination
of CF-mMIMO and SWIPT for energy-efficient wireless communication networks.

As reported by Jin et al. [47], a novel strategy to maximize the sum of SE and total EE
by properly allocating DL data power control coefficients and pilot is proposed. Alonzo
et al. [38] examined the EE of CF and user-centric (UC) networks with millimeter (mm)-
Wave. Hamdi and Qaraqe [48] provide essential design insights for greening wireless
networks. Their proposed design was achieved by incorporating energy cooperation and
a management approach for CF-mMIMO systems. Wang et al. [49] proposed an insight-
ful AP selection technique and an optimal power allocation algorithm to maximize the
total EE of CF-mMIMO. Furthermore, a computationally efficient convex conic feasibility
checking problem is proposed in [50] to solve the problem of max-min power control in
CF-mMIMO networks.
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Nikbakht and Lozano [51] proposed a fractional power control policy to maximize the
UL performance of CF-mMIMO systems. Interestingly, Zhao et al. [52] advocated using
an optimized DL power control algorithm to jointly maximize the SE of 95% of users and
the experience of high-priority users in wireless networks. Lai et al. [53] introduced a
novel artificial fish school algorithm to maximize the mean rate of users while realizing the
target of max-min power control. Mai et al. [54] explored the possibility of minimizing the
effect of pilot contamination and ultimately improving the performance of UL CF-mMIMO
systems using a data power control algorithm and a joint pilot design. Following a similar
approach, Li et al. [55] formulated a novel pilot assignment algorithm in weighted counting
to mitigate the so-called pilot contamination effect in CF wireless networks.

Nevertheless, detailed characterization of energy-efficient wireless communication
and power control schemes is integral for designing and optimizing CF-mMIMO networks.
Accordingly, this article explores the contemporary perspectives of energy-efficient power
control techniques and highlights promising directions for future research in emerging
wireless communication systems. Table 1 features the scope and drawbacks of some
related research attempts and the authors’ contribution to bridging the research gaps in the
current review.

Table 1. Limitations of some related works.

Ref. Year Focus and Coverage Limitations This Contribution

[2] 2021

The survey provides a holistic
overview of up-to-date works on

CF-mMIMO. The work serves as a
comprehensive roadmap to open up

new frontiers on CF-mMIMO systems.

� Challenges with EE are not
clearly outlined.

� Power maximization
techniques are not
discussed.

� Joint optimization of EE
and power control for
CF-mMIMO is presented.

� Exciting research trends for
future works are presented.

[27] 2020

The work characterized the
performance of AP switch-mode
techniques to maximize the EE of
CF-mmWave mMIMO networks.

Unlike prior studies, the survey takes
into consideration non-uniform spatial

traffic densities.

� Sophisticated power control
techniques are not
elaborated.

� The work provides insight
into various power
allocation strategies
dimensioned to
complicated setups.

[33] 2018

The work analyzed the performance
of a pilot power control technique to

minimize the channel estimation error
and ultimately mitigate the effect of

pilot contamination.

� Challenges with EE are not
clearly outlined.

� A detailed outline of
unresolved EE challenges is
presented.

[36] 2020

The work presents an exhaustive
analysis of the impact of channel

ageing and pilot contamination on the
performance of CF-mMIMO systems.
The study also proposes a practical
fractional power control scheme to

alleviate the effects of inter-user
interference.

� Power control is limited to
the fractional power control
method.

� EE and green networking
strategies are not accounted
for appropriately.

� The work presents
sophisticated power control
schemes.

� An exhaustive analysis of
EE techniques for green
wireless communication is
presented.

[37] 2021

The work proposes an unsupervised
deep learning-based approach to

address the challenge of max-min user
fairness in CF networks.

� The proposed power
control algorithm is
centered on simple network
setups comprising a few
users and APs.

� Power allocation strategies
dimensioned to
complicated configurations
with excess supply of APs
are presented.
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Table 1. Cont.

Ref. Year Focus and Coverage Limitations This Contribution

[56] 2018

The work compares the performance
of CF and UC approaches in wireless

networks operating at mmWave
frequencies. The work also presents

power control algorithms to maximize
the system’s global EE.

� Although a baseline for
future work is presented,
the evaluation of
performance metrics is not
clearly outlined.

� Energy models and power
consumption parts are not
discussed.

� A holistic overview of the
power consumption model,
the corresponding EE, and
power consumption parts is
presented.

[57] 2020

Provides important design insights for
green wireless communications by

characterizing the EE per unit area of
CF-mMIMO systems while accounting
for the irregular spatial randomness of

multiple-antenna APs.

� Power Optimization
techniques are not
presented.

� Open research issues and
future research directions
are not discussed in depth.

� Joint optimization of EE
and power control for
CF-mMIMO is presented.

� A wide range of challenging
research problems are
discussed.

[58] 2021

Presents optimization techniques to
maximize the SE and power control of
CF-mMIMO systems encompassing

UL and DL transmission.

� Energy models and power
consumption parts are not
accounted for accordingly.

� Power optimization is
limited to the neighborhood
field optimization ensemble
method.

� The parts of the power
consumption model,
associated EE, and power
consumption are presented.

� A robust discussion on
several power optimization
schemes is provided.

[59] 2021

Examined the performance of three
different transmit power control (TPC)
algorithms to improve the uplink (UL)

EE of CF-mMIMO and ultimately
achieve an optimum SE-EE trade-off

for CF systems.

� Energy models and power
consumption parts are not
accounted for
comprehensively.

� Open research issues and
future research directions
are not discussed in depth.

� Essential insights into the
energy model and power
consumption parts are
provided.

� A range of challenging
research problems are
discussed.

[60] 2020

The work proposes two novel
optimization techniques to solve the
downlink (DL) power consumption
problem of CF-mMIMO concerning

antenna power and the user’s DL rate
constraints.

� Future research directions
are not outlined.

� Lines of research requiring
further investigation are
reported.

3. Overview of Ultra-Dense Cell-Free Massive MIMO Systems

In the last decade, the geometric outburst of various innovative communication
technologies has been overwhelming. Primarily, mMIMO network architecture has evolved
over the years to support the explosive increase in wireless data traffic. In the regime
of large-scale antenna arrays at the BSs and by exploiting spatial multiplexing, spatial
diversity, and advanced beamforming, a large number of User Equipment (UE) can be
served with the same time/frequency resources [3,61]. However, large service-quality
variations and cell-edge performance issues constitute a significant setback for the effective
deployment of cellular network infrastructure [1]. Thus, UD CF-mMIMO has appeared as
a promising network paradigm to cater to the continuous data traffic surge and alleviate
the mediocre cell-edge problems inherent in cellular networks [62,63]. In these networks,
an excess number of geographically allocated Access Points (APs) coordinated by a Central
Processing Unit (CPU) coherently serve a smaller number of UEs distributed across a wide
serving area [64].

CF-mMIMO is essentially a practical embodiment of mMIMO and network MIMO,
where cooperation between low-complexity APs deployed in a distributed manner helps
to potentially minimize the effects of intercell interference and offer considerable gains in
coverage probability [16]. As in cellular networks, CF-mMIMO reaps the benefits of channel
hardening and favorable propagation through simple signal processing [65]. Moreover,
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compared with Small-Cells (SCs) and co-located systems, CF-mMIMO promises multifold
improvement in SE, EE, and 95% likely per-user throughput [66]. Figure 3 illustrates the
fundamental structure of a typical CF-mMIMO network. It comprises the CPU and the
associated APs linked via a fronthaul network to the CPU without the intervening cells.
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3.1. System Model

A CF-mMIMO system operated in time division duplex (TDD) mode is investigated.
Let M specify the number of randomly deployed single-antenna APs simultaneously
serving k single-antenna UEs in the same time/frequency block. All APs are linked via a
fronthaul network to a CPU, wherein network information is exchanged. Let hmk reflect
the channel between the mth AP and the kth UE. The channel model is defined as (1)

hmk =
√

βmkdmk (1)

where βmk accounts for the large-scale fading and dmk accounts for the small-scale fading.
It is assumed that dmk are independent identically distributed (i.i.d) random variables,
dmk ∼ CN (0, 1) for m = 1, . . . , M, k = 1, . . . , K. What is more, concerning frequency,
βmk coefficients are assumed to be constant and known as a priori at any moment. In this
context, two communication protocols—UL training and DL payload data transmission—
are analyzed.

