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Abstract: This study modeled the crash severity of elderly drivers using data from the state of Virginia,
United States, for the period of 2014 through to 2021. The impact of several exogenous variables on
the level of crash severity was investigated. A multilevel ordinal logistic regression model (M-OLR)
was utilized to account for the spatial heterogeneity across different physical jurisdictions. The
findings discussed herein indicate that the M-OLR can handle the spatial heterogeneity and lead to a
better fit in comparison to a standard ordinal logistic regression model (OLR), as the likelihood-ratio
statistics comparing the OLR and M-OLR models were found to be statistically significant, with
p-value of <0.001. The results showed that crashes occurring on two-way roads are likely to be
more severe than those on one-way roads. Moreover, the risks for older, distracted, and/or drowsy
drivers to be involved in more severe crashes escalate than undistracted and nondrowsy drivers.
The data also confirmed that the consequences of crashes involving unbelted drivers are prone to
be more severe than those for belted drivers and their passengers. Furthermore, the crash severity
on higher-speed roads or when linked to high-speed violations is more extreme than on low-speed
roads or when operating in compliance with stated speed limits. Crashes that involve animals are
likely to lead to property damage only, rather than result in severe injuries. These findings provide
insights into the contributing factors for crash severity among older drivers in Virginia and support
better designs of Virginia road networks.

Keywords: crash severity; crash modeling; multilevel modeling; ordinal logistic regression; spatial
heterogeneity; road safety; elderly drivers; transportation safety

1. Introduction

The human costs of road crashes worldwide are significant, leading to 1.35 million
fatalities yearly, with an additional 50 million people incurring some form of disability [1].
According to the World Health Organization (WHO), road accidents are projected to
be the seventh primary cause of death by 2030. Moreover, driving-related accidents
leading to sudden death or permanent disability impose tremendous economic, social, and
human capital losses. It is estimated, for example, that road crashes are responsible for
approximately a 3% loss in gross domestic product (GDP) for most nations [1].

Current demographic trends associated with an aging population [2,3] are increasing
the likelihood of automobile accidents involving drivers aged 65 and older. The number of
licensed elderly drivers in the United States, for example, climbed by 65% during the period
of 1997 to 2018 [4]. Moreover, the injury and death risk among older drivers involved in
automobile accidents continues to rise; indeed, the fatality rates for older drivers and their
passengers are ranked higher in crash severity than any other road accident fatalities [5–10].
The Insurance Institute for Highway Safety [11] has found that drivers over the age of 80
have about a 0.658% chance of being killed in a car accident, which is almost four times
greater than that for those between the ages of 30 and 39 (0.137%). Previous studies have
confirmed the significant difference in nonfatal and fatal crash risks among subgroups of
older drivers, with the highest crash risk being among elderly drivers [12].
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The high risk of injury and fatality among older drivers is attributed to the diverse
facets associated with aging—notably, deficits in physical, cognitive, and visual compe-
tence. These particular impairments represent significant challenges for this cohort of
drivers. Older drivers can experience numerous challenges that put them at a higher
risk of crashes [13–15]. For instance, it can be stressful for these drivers to assess traffic
patterns, change lanes, or make turns [2]. Research also shows that older drivers can find it
challenging to drive on congested roads, in unfamiliar areas, during wet conditions, and in
regions with unfamiliar obstacles that need maneuvering [6]. Another study confirmed
that it can often be problematic for older drivers to track the movement of pedestrians, read
signs, and perceive conflicting vehicles at night [16]. Older drivers often find it tiring to
drive on long journeys and are less adept at coping with an automotive breakdown [6].