3.1.1. Uplink Training

For each coherence interval, let τu,p reflect the length of UL training duration and let
√

τu,pψk ∈ Cτu,p×1 reflect the pilot sequence forwarded by the kth user, k = 1, . . . , K. Further,
we assume that these assigned pilot sequences are mutually orthonormal. ψD

k ψk′ = 0 for
k′ 6= k, and ψk

2 = 1, which necessitates that τu,p ≥ K. The mth AP receives a pilot signal
defined by (2)

xup,m =
√

τu,pρu,p

K

∑
k=1

hmkψk + zup,m, (2)
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where ρu,p accounts for the normalized transmit signal-to-noise ratio (SNR) and

zup,m ∼ CN
(

0, NIτu,p

)
accounts for the additive noise. The received pilot at the mth AP

is processed as (3)

x̌up,mk = ψD
k xup,m =

√
τu,pρu,phmk + ψD

k zup,m (3)

By adopting the minimum mean squared error (MMSE) technique, the channel hmk is
estimated. The channel estimation of hmk is expressed as (4)

ĥmk =
E
{

x̌∗up,mk

}
E
{∣∣∣x̌up,mk

∣∣∣2} x̌up,mk = cmk x̌up,mk (4)

where cmk is reflected by (5), and the associated channel estimation error is reflected by (6)

cmk ,
√

τu,pρu,pβmk

τu,pρu,pβmk + 1
(5)

h̃mk , hmk − ĥmk (6)

3.1.2. Downlink Payload Data Transmission

In this phase, conjugate beamforming (CB) is employed. The transmitted signal from
the mth AP to the K users is expressed as (7)

wm =
√

ρd

K

∑
k=1

√
ηmk ĥ∗mkvk, (7)

where ρd specifies the normalized transmit SNR corresponding to the data symbol and
vk specifies the symbol assigned to the kth UE, satisfying E

{
|vk|2

}
= 1. Moreover, by

exploiting m = 1, . . . , M, k = 1, . . . , K, and ηmk power control coefficients, the average
power constraint E

{
|wm|2

}
≤ ρd is satisfied. Thus, the power constraint can be remodeled

as (8)

∑K
k=1 ηmkφmk ≤ 1, for all m, (8)

where φmk reflects the variance of the channel estimate and is given by (9)

φmk , E
{∣∣∣ĥmk

∣∣∣2} =
√

τu,pρu,pβmkcmk (9)

The received data signal at the kth UE is defined as (10)

yd,k =
M

∑
m=1

hmkwm + zd,k =
√

ρd

K

∑
k′=1

akk′vk′ + zd,k (10)

where zd,k ∈ CN (0, 1) and akk′ , ∑M
m=1
√

ηmk′hmk ĥ∗mk′ , k′ = 1, . . . , K.

4. Energy Efficiency

The demand for green communication is exacerbated by the proliferation of data-
intensive applications, increased operational costs, capital investment, and power con-
sumption [67–69]. Reasonably, Energy Efficiency (EE), considered a critical performance
criterion, has attracted more and more research attention in recent times. The goal is to min-
imize the ecological and environmental concerns resulting from the mobile communication
industry [70]. Numerous energy-efficient strategies, resource allocation algorithms, and
optimal power control strategies have been proposed [34,49]. As a result, it is paramount to
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characterize this meaningful and appropriate design index extensively. This context sheds
more light on the EE metric. As a starting point, the corresponding power consumption
model and an insightful formulation of the total achievable EE of the CF-mMIMO network
are highlighted clearly.

4.1. Power Consumption Model

According to recent reports [23,34], the total power consumption is defined as (11)

Ptotal =
M

∑
m=1

Pac,m +
M

∑
m=1

Pb,m, (11)

where Pac,m accounts for the amplifier and circuit power consumption at the mth AP and
Pb,m accounts for the backhaul link power consumption associated with the mth AP. The
power consumption Pac,m is obtained as (12)

Pac,m = (σm)
−1ρdN0

(
N

K

∑
k=1

ηmkφmk

)
+ NPtc,m, (12)

where 0 < σm ≤ 1 depicts the efficiency of the power amplifier, N0 depicts the noise power,
and Ptc,m depicts the power needed to run the circuit units of each antenna at the mth AP.
As a further advance, the backhaul power consumption Pb,m can be modeled as (13)

Pb,m = P0,m + BSePbt,m(ηmk) (13)

where P0,m reflects the fixed power consumption value of each backhaul link, B reflects the
transmission bandwidth, and Pbt,m specifies the traffic-dependent power. By substituting
the values of Pac,m and Pb,m into (11), the total power consumption Ptotal can be remodeled
as (14)

Ptotal = ρd N0

M

∑
m=1

(σm)
−1

(
N

K

∑
k=1

ηmkφmk

)
+

M

∑
m=1

(NPtc,m + P0,m) + BSe

(
M

∑
m=1

Pbt,m(ηmk)

)
(14)

4.2. Spectral Efficiency

The total achievable EE, measured in bit/joule, is defined as the ratio of the sum
throughput (bit/s) and the total consumed power (watt) in the system and is defined as (15)

Ee(ηmk) =
BSe(ηmk)

Ptotal

(
bit

joule

)
(15)

where Se is the sum of Spectral Efficiency (SE). Going forward, it is instructive to provide
insights into the concept of SE which is a critical performance metric to be considered
in keeping pace with an ever-increasing number of wireless data services and high-rate
expectations. UD CF-mMIMO is envisioned to provide tremendous gains in SE through
efficient utilization of massive and dense antenna arrays, insightful power optimization
algorithms, and novel approaches to receiver filter coefficient design [10,14]. To put it
simply, some key enabling technologies for 6G are gaining widespread popularity thanks to
their ability to potentially improve and optimize SE through coherent transceiver processing.
SE is measured in bits/second/hertz and is established as (16)

SE =
Channel throughput (bit/s)

Channel bandwidth (Hz)
(16)

4.3. Discussions on Each Power Consumption Parts

This section briefly analyzes each power consumption part in the network [71].
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(a) Circuit power: The deployment of large-scale antenna arrays, as in CF-mMIMO, signif-
icantly increases the power consumption of wireless networks owing to an abundance
of antenna circuit elements [72]. The circuit power, resulting from the energy dissi-
pated by the circuit elements such as analog devices and residually lossy factors in
BSs, grows in tandem with the number of transmit antennas. Consequently, as the size
of the hardware of the system grows large, the total circuit power dissipated increases.

(b) Signal processing power: Signal processing power dissipation is increasingly becoming
a prime challenge to researchers, due to the greater complexity of signal processing
algorithms and architectures per requirement. Advanced wireless communication
systems, such as CF-mMIMO, require sophisticated signal processing units to code,
precode, and decode symbols at both transmission ends. Although manifold benefits
are realized, the total power consumption resulting from signal processing remains a
significant issue to be addressed.

(c) Signal transmission power: The optimized data speed and simultaneous transmission
of multiple signals in modern wireless communication systems necessitate even higher
transmission power to maximize SNR, operating capacity, and coverage area. Besides,
the power allocated to the transmitter during networking signals corresponds to the
number of distributed users and antenna elements. Thus, signal transmission power
has become a big deal in designing energy-efficient network architectures. The power
consumption resulting from the signal transmission can be derived mathematically as
PT = Pa/η, where Pa specifies the average transmit power of the BS, and η specifies
the efficiency of the average transmit power.

(d) The system fixed power: In addition to achieving tetherless connectivity and quality
performance, minimizing the static energy (stable power consumption) caused by the
hardware components of UD infrastructures, especially when performing different
types of communication processes is critical.

4.4. Selected Energy Maximization Techniques

The problem of minimizing the high-power consumption of wireless communication
systems while satisfying the target users’ quality of service demands remains the focal point
of many research works in recent times [73–76]. In order to tackle this fundamental issue
and ensure the realization of an energy-efficient network, umpteen green networking ap-
proaches and novel strategies have been developed. In particular, energy-efficient resource
allocation schemes, low-complexity power allocation algorithms, energy harvesting and
energy exchange techniques, and hardware conditioning, amongst several other strategies,
have been deployed [48,77–79]. Indeed, it is of practical interest to provide an up-to-date
review of current trends in green wireless communications to guide future research efforts.
In this context, an exhaustive analysis of the fundamental structure and recent advances in
selected EE maximization techniques indexed in high-impact scientific research databases
are presented. The key aspects considered are outlined as follows.

4.4.1. Energy Harvesting and Energy Exchange Techniques

Energy harvesting has emerged as a springboard to the realization of green wireless
communications [80]. The basic idea underpinning energy harvesting is adopting renew-
able energy resources to complement existing grid-powered network architectures, which
would probably guarantee sustainable and environmentally friendly networking solutions.
Thus, telecom equipment manufacturers may incorporate energy bought from the electrical
grid and preferentially independent energy harvesting sources to power a set of distributed
APs [81]. Interestingly, novel algorithms based on Simultaneous Wireless Information and
Power Transfer (SWIPT) have been formulated to maximize energy harvesting [82]. The
potential of renewable energy sources to supply the energy demands of mobile communi-
cation networks while delivering equivalent information, as in the case of non-renewable
energy sources, has also been primarily characterized. Available results indicate that the
operational cost and greenhouse gas mitigation are substantially optimized [69,83,84]. As
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a result, the integration of renewable energy sources such as solar photovoltaic, biomass,
wind, hydropower, ocean power, and geothermal, alongside widely used energy supply
(hydrocarbon, diesel generator), is deemed ideal to offset the power consumption cost
and maximize system EE, particularly for geographical regions lacking mature network
infrastructures [85].

In the same vein, CF-mMIMO can be enabled with energy exchange capabilities via a
smart grid infrastructure to minimize network operational costs and carbon footprints [48].
By exploiting the power cooperation between APs, extra available energy can be transferred
from APs with low price/power requirements to APs with high price/power requirements.
Thus, efficiently managing the energy supplied from different sources and compensating
for the intermittency of renewable energy sources [31]. Although energy harvesting and
exchange capabilities have appeared as preferred candidates for energy savings, several
unresolved practical issues persist. Specifically, achieving economically justifiable configu-
rations, ensuring data security, preserving fault tolerance without service disruption, and
minimizing power dissipation losses in scenarios with solar photovoltaics, are significant
shortcomings in deploying energy harvesting techniques. In addition, the cooperation be-
tween two APs through energy exchange results in a power loss [86,87]. Figure 4 illustrates
the architecture of a CF-mMIMO network with per-AP renewable energy resources. In addi-
tion, Table 2 provides essential insights into the development of optimal energy harvesting
and energy exchange techniques for energy-efficient wireless communication systems.
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Table 2. Recent advances in energy harvesting and energy exchange techniques for energy-efficient
wireless communication.

Ref. Focus and Coverage Key Findings Remarks Year

[31]

The work provided an extension to
the scheme presented in [88]. The

work proposed a novel power
allocation and cooperation

technique to manage energy
exchange in CF-mMIMO networks.

Compared to traditional systems,
the EE of CF-mMIMO systems is

considerably maximized.

ML-based power cooperation
techniques alongside energy
harvesting sources may be

incorporated for CF-mMIMO.

2020

[48]

The work considered the
performance of a CF-mMIMO
network with energy exchange

capabilities powered by the grid and
an energy harvesting source.

The proposed energy management
approach significantly reduces

consumed grid power EE
compared to systems without

cooperation.

More improvement is required to
compensate for the intermittency

of renewable energy in
CF-mMIMO.

2019

[80]

Introduced a novel RF energy
harvesting framework that exploits
the distinctive benefits presented by

CF-mMIMO, unmanned aerial
vehicles (UAVs) [89], and

reconfigurable intelligent surfaces
(RIS) for the internet of things (IoT)

devices.

Compared to the scheme in [90], a
substantial increase in energy

harvesting is achieved.

One critical aspect for improved
energy harvesting is the height
and deployment position of the

RISs and UAV APs.

2021

[81]

The work proposed using energy
harvested from renewable energy
sources to power all the BSs in a
two-tier hybrid heterogeneous

network. A distributed user
association algorithm is introduced
to palliate the effects of renewable

deployment on the user association.

The throughput of the proposed
system is substantially optimized

owing to larger bandwidths.

The adverse effects of these
emerging techniques on user

association are still largely
understudied and require more

work.

2016

[82]

Characterized the performance of a
SWIPT-assisted CF-mMIMO

network that coherently serves both
energy harvesting and non-energy

harvesting users.

A reasonable trade-off exists
between the achievable spectral
and EE, the energy assigned for
UL pilot transmission, and the

harvested energy.

The development of the joint AP
clustering technique and the

deployment of limited-capacity
fronthaul links between the CPU
and the APs was not considered.

2021

[86]

The work provided significant
insight into the performance of a

wirelessly powered CF IoT coupled
with energy harvesting technology.

A robust improvement in EE is
achieved with the proposed

optimization technique.

Comprehensive power
optimization algorithms are

crucial to achieving significant
gains in EE.

2020

4.4.2. Energy-Efficient Resource Allocation

With an attendant rise in the greenhouse effect and energy shortage, energy-efficient
resource allocation is a significant criterion to solve the problem of EE in next-generation
wireless networks [91]. Resource allocation entails intelligently assigning the limited avail-
able resources such as pilot training, transmit power, and spatial transmission resources
among users to maximize performance and minimize complexity in hardware design costs.
More precisely, network resources are adjusted adaptively and synchronously to achieve
the highest possible performance [92]. Resource allocation can be modeled as a design
utility optimization problem that simultaneously maximizes the power allocation, user
selection, bandwidth allocation, number of antennas, subcarrier, and time. If the resource
allocation scheme is optimized, the optimization algorithm can efficiently allocate the time
for data transmission and energy harvesting and optimally schedule antennas to enable
UEs to create high-quality links and ultimately enhance EE [1]. Numerous computation-
ally efficient and low-complexity resource allocation techniques have been proposed for
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energy-efficient wireless communications [93–95]. Table 3 presents an exhaustive analysis
of recent advances in resource allocation for wireless communication architectures.

Table 3. Recent advances in resource allocation schemes for energy-efficient wireless communication.

Ref. Focus and Coverage Key Findings Remarks Year

[96]

The work advocated using a green
resource allocation technique that
jointly maximizes the bandwidth

and transmits power at the APs for
DL CF-mMIMO.

Results were obtained to validate
the effectiveness of the proposed
scheme and the moderate EE-AP

trade-off.

With an ever-evolving wireless
communication network, the

trade-off between the quantity of
APs and the EE is suboptimal for

practical applications.

2017

[97]

The work comprehensively
surveyed energy-efficient resource

allocation schemes for mMIMO
networks. Besides, an evaluation of

the SE-EE trade-off alongside a
large-scale fading-based EE
approximation is presented.

The proposed algorithm is shown
to be computationally efficient

with fast convergence.

The circuit power consumption
model primarily impacts the

achievable EE.
2018

[98]

The work characterized the
performance of an mMIMO

non-orthogonal multiple access
(NOMA) system integrated with

wireless power transfer. The work
introduced an insightful joint power,

antenna selection, time, and
subcarrier resource allocation

technique for EE maximization.

Compared to benchmark schemes,
the proposed algorithm achieves

superior EE performance with
better convergence.

It can also be extended to more
practical and complicated setups 2021

[77]

In resolving the EE problem of an
mMIMO system coupled with

wireless power transfer, a resource
allocation scheme that optimizes the
power and time allocation, antenna
selection, and beamforming design

is analyzed.

Simulation results demonstrate the
effectiveness of the proposed

scheme over existing schemes.

More work is required to address
the detrimental effect of imperfect
channel state information on the

system performance.

2021

[99]

The work proposed an efficient EE
maximization scheme for UC

CF-mMIMO using power allocation
with instantaneous channel state

information and different resource
block allocation techniques.

The proposed technique is shown
to outperform that with statistical

information in terms of EE.

The proposed solution is a
promising technological enabler

for EE maximization in
5G-and-beyond networks.

2022

[100]

Joint optimization of the offloading
rate, transmission power, and user’s
offloading data bits for secure and

efficient mMIMO-mobile edge
computing systems is presented.

Aside from ensuring heightened
information security, the total EE
is also maximized (about 30%).

The correspondence provides a
secure and efficient framework to
handle vigorous computational

tasks.

2020

4.4.3. Energy-Efficient Power Allocation Algorithm

As a design goal of green mobile networks, it is critical to formulate novel and compre-
hensive power allocation algorithms, which are considered an essential index to prolong
the lifetime of network terminals, and achieve EE maximization in mMIMO systems [101].
Appropriately dividing power between the UEs to optimize utility functions is referred to
as power allocation [2]. Herein, an AP can arbitrarily cut down on their powers to avoid
unnecessary interference and high-power consumption. In the last decade, low-complexity
power allocation algorithms and optimization frameworks have been proposed to min-
imize energy consumption in wireless networks significantly. While striking a balance
between optimality and computational complexity remains a prime challenge, numerous
energy-efficient algorithms with faster convergence and better performance have been
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developed [102–104]. Table 4 summarizes recent works on power allocation algorithms for
green wireless communication.

Table 4. Recent advances in power allocation techniques for energy-efficient wireless communication.

Ref. Focus and Coverage Key Findings Remarks Year

[22]

The work introduced two
low-complexity optimization

algorithms to tackle a mixed-integer
second-order cone program (SOCP)
to minimize power consumption in

CF-mMIMO.

Results were obtained to validate
the effectiveness of the proposed

approach in reducing power
consumption instead of solely

minimizing the transmit power.

The global optimum solution
outperforms the proposed

algorithms in energy savings
(about 20%).

2020

[105]

The work formulated a novel
path-following approximation

algorithm to handle the
non-convexity of the proposed

resource optimization problem to
improve the total EE.

The proposed algorithm converges
very quickly and can substantially

maximize the total EE.

A significant increase in APs
beyond some optimal points

results in a steady decrease in the
total EE.

2019

[30]

Proposed an insightful power
allocation algorithm alongside a ZF
precoding design to minimize high
power consumption in CF-mMIMO

systems.

Compared to the case without
power control, the proposed

process provides a robust
enhancement in EE.

The system’s performance is
significantly impacted when the

transmit power is high.
2017

[59]

The work provided a comparative
analysis of various TPC algorithms

under ZF reception, intending to
maximize the UL EE while

satisfying the target SE.

The max-min EE algorithm
outperforms other TPC algorithms

at a target SE, mainly when the
number of single-antenna APs is

massive.

Performance characterization
under varying UEs, APs, and

antennas per AP is not accounted
for.

2021

[106]

Proposed an insightful accelerated
projected gradient-based power

allocation algorithm as an
alternative to the conventional

SOCP-based approaches deemed
computationally inefficient for

practical CF-mMIMO networks.

However, the proposed scheme
obtained EE performance similar

to the existing SOCP-based
approach, with a much faster run

time.

The degradation of the total EE
when extending the system scale,

i.e., increasing the number of
users, is one paramount factor

limiting real-time implementation.

2022

[107]

To address the computational
complexity and high run time

challenge of SOCP-based methods,
two low-complexity and highly

efficient techniques, namely
proximal gradient and accelerated

proximal gradient-based approaches,
are analyzed for CF-mMIMO

systems.

Compared with the conventional
SOCP-based approaches, the

proposed methods achieve the
same EE performance with a much

shorter run time.

As the number of users and the
inter-user interference grows, the

total EE decreases.
2022

4.4.4. Switching and Sleep Mode Techniques

In a bid to substantially increase the network EE and yield significant energy al-
lowances to the telecom network operators at low implementation cost, switching and
sleep mode strategies have appeared as an innovative paradigm for energy-efficient sys-
tem design and energy savings, particularly in low-traffic scenarios [27]. As alluded to
earlier, the APs are responsible for the highest proportion of energy consumed in wireless
technology. Intuitively, incorporating AP switching and sleep mode techniques in the
upcoming wireless networks is considered elementary and has attracted considerable re-
search attention recently [27,108,109]. The architecture in Figure 5 presents a diagrammatic
illustration of a sleep mode scenario in CF-mMIMO. In such approaches, a low-power
state in the hardware is implemented. Some resources are either astutely turned off during
“off-peak” hours or operated in low-energy consumption states. Lightly loaded APs can be
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dynamically turned on/off in correspondence with the traffic load/order of priority of APs
within the network architecture [110].
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Switching on and off APs must be modulated over the variations in traffic patterns
on a daily or weekly basis. Hence, traffic load in the network can be monitored. Then,
the particular energy-saving algorithm may decide to turn off/switch to the deep idle
mode or turn on specific components in the network, thus avoiding unnecessary power
consumption. Some hardware components that can be switched between low-power
mode and awake mode include the entire AP, signal processing unit, power amplifiers,
cooling equipment, etc. As a complement to the use of sleep modes, green user association
techniques, cell breathing, and self-organizing networks are crucial enablers [111]. While
energy saving can be realized by adopting switching and sleep mode techniques, the QoS
is primarily impacted due to reduced system capacity [79]. A summary of recent advances
in AP switching and sleep mode techniques is presented in Table 5.
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Table 5. Recent advances in switching and sleep mode for energy-efficient wireless communication.

Ref. Focus and Coverage Key Findings Remarks Year

[79]

Provided an exhaustive analysis of
the performance of AP switches

on/off strategies for UD
CF-mmWave mMIMO systems,

designed to adaptively turn on/off
APs, per the priority of APs

deployed in the system.

Compared to conventional
schemes, a considerable boost in

EE is obtained.

Sophisticated power control
strategies are not adopted. 2021

[27]

Enhanced perspective on AP
switches on/off strategies by

proposing a green AP sleep mode
scheme following the

goodness-of-fit test for CF-mmWave
mMIMO systems.

Results have shown that in cases
with non-uniform spatial traffic

distribution, insightful
goodness-of-fit-dependent AP
switch on/off techniques can
improve the achievable EE.

Deploying more reactive AP
switch on/off strategies integrated

with hybrid analogue-digital
precoding frameworks is a rich

area for further study.

2020

[108]

The work presented a
comprehensive survey of energy
efficiency techniques for 5G radio

access networks, emphasizing
mMIMO and sleep modes

(advanced idle modes), amongst
others.

From a practical viewpoint, sleep
modes are considered an

innovative energy-saving-based
solution with numerous potentials.

A clear roadmap toward
sustainable communication

systems is provided.
2022

[110]

Characterized the performance of
various AP switch on/off techniques

dimensioned to selectively turn
on/off some of the APs in relation to

the traffic load in the system.

It suffices that properly designed
switch on/off techniques can

significantly maximize the
achievable EE.

The scheme could still be exploited
for more sophisticated AP switch

on/off techniques, scalability
aspects, and more complex power

control techniques.

2020

[112]

The work considered the
performance of a random AP sleep

mode architecture for greening radio
stripe-based CF-mMIMO systems.

Compared to similar
configurations of CF-mMIMO

networks, the proposed algorithm
is shown to substantially increase
the achievable EE of radio stripe

technology.

Investigative studies on
finite-capacity fronthaul links

between the CPU and the APs as
well as non-uniform long-term

user distributions were not
presented.

2021

4.5. Alternate Energy Efficiency Optimization Techniques

The emerging sophistication in mobile and wireless networks and the tremendous
growth in the number of subscribers has accentuated energy consumption. Thus, capping
power consumption while achieving reliability and performance objectives has also sky-
rocketed research efforts in the wireless ecosystem [69]. In addition to the EE improvement
techniques delineated in this contribution, numerous innovative approaches for greener
wireless technology and greater power savings are being extensively researched. A few
of the prominent strategies include green transmission techniques [113], energy-efficient
component design [114], AP assignment algorithms [115], antenna distribution config-
urations [116], full-duplex (FD) operation [117], virtualization [118], SWIPT [119], and
software-defined networking (SDN) [120]. The following provides important insights into
developing novel strategies for energy-efficient wireless communication. Additionally,
Table 6 summarizes the recent advances in alternate EE optimization strategies.
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Table 6. Recent advances in alternate EE techniques for green wireless communication.

Ref. Alternate Optimization Focus and Coverage Key Findings Remarks Year

[34] AP selection scheme

Proposed an insightful
power allocation algorithm

alongside AP selection
schemes to minimize power
consumption resulting from

backhaul links.

The total EE is
significantly maximized,

particularly for an
enormous count of APs.

Achieving
computationally
efficient schemes

remains a rich area for
further investigation.

2018

[116] Antenna distribution
configuration

The work examined the
performance of different

antenna distribution
designs, applying TPC.

It was shown that
semi-distributed

deployment could
improve spectral and EE,

particularly when the
number of UEs grows.

For various usage
scenarios, sophisticated

TPC techniques are
required to improve the

EE further.

2021

[121] AP selection scheme

Introduced a joint power
allocation and AP selection
scheme to achieve energy

savings in CF-mMIMO
networks.

It provided a significant
reduction in the total

power consumed.

The proposed approach
is a promising

technological enabler for
improved wireless

networks.

2020

[122] Energy-efficient
virtualization

The work advocated using
an optical

network-supported model
to enhance the performance

of network function
virtualization (NFV)

towards energy savings.

38% of the total power
consumption is saved,

as revealed by the
mixed-integer linear

programming model.

Further results
verification is needed to

analyze the impact of
core network virtual

machines inter-traffic on
green NFV.

2019

[123]
Energy-efficient

hardware component
design

The work adopted well
established distortion
models to analyze the
detrimental effect of

hardware impairment (HI)
on CF-mMIMO systems.

Results indicate that
low-quality hardware
can be utilized for CF

deployment.

Specialized models to
minimize the impact of
HI at the UE were not

considered

2017

[124]
Energy-efficient

hardware component
design

The work provided a
comparative analysis of
low-resolution ZF and

maximum ratio combining
receivers for energy-efficient

CF-mMIMO networks.

From an EE point of
view, ZF provides

superior performance
with a large chunk of

quantization bits.

No reference is made to
CF-mMIMO

configurations with
mixed-analogue-to-

digital converters under
Rician fading.

2020

[125] FD operation

The work characterized the
unique interplay between

FD operation and
CF-mMIMO systems to

optimize the spectral and EE
of wireless networks.

It suffices that a
significant gain in
spectral and EE is

achievable with the
proposed model as
opposed to SC and

co-located mMIMO.

Although the proposed
model outperforms the
baseline ones, the EE

diminishes in scenarios
with a massive number

of APs.

2020

[126] FD operation

Exploited the distinctive
gains presented by FD

communications to achieve
improved energy-efficient

CF-mMIMO networks.

However, the weighted
sum EE obtained is

similar to the centralized
approach, with higher

computational efficiency.

Unfortunately, residual
interference suppression
at APs is insufficient to
realize optimized SE.

2022
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Table 6. Cont.

Ref. Alternate Optimization Focus and Coverage Key Findings Remarks Year

[127] Frequency division
duplexing (FDD)

Improved the feedback
overhead and channel state

information concerns of
FDD-based CF-mMIMO

systems.

The simulation results
show that 15% of

transmission power is
saved. Thus, EE is

optimized.

To effectively deploy the
systems in a real

environment, novel
algorithms and insights
are required to address

other serious concerns of
FDD systems.

2018

[128] SWIPT

The work considered the
performance of a

CF-mMIMO network
incorporated with SWIPT

technology while adopting a
UC AP selection technique.

A robust improvement
in EE alongside a
superior trade-off

between SE and EE is
obtained.

Satisfying the SE
requirements of users is
a top priority, and the

slight loss in SE is
non-negligible.

2021

[129] SDN

The work characterized the
performance of energy

management and
monitoring application

infrastructure integrated
with the SDN framework to
reduce energy consumption.

The proposed solution
can potentially minimize
energy consumption in

upcoming mobile
networks.

Although the real-time
implementation of the

proposed model is
presented, optimization
techniques are needed to

realize minimized
energy consumption.

2017

4.5.1. Energy-Efficient Hardware Component Design

Considering the large amount of energy consumed by hardware components, it is
essential to utilize components with higher energy-efficient features. For instance, power
amplifiers widely deployed in wireless communication to optimize the signal level over
the communication medium are shown to dissipate more than 80% of the input energy
as heat [111]. Moreover, from an EE perspective, the static energy and the signal transmit
energy consumed by hardware components are grossly unsatisfactory [71]. Adopting well-
established models that satisfy certain EE requirements by minimizing energy consumption
in such systems is preferable. While certain hardware replacement can be financially
burdensome and economically unjustifiable, special consideration of both economic and
operational features are critical to achieving a substantial amount of energy savings [130].

4.5.2. Full Duplex Operation

Full duplex (FD) wireless systems have been identified as a critical technology for
the 5G and beyond 5G wireless networks, given the exponential demand for ubiquitous
and untethered connectivity [131]. By enabling coherent transmission of UL and DL data
on the same time-frequency resource, capacity enhancement in terms of SE and EE can
be actualized for traditional wireless communication systems. Interestingly, advanced
self-interference suppression mechanisms for FD technology have now been implemented
in real-time, thereby making FD an attractive solution for future wireless networks [132].
Thus, it is of practical interest to exploit the possible gains in EE of FD and CF-mMIMO to
reach even higher EE and greater carbon footprint minimization [133]. The system model
for an FD CF-mMIMO network is presented in Figure 6.
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4.5.3. Antenna Distribution Configurations

A promising approach to improve network coverage and achieve significant power-
saving along with cost-effective networks consists of deploying distributed antenna sys-
tems [134]. As revealed by measurement-based evaluations [135], optimally deploying
antennas of distributed antenna systems can result in reduced total radiated power level,
less energy consumption, and enhanced SE. In the CF-mMIMO network, many distributed
antennas cooperate in providing robust connections to users with optimized EE, which is a
paramount index for implementation in a real environment. Many investigations on various
antenna distribution setups and optimal positioning of distributed antennas are currently
being explored for network capacity enhancement and greener communications [136–139].

4.5.4. Access Point Selection Strategy

In practice, reducing the effect of backhaul power consumption has been a very
sought-after way of maximizing EE [140]. One of the significant research areas to improve
energy usage in backhaul links and reach considerable energy savings is the energy-
efficient AP selection technique [141]. The selection strategy addresses this problem by
adaptively selecting a subset of APs to serve each user. More precisely, only some APs in
the proximity of a given user jointly cooperate in serving it, thus ensuring efficient resource
utilization [142]. The beneficial combination of both power allocation schemes and AP
selection strategies helps to handle the complexity of the problem and its feasibility [121].
This method is thus a promising trend to satisfy the given QoS constraints for all users
while increasing the total EE.

4.5.5. Virtualization

With a huge growing concern about the attendant rise in energy consumption, virtual-
ization has been proposed as a prominent approach to consolidate other EE techniques and
achieve performance maximization [122]. In this case, it is possible to minimize the number
of dedicated hardware and software components, such that functions are separated from
their underlying hardware and forwarded into software-based mobile functions while be-
ing made available on-demand [143]. As a further advance, network function virtualization
can be incorporated with optical network-supported frameworks to achieve significant
gains in agility, scalability, and reduced power consumption [144]. To this end, research
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efforts are targeting green virtualization frameworks that can contribute to reduced energy
usage in wireless communication systems.

4.5.6. Simultaneous Wireless Information and Power Transfer

Recently, notable research activities geared towards addressing the energy scarcity
problem in wireless networks through the reclamation of energy have gained traction. The
emergence of simultaneous wireless information and power transfer (SWIPT), spurred by
ever-increasing connected devices and high energy consumption has provided an insightful
alternative to reach the green design target of mobile network operators and enhances
the sustainable development of wireless communication systems [45]. In this case, part of
the energy carried by wireless devices can be harvested and utilized to relay power and
information across the wireless network. Essentially, radio frequency signals are exploited
for superposing information and power transfer [82]. This technique can be effectively
applied to energy-constrained relays to provide the much-needed flexibility for harvesting
energy [46]. The concept of SWIPT has attracted a great deal of research attention in both
academia and industry, to overcome the trade-off between rate and energy, eavesdropping,
and practical implementation of transmit beamforming.

4.5.7. Visible Light Communication

A new paradigm of radio frequency-based technology, visible light communication
(VLC), otherwise known as optical wireless communication, is envisaged to revolutionize
the future of next-generation wireless standards [145–148]. Experimental and analytical
investigations have demonstrated the potential of VLC to support large data rates and ultra-
wide bandwidth with remarkable optimization in EE [149,150]. VLC seeks to harness the
potential of LED luminaires through efficient modulation of the visible light spectrum for
high-speed data communication. By exploiting the EE and unprecedented enhancement of
LED technologies, VLC can serve as a complement to the existing network infrastructures,
while providing improved EE as well as added security/privacy [151]. VLC, although in
its infancy, is a potential access option to reach highspeed sustainable wireless frontiers,
and is an interesting area requiring further elucidation [152].

Key findings from Table 2 indicate a robust improvement in EE due to a drastic
minimization of grid power consumption and greenhouse emissions compared to systems
without cooperation. Although the architecture suffers from the discredit of intermittency,
infrastructure challenges, and huge initial capital investment. Future development in
this domain comprises the application of Machine Learning (ML) in power cooperation
modeling, intricate power optimization algorithms, and reliable energy storage systems.

From Table 3, aside from ensuring substantial energy savings, green resource allocation
techniques provide a reliable and cost-effective starting point in the pursuit of sustainable
next-generation wireless communication systems. Moreover, as demonstrated in Table 3,
researchers have demonstrated impressive strides in this domain. The various literature
reviewed can be extended to more practical and advanced configurations.

Table 4 indicates tremendous progress in terms of insightful power allocation algo-
rithms with robust computational efficiency and a much faster run time. More so, the total
EE is trending upwards in cases with low-complexity optimization algorithms, as opposed
to cases without power control schemes.

From a practical viewpoint, the investigative studies delineated in Table 5 illustrate
that switching and sleep mode techniques are innovative energy-based solutions with
numerous potential applications. Effective AP switching and properly designed sleep mode
techniques are shown to substantially enhance the achievable EE of wireless networks. As
seen in Table 5, using sophisticated AP switch on/off strategies is not without contention.
Nonetheless, the state-of-the-art provides a clear roadmap towards realizing a future with
clean energy.

Alternate energy maximization schemes are evolving to consolidate the existing green
innovative techniques for optimal performance. Key findings shown in Table 6 indicate
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that an adequate supply of green networking solutions geared toward addressing the
attendant rise in energy consumption have been proposed. Most notable amongst them
is the energy-efficient hardware component design, FD operation, SWIPT, AP selection
scheme, and antenna distribution configuration, which is shown to substantially minimize
energy consumption in mobile networks. Although the transition will be harder to achieve
and requires further elucidation/verification, the approaches under consideration are
promising technological enablers in achieving the desired goals of energy sustainability.

4.6. Sustainable 6G Wireless Systems

One of the design goals of the commercialized 5G mobile system standard is to support
massive connectivity, guarantee low latency, deliver a completely immersive experience,
and robust security, and exhibit even more heterogeneity [3,153–155]. However, with
the exponential growth of data-centric and automated systems, novel synthesis of future
services such as multi-sensory data fusion and massive man-machine interfaces, and the
escalating demands for tetherless connectivity in a fully mobile-networked society, 5G
networks will be insufficient to fulfill the wireless networks’ demand of the future [14].
6G wireless standards are currently being developed and are envisioned to overcome the
laggings of 5G networks. 6G wireless systems will support innovative applications and
address new challenges in wireless connectivity. Like its predecessors, 6G technology will
provide substantially higher capacity, ultra-low latency and ubiquitous instant communica-
tions, and very high-data-rate connectivity per device [10,156]. The 6G system is expected
to exploit higher frequencies than 5G networks, to facilitate the integration of maritime,
aerial, and terrestrial communications into a sophisticated network with improved access to
cutting-edge technologies such as holographic beamforming [157–160], fog/edge comput-
ing [161], tactile Internet [162], quantum communications [163], intelligent reflecting surface
(IRS) [164,165], backscatter communication [166,167], artificial intelligence (AI)/machine
learning (ML) [168,169], and 3-dimensional (3D) networking [170,171]. Besides a laud-
able increase in delivering much more data at faster rates, tackling sustainable wireless
communication development issues will pose serious concerns in the 6G era. The issue
of sustainability has become imperative, owing to the exponential increase in greenhouse
emissions, deterioration of the environment, and climate change resulting from massive
energy consumption from dense wireless devices [171,172]. Thus, to achieve commercial
success in 6G, stringent green requirements and sustainable development goals should
form the core requirements.

5. Power Control

The transmit power constitutes one of the primary radio resources for a wireless
network and should be managed appropriately [22]. Power control encompasses the
procedure of intelligently controlling the power of a transmitter to improve the Quality of
Service (QoS) of all the users. During the UL transmission phase, the K users are required to
select suitable transmit powers 0 ≤ pk ≤ pmax, k = 1, . . . , K, while the M APs are required
to forward their transmit powers 0 ≤ ρm ≤ ρmax, m = 1, . . . , M during DL transmission
phase [2]. Power control is of prime importance in CF-mMIMO to optimize the power of
the desired received signal, reduce pilot contamination, manage the generated interference,
and offer considerable improvement in the QoS to the UEs [33,52].

In addition, power control can help to limit the total power consumption in a CF-
mMIMO network [56]. Thus, selecting appropriate power control algorithms is critical to
maximizing the overall efficiency of the wireless network. It is worth noting that power
control algorithms can be dynamically deployed to solve specific system-wide utility
functions [173]. Some of the most common utility functions—max EE, max-min fairness,
and max sum SE—are discussed extensively in the next section. Tables 7–11 present a
concise summary of recent advances in power control algorithms (geometric programming
(GP), successive convex approximation (SCA), fractional power control, Second-Order Cone
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Program (SOCP), and ML-based power optimization schemes), respectively. Essentially,
these schemes are dimensioned to maximize the common utility optimization problems.

5.1. Max Energy Efficiency

One of the major concerns for designing a wireless network is optimizing energy
consumption while satisfying performance and reliability objectives [174]. Specifically, to
pave the way for the practical implementation of CF-mMIMO alongside other emerging
technologies, it is vital to prioritize total energy maximization, i.e., how much energy can
be saved during the communication process [3]. A possible approach to minimize energy
consumption is to deploy insightful power optimization algorithms [175]. Choi et al. [59]
characterized the EE maximization problem in a CF-mMIMO network using ZF reception.
The problem was solved effectively by exploiting three different Transmit Power Control
(TPC) algorithms with a sub-optimal trade-off in SE.

Bashar et al. [176] considered the EE maximization problem under multiple constraints.
Since the problem is non-convex, an alternate approach that decomposed the original
problem into two sub-problems, receiver filter coefficient design and power allocation,
was exploited. Results indicate that the receiver filter coefficient design was formulated
as a generalized eigenvalue problem. In contrast, a heuristic sub-optimal model and
a Successive Convex Approximation (SCA) scheme were deployed to solve the power
allocation problem. Nguyen et al. [30] proposed a novel SCA scheme with a ZF precoding
design to achieve energy savings in CF-mMIMO under the per-UE and per-AP power
constraints. The EE maximization problem was addressed after exploiting a sequence
of SOCP. It is worth noting that novel algorithms and insights are rapidly emerging for
maximizing the EE utility function [177].

5.2. Max-Min Fairness

CF-mMIMO is essentially a practical embodiment of mMIMO and network MIMO,
where joint cooperation between low-complexity APs deployed in a distributed manner
help to minimize the effects of intercell interference and offers improved QoS over the
wide serving area [178]. Max-min fairness is deployed in these systems to optimize the
SE performance of all users in the network, particularly those with the worst channel
condition, thus ensuring uniform service for mobile subscribers [64]. It is interesting to note
that max-min fairness is equivalent to finding the maximum possible value of the Signal-to-
interference-plus noise ratio (SINR) among all the UEs [66]. Max-min fairness problems
can either be convex [179] or non-convex [180]. An optimal solution can be obtained in the
former using insightful algorithms such as GP, convex optimization, bisection search, and
SOCP [181].

An alternate optimization can be exploited in the latter to find a local optimum [182].
A weighted power control algorithm to solve the problem of max-min fairness in UL
CF-mMIMO with ZF receiver was proposed in [183]. The weighted algorithm offered
considerable gains in the achievable UL per-user rate and improved QoS. Zhou et al. [179]
characterized the performance of an optimum DL beamforming technique for CF-mMIMO.
A max-min optimization problem is introduced to enhance the minimum SINR among
all users.

Moreover, a low-complexity approach to address the max-min fairness problem in
UL CF-mMIMO was proposed in [184]. The original problem is decomposed into two sub-
problems and solved using a generalized eigenvalue problem and an accelerated projected
gradient approach, combined with a smoothing technique. The meta-heuristics approach
was exploited in [185] to solve the max-min fairness optimization problem under linear
maximum ratio combining at APs and per-UE power constraints. Although ML-based
models can be adapted to improve computational efficiency, their solutions are suboptimal
compared to classical optimization techniques [186]. A feedforward neural network was
proposed in [187] to solve the problem of max-min fairness in CF wireless networks.
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5.3. Max-Sum Spectral Efficiency

With the attendant rise in mobile subscriptions and the demand for extremely high
data rates in wireless networks, it is of paramount importance to maximize the overall SE
performance of the network [188]. While the SE achieved by each user can be individually
optimized, the overall system performance could be impacted by a dearth of UEs in
the worst conditions [178]. Thus, the max sum SE problem has appeared as a preferred
candidate over the max-min SE fairness problem to reach a substantially larger SE. The
problem mentioned above is usually non-convex. Thus, it is difficult to arrive at the
optimal solution [1]. However, insightful algorithms have been developed to achieve a
local optimum. The sum SE optimization problem for CF-mMIMO was studied in [189].
Novel fractional programming and weighted minimum mean square error algorithms were
employed to find the global optimum solution with reduced complexity.

In a related study, Nguyen et al. [190] considered the sum SE minimization problem.
Since the problem is nondeterministic polynomial time (NP)-hard, an insightful successive
approach was adopted to solve the problem. The SCA scheme was also exploited in [191]
to solve the sum SE minimization problem. The algorithm was reformulated as a SOCP
to obtain the local optimum solution. ML-based models may also be applied to provide
performance enhancement [192]. A deep neural network (DNN) optimization scheme was
analyzed in [35] to find better solutions to the sum SE problem. Last, Andrea et al. [40]
proposed an artificial neural network (ANN) to address the sum SE problem in a CF-
mMIMO network.

The respective Tables 7–11 on power control techniques covering the GP, SCA, frac-
tional power control, SOCP, and ML-based schemes suggest that insightful power allocation
algorithms and low-complexity frameworks are needed to facilitate realistic deployment
of next-generation wireless networks. Obviously, with ever-evolving wireless network
standards, it is critical to optimize the power of the desired received signal, manage the
prevailing interference, minimize the effect of pilot contamination, and optimize the over-
all SE and energy consumption, while satisfying performance and reliability objectives.
The power control techniques under consideration have emerged as new participants to
match these requirements. Compared to distributed power allocation techniques and other
benchmark schemes, the ML-based approach is shown to provide a robust improvement in
system performance with optimal complexity and processing time.

Table 7. Recent advances in GP power control technique.

Ref. Focus and Coverage Key Findings Remarks Year

[176]

The work exploited the unique
interplay between a heuristic

sub-optimal scheme and an SCA
approach to reformulate a power

allocation problem. The problem is
designed for EE maximization of UL

CF-mMIMO into a standard GP
problem.

The work compared to the equal
power allocation scheme; the EE is
considerably maximized with the

proposed algorithms.

Unfortunately, a modest part of
the max-min SE is sacrificed. 2019

[182]

Bashar et al. proposed to solve the
max-min optimization problem for

user fairness maximization by
exploiting the choice of receiver
coefficient and power allocation.

The original problem is decoupled
into two sub-problems, in which GP

and the generalized eigenvalue
problem are iteratively solved.

Results manifest that a three-fold
increase in system rate is

obtainable with the proposed
technique.

The DL rate of the users was not
considered. 2018
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Table 7. Cont.

Ref. Focus and Coverage Key Findings Remarks Year

[193]

The work examined a QoS problem
to enable real-time users to meet the
QoS constraints in CF-mMIMO. A

standard GP is adopted to solve the
user power allocation problem,
which decomposes the original

problem.

The proposed scheme provides a
substantial improvement in 90%
likely throughput compared to a

simple benchmark scheme.

More advanced strategies with
superior convergence are required. 2018

[194]

The work provided a comprehensive
rate analysis for UL and DL

CF-mMIMO networks over spatially
correlated Rayleigh channels. A GP

approach is introduced to
characterize the objective function

for UL rate analysis.

Simulation results validate the
superiority of the proposed

max-min fairness algorithms,
which can be decoupled as GP and

SOCP.

The impact of channel correlation
is detrimental to the system’s

performance.
2020

[195]

The work investigated the max-min
problem of a CF-mMIMO system

concerning the effect of quantization.
While an eigenvalue problem is

adopted to design the receiver filter,
the GP approach is employed to

solve the power allocation problem.

Numerical results confirm the
effectiveness of the proposed

algorithm in improving system
performance compared to existing

algorithms.

The algorithm can be further
optimized, using even more
sophisticated approaches.

2019

Table 8. Recent advances in the SCA power control technique.

Ref. Focus and Coverage Key Findings Remarks Year

[190]

The work proposed jointly
optimizing the power control and
load balancing in UL CF-mMIMO

networks under different objectives.
These include power minimization,
min QoS, and sum SE maximization.
In order to solve the power control

optimization, an SCA scheme is
applied to convert the sum SE

maximization problem into the form
of GP.

The proposed scheme significantly
outperforms full-set joint

transmission and maximum SNR
association, particularly in high

QoS scenarios.

Compared to the BS-users
association method, the proposed

linear receiver framework is
becoming more influential.

2018

[191]

The work characterized the
performance of CF-mMIMO with
non-ideal hardware transceivers

using two insightful power
allocation algorithms, namely mixed
QoS and max-total-SE algorithms.

Both algorithms are shown to
maximize the total SE and

satisfactorily satisfy their target
users’ QoS constraints.

The SE is significantly degraded
when the target UE coincides with

the receiver.
2020

[196]

The work evaluated the
performance of a DL CF-mMIMO

system to optimize the target users’
signal-to-interference-plus-noise

ratio (SINR). An SCA optimization
algorithm alongside a CB precoder

is proposed.

The results obtained validate the
effectiveness of the proposed

algorithm in minimizing the sum
of DL transmission power and

meeting each users’ SINR
constraints.

More advanced strategies with
superior convergence are required. 2018
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Table 8. Cont.

Ref. Focus and Coverage Key Findings Remarks Year

[197]

The work performed a thorough
analysis of the effect of the spatial

distribution of APs on the
performance of CF-mMIMO.

Further, several DL power control
policies are developed.

However, the SCA policy is shown
to outperform other schemes with

high complexity.

In scenarios where a subset of all
APs serves a given user and where

coordination is absent, the SE
begins to degrade.

2019

[198]

The work proposed to optimize the
performance of federated learning

frameworks using CF-mMIMO
systems. An online SCA algorithm is

deployed to solve the formulated
optimization problem.

Results indicate that CF-mMIMO
provides a significant gain in the

training time of federated learning
frameworks compared with other

benchmark schemes.

CF-mMIMO is a promising
technological enabler for

improved federated learning in a
wireless environment.

2020

Table 9. Recent advances in fractional power control technique.

Ref. Focus and Coverage Key Findings Remarks Year

[199]

The work proposed an insightful UL
fractional power control and DL

power allocation scheme based on
large-scale quantities for

performance maximization in
CF-mMIMO.

The scheme is shown to optimize
neither specific indices such as a

weighted sum nor guarantee
favoring individual users.

Learning-based frameworks are
promising solutions to achieving

superior trade-offs between
performance and scalability.

2020

[17]

In addition to an initial access
algorithm, two pilot assignment

techniques, and a partial large-scale
fading decoding technique, a

fractional power control policy is
introduced to solve the challenge of

scalable massive access
implementation in CF-mMIMO.

Simulation results validate the
effectiveness of the proposed

scheme compared to the
state-of-the-art.

The proposed framework can be
applied to cases with a larger class

of fading distributions and
multi-antenna UEs.

2021

[36]

The work examined the effect of
channel ageing and pilot

contamination on the performance
of CF-mMIMO networks. In

addition, the study adopted a
fractional power control technique
to minimize inter-user interference.

Compared to the full power
transmission technique, the

performance of fractional power
control in scenarios with channel

ageing is unsatisfactory.

In scenarios with severe channel
ageing, advanced strategies more

robust to channel ageing are
required.

2020

[51]

The work characterized the
performance of a fully distributed
fractional power control policy for

the UL of CF networks.

The proposed power control
obtains fairly satisfactory

performance compared to the
max-min solution.

The effect of noise on the system
was not accounted for accordingly.
The scheme is also limited to UL

CF wireless networks.

2019

[200]

The study performed a thorough
investigation to determine the

impact of fractional power control
on the DL performance of mMIMO

systems.

The results indicate a robust
improvement in the cell border

throughput, coupled with
moderate performance

optimization in cases with extreme
pilot contamination.

To facilitate realistic deployments,
introducing additional pilot

contamination mitigation
mechanisms is paramount.

2019
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Table 10. Recent advances in SOCP power control technique.

Ref. Focus and Coverage Key Findings Remarks Year

[22]

The work evaluated the
performance of energy-efficient load

balancing as well as power
allocation schemes for large-scale

networks. Due to the non-convexity
of the optimization problem, a

mixed SOCP is exploited to provide
a globally optimal solution.

Power consumption is
significantly reduced. Moreover,

the proposed algorithms are
sufficient to handle AP activation
and power allocation in large CF

networks.

The developed algorithms are
sub-optimal and consume even
higher energy compared to the

global optimum.

2020

[32]

The work proposed a joint
optimization of power allocation

and load balancing in CF-mMIMO.
The optimization framework, which

is non-convex, is solved using a
mixed SOCP.

A significant energy saving is
achieved compared to reducing
the transmit power and keeping

all APs turned on.

The obtained solution is
sub-optimal in a real-time

environment.
2020

[73]

The work performed a detailed
analysis of two power minimization

algorithms based on the QoS
constraints of each user. With the

precoders employing (CB and ZF),
the power minimization problems

are reformulated as a SOCP.

In the regime of low QoS SE, CB is
shown to achieve significant
power savings over the ZF

precoder.

The benefits of the CB precoder
vanish as the QoS SE increases. 2019

[201]

Characterized the total EE of a TDD
CF-mMIMO system under backhaul
and hardware power consumption

to maximize EE. A power
optimization algorithm is

formulated, which is approximately
solved by a SOCP.

The proposed algorithm
significantly maximizes the EE
compared to the case without

power allocation.

As the number of APs grows large,
the total EE is substantially

degraded due to backhaul power
consumption.

2017

[202]

The work proposed to maximize the
scalability and EE of IoT systems

using CF-mMIMO. A neural
network is utilized in place of a

SOCP problem to allocate power.

It suffices that considerable gains
in SE and EE are achieved with the
proposed algorithm as opposed to

the full transmission technique.

The proposed algorithm, though
sub-optimal, allows for scalability,
which is crucial for IoT systems.

2021

Table 11. Recent advances in machine learning-based power control techniques.

Ref. Focus and Coverage Key Findings Remarks Year

[40]

The work exploited a deep learning
approach to solve the sum-rate and

minimum rate maximization
problem in the UL of a CF-mMIMO

system.

While a near-optimal performance
is obtained, the effect of pilot

contamination on the learning
capabilities of the ANN is shown

to be quite modest.

In the presence of shadowing, the
learning capabilities of the ANN

are significantly impacted.
2019

[187]

The work proposed to exploit the
potential of feedforward neural

networks with unsupervised
learning to scale up power control
implementation in UL CF-mMIMO

systems.

The unsupervised neural network
ensures superior performance
while vastly satisfying distinct

signals to interference objectives.

However, when large-scale
channel gains are employed as

inputs, the approximations
become tighter, with a longer

learning stage.

2019

[192]

The work proposed a
low-complexity large-scale

fading-deep learning-based power
control scheme to perform sum-rate
maximization in limited-fronthaul

CF-mMIMO.

Results reveal a considerable boost
in throughput, owing to the
mapping derived from deep

convolutional neural networks.

The practicality of the proposed
scheme is validated through

extensive simulation results and is
a rich area for future research.

2020
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Table 11. Cont.

Ref. Focus and Coverage Key Findings Remarks Year

[203]

The work introduced a deep
learning framework to perform

power allocation in the DL
CF-mMIMO system using the
max-min fairness approach.

A properly trained feed-forward
DNN is shown to outperform the
conventional distributed power
allocation technique in terms of
complexity and processing time.

More work is needed to bridge the
gap between the decentralized and

centralized approaches.
2019

[204]

The work considered an innovative
DNN to overcome the

nondeterministic polynomial-hard
problem in CF-mMIMO with low

time complexity.

It suffices that the DNN approach
exhibits a performance close to the

widely deployed heuristic
concerning the bisection

algorithm.

The study can be further extended
to the mmWave domain with more

advanced channel models.
2020

6. Open Research Issues

The open research issues require further research to pave the way for seamless wireless
connectivity, greener wireless networks, and sustainable evolution of wireless communications.
The lines of research that need to be addressed in future work are summarized as follows:

(a) Green Artificial Intelligence (GAI): One possible approach toward sustainable wireless
communication is the integration of Artificial Intelligence (AI) to drive the design
and optimization of learning-based models for maximized SE and EE indices [108].
Although groundbreaking advancements led by insightful ML solutions have been
realized [205], the research in this line of interest is still in its infancy and requires
further effort. Exploring yet undiscovered ML architectures that prioritize compu-
tational efficiency and energy consumption towards improved operating conditions
may be interesting. More precisely, ML paradigms with faster convergence, high
computational processing capabilities, and optimized energy consumption during the
training and exploitation phases are needed.

(b) mmWave frequency spectrum: The distinctive interplay of CF-mMIMO alongside the
rapidly emerging mmWave frequency bands is expected to reap mutual benefits from
higher macro-diversity due to the coherent distributed transmission across APs [206].
However, mmWave propagation is characterized mainly by severe penetration, path,
and diffraction losses, which continue to roadblock the successful coexistence of these
enabling technologies [207]. Therefore, it is essential to address critical challenges in
mmWave communications while analyzing the impact of the state-of-the-art on the
achievable EE of CF-mMIMO systems.

(c) Sophisticated AP switch on/off strategies: Several AP switch on/off strategies for
CF-mMIMO networks designed to switch BSs into sleep mode adaptively have been
proposed in the literature [27]. Substantial energy allowances to the network operators
can be achieved at the expense of the system capacity [79]. Further investigations on
more reactive AP switch on/off techniques, the authenticity of the models, and their
implementation issues constitute an attractive future research direction.

(d) Intricate power control strategies: The widespread popularity of complex scenarios
in CF-mMIMO, such as user assignment and joint AP selection, calls for the design
of innovative power control strategies to get better results in such complex configu-
rations [208]. Besides, sophisticated power control techniques are urgently needed
to manage scenarios where conventional approaches might be sub-optimal or time-
consuming. Also, the evaluation of advanced pilot assignment techniques to contain
pilot contamination may be considered in future studies.

(e) Joint AP clustering: In a typical CF-mMIMO configuration, a dearth of UE is jointly
served by a large chunk of arbitrarily allocated APs, all linked to a CPU via a fronthaul
network. The QoS will be impacted when the limited capacity fronthaul link becomes
saturated [209]. Aiming at the practical implementation of CF-mMIMO alongside
other emerging technologies such as SWIPT, joint AP clustering has appeared as
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an innovative paradigm to minimize the pressure on the fronthaul networks [141].
Nonetheless, performance degradation, amongst other challenges, must be tackled in
this domain to satisfy future massive connectivity in a realistic environment.

Lessons Learned

In this section, a concise elucidation of key findings and lessons learned from this
review is presented. These lessons, which encompass a broad range of investigative
analysis and evaluation, would provide a reliable framework to open up new frontiers in
the wireless communication domain.

Lesson One: The demand for increased mobility and coverage, microsecond latency
communications, and ultra-high data rates have skyrocketed recently and continue to grow
at a breakneck pace. Wireless networks are currently being upgraded beyond 5G systems to
match the fast-paced development of revolutionary applications, wireless services demands,
and smart social needs. While the current 5G architecture is designed to provide ubiquitous
wireless connectivity and gives lower latency substantially, the technology is faced with
rising technical requirements such as improved QoS, higher system capacity, and data speed.
6G wireless standards, with significantly more modest features than 5G, are envisioned
to meet these requirements and support innovative applications through the deployment
of the unexplored spectrum, UD CF-mMIMO networks, energy-efficient transmission
techniques, and key disruptive technologies in conjunction with advanced AI techniques.

Lesson Two: Averting the energy crunch resulting from the deployment of novel
paradigms of wireless communication remains a prime challenge. With the drive towards
tetherless connectivity and capacity enhancement, network operators and standardiza-
tion bodies are exploring cutting-edge technologies to address the requirements of rate-
demanding and innovative services without tangible recourse to the environmental and
ecological implications of these technologies. At present, the design and development
of sustainable/green communication technologies are even more compelling, driven by
global concerns for implicit consumption of energy, ecological imbalance, the strain on
natural resources, and health, safety, and environmental challenges. Thus, EE becomes a
key element in the standardization of beyond 5G and 6G wireless communication systems.

Lesson Three: As alluded to earlier, next-generation wireless networks are gaining
widespread popularity and significant traction in the wireless industry and academia.
Consequently, there is an urgent need to develop insightful energy-efficient frameworks
and techniques to match up with such evolvement. Following the development and
novel approaches to sustainable wireless network design, investigative analysis of the
performance of several EE maximization techniques, such as energy harvesting and energy
exchange techniques, energy-efficient resource allocation, and switching and sleep mode
techniques, is presented. While a significant amount of environmental benefits/energy
savings can be obtained with the proposed technologies, it is noteworthy that sustainable
6G communication is a relatively subjective concept. More precisely, the state-of-the-art is
largely connected with the transmission mechanisms, component conditioning, specific
configuration, and physical topology of the communication system.

Lesson Four: Intuitively, energy-efficient resource allocation, switching and sleep
mode techniques, and energy harvesting techniques are promising landscapes for achieving
sustainable communication systems. By intelligently assigning the limited resources among
users, maximizing the fixed energy consumption in lightly loaded APs, and incorporating
energy harvesting technologies in emerging wireless communication architectures, energy
consumption can be significantly maximized. Additionally, energy-efficient hardware
component design, FD operation, antenna distribution configuration, SWIPT, AP selection
strategies, and VLC are also increasingly evolving green communication techniques with
large potential for energy saving. However, to maximize the prospects of the EE maxi-
mization techniques, an excess count of unresolved issues ranging from techno-economic
feasibility to unrealistic assumptions need to be carefully tackled.
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Lesson Five: Even though various enabling technologies to achieve the desired goals of
sustainable 6G communication systems have been proposed, the issue of cost-efficiency and
economic justification of selected EE maximization techniques have been ignored. Specific
hardware design solutions covering major architectural modifications can be financially
burdensome. Moreover, deploying energy-efficient techniques with novel infrastructural
requirements may consume higher energy than the existing system resulting in a cost-
efficiency issue. For instance, large initial capital investment is required to reliably utilize
renewable energy resources. Thus, technically feasible models, as well as minimized-cost
solutions, are critical to achieving sustainable wireless communication systems.

Lesson Six: It is observed that next-generation wireless technology, in conjunction with
UD CF-mMIMO, can provide substantial improvement in both the SE and throughput of
wireless communication systems. Unfortunately, adopting a distributed antenna array in
UD CF-mMIMO systems may dramatically increase the power consumption and the overall
energy emissions of wireless communication systems. Indeed, the conflict of simultaneously
optimizing the SE and EE of UD CF-mMIMO systems remains one of the prime concerns
for network operators. Since both of these two-design metrics are critical for future wireless
communication networks, obtaining a suitable balance between EE and SE is imperative.

Lesson Seven: Power control is an indispensable candidate technique offering a
tremendous improvement in the QoS of all users. Power control is also of great necessity
to minimize the effects of pilot contamination and manage the associated interference.
Interestingly, insightful power allocation algorithms such as GP, SCA, SOCP, fractional
power control, and ML-based power allocation schemes can be effectively deployed to
resolve common utility optimization problems (max EE, max-min fairness, and max-sum
SE) and achieve optimal performance.

7. Conclusions

This work has provided an extensive overview of the concepts and techniques pro-
posed for energy-efficient power control in ultra-dense cell-free massive MIMO (UD CF-
mMIMO) systems. An elaborate introduction to the technical foundations and mathe-
matical system model of CF-mMIMO is presented. Next, a comprehensive evaluation of
the power consumption model, energy efficiency (EE), and power consumption parts are
provided. Further, standard EE-maximization techniques for the state-of-the-art, including
energy-efficient resource allocation schemes, energy harvesting and exchange techniques,
switching and sleep mode techniques, and virtualization, are discussed comprehensively.
Additionally, a review of recent advances in energy-efficient power control in UD CF-
mMIMO systems was highlighted. Different power allocation schemes, such as geometric
programming (GP), successive convex approximation (SCA), Second-Order Cone Program
(SOCP), fractional power control, and ML-based power control, target max EE, max sum
SE, and max-min fairness in wireless networks are discussed elaborately. Finally, critical
insights on the open issues and critical challenges in guaranteeing sustainable wireless
communication are delineated. Key findings from the survey thread evidence that an
ever-increasing number of users and high-rate demands are accompanied by a substantial
increase in energy consumption. While significant gains in EE have been realized through
efficient utilization of energy maximization techniques and dense deployment of antenna
arrays, the concept of energy sustainability and green design expectations remains. Future
work would examine the design and characterization of optimal energy-efficient power
control schemes in UD CF-mMIMO networks for application in the envisioned 6G wireless
communication systems.
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Abbreviations

3D 3-Dimensional
5G Fifth-Generation
AI Artificial Intelligence
ANN Artificial Neural Network
AP Access Point
BS Base Station
CB Conjugate Beamforming
CCI Co-channel Interference
CF-mMIMO Cell-Free Massive MIMO
CPU Central Processing Unit
DL Downlink
DNN Deep Neural Network
DSP Digital Signal Processing
D2D Device-to-Device
EE Energy Efficiency
FD Full-Duplex
FDD Frequency Division Duplexing
GP Geometric Programming
HI Hardware Impairment
ICT Information and Communication Technology
i.i.d Independent Identically Distributed
IoT Internet of Things
IRS Intelligent Reflecting Surface
ML Machine Learning
mm Millimeter
M2M Machine-to-Machine
NFV Network Function Virtualization
NOMA Non-Orthogonal Multiple Access
NP Nondeterministic Polynomial Time
QoS Quality-of-Service
RF Radio-frequency
RIS Reconfigurable Intelligent Surfaces
SC Small-Cell
SCA Successive Convex Approximation
SDN Software Defined Networking
SE Spectral Efficiency
SI Self-Interference
SNR Signal-to-noise ratio
SINR Signal-to-interference-plus noise ratio
SOCP Second-Order Cone Program
SWIPT Simultaneous Wireless Information and Power Transfer
TDD Time Division Duplex
TPC Transmit Power Control
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UAV Unmanned Aerial Vehicle
UC User-Centric
UD Ultra-Dense
UE User Equipment
UL Uplink
V2X Vehicle-to-Everything
VLC Visible Light Communication
ZF Zero-Forcing
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