Previous studies have indicated that there is a relationship between drivers’ socioeco-
nomic demographics (SEDs) and their likelihood of being involved in speeding behavior
and traffic crashes [17]. Different age-groups are associated with distinct psychological
and physiological features that affect how they react to unexpected situations (e.g., a traffic
accident) [18]. It is these physiological elements that make older drivers vulnerable to
run-off-the-road types of crashes [19]. Specific factors include risk-taking behavior, di-
minished vision, reaction times, and other age-related deficits [18]. Higher crash rates
for the elderly have also been documented as a result of decreases in the cognitive and
physical abilities of the aging population, who typically require longer perception–reaction
times when driving [20]. For instance, elderly drivers are more frequently associated with
surveillance errors, which can be attributed to looking but not really seeing [11]. Such
errors occur due to declines in the speed and efficacy of information processing and the
ability to achieve visual attention division. Even healthy older adults experience functional
declines in cognitive, physical, and sensory areas, which affect their driving and make
them vulnerable to crashes [6]. Road crashes vary in terms of the level of injury and the
incidence of fatalities [21]. Previous studies have indicated that older traffic victims present
with skeletal injuries (e.g., rib fractures) that are linked to internal injuries at higher rates
than younger victims, who are treated for crash-related internal injuries unrelated to rib
fractures [18]. The overall physical fragility of the elderly due to aging makes them highly
susceptible to injuries or being killed during a crash [22].

While many studies have focused on vehicle traffic crash severity, less attention has
been paid to more vulnerable road users—senior drivers in particular. Thus, analyzing
the crash-severity statistics connected to this population may help in identifying the fac-
tors influencing crash-severity occurrence. The reliability of modeling techniques and
a thorough analysis of road crashes are crucial in reducing severe injuries and fatalities
resulting from vehicular accidents. The majority of previous studies utilized traditional
statistical approaches for modeling crash-severity levels, which are mainly based on using
the logit and ordered probit models while ignoring the cluster-specific effect. However,
these techniques lack the potential to adequately model the injury severity of the occupant
and the damage of the vehicle when other correlations exist between the items that are
involved in several crashes of vehicles [23]. For example, it is indicated that the fatality
risk is always dependent on other vehicle characteristics [24]. Crashes that occur in a
specific segment are given risk factors that can be studied over time [23]. The repetitive
measurements in such situations are nested in crashes that are nested in segments to create
varying severity levels [25]. Moreover, the spatial heterogeneity in crash severity creates
a variance that is within the strata, which is below that of between the strata [26]. Such
is evidenced by the aspects of geographical division, rural–urban difference, land-use
maps, climatic zones, and functional area [27]. In short, spatial heterogeneity is known to
influence the severity of crash-related injuries. Hence, it is vital to ensure that all of the clus-
tering levels are accounted for when undertaking a multilevel crash-data analysis. Ignoring
the cluster-specific effect would likely lead to statistical errors, including the estimation
of biased parameters, the underestimation of standard errors, and the overestimation of
statistical significance.
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This study aimed to model the crash severity among older/elderly drivers, defined
herein as drivers 65 years of age and older. Crash data were obtained from the Common-
wealth of Virginia (USA) and encompassed the period of 2014 to 2021. For this study, crash
severity was assessed using multilevel ordinal logistic regression (M-OLR) modeling to ac-
count for the cluster-specific affect. This study also investigated crash-severity contributing
factors. The contributions of this paper are as follows: first, we explored and identified the
factors responsible for crash severity for vulnerable road users, specifically elderly drivers
in Virginia. Second, we examined and quantified the effects of various exogenous vari-
ables (i.e., driver characteristics and site-specific conditions) on crash severity for elderly
drivers. Identifying the main factors that influence crash severity will help to mitigate
the risk and improve the safety of road users. Third, we integrated a multilevel ordinal
logistic regression analysis technique to consider the heterogeneity derived from different
physical jurisdictions.

2. Data Description

The crash dataset assessed for this study was obtained from the Virginia Department
of Transportation (VDOT). The database included crash reports for 8 years: from 2014
to 2021, with a total of 986,101 crashes reported within the Commonwealth of Virginia
during this period. We examined the crash severity of motor vehicle crashes involving
senior drivers who were 65 years of age and older. The selection of this age threshold
is based on the National Highway Traffic Safety Administration [28]. Within this sub-
dataset, senior drivers were involved in 157,800 crashes, all of which were included in the
analysis. The crash-severity level is presented using the KABCO scale. Following prior
research [29,30], we classified crash severity into three categories: (a) PDO for property
damage only, designated as O; (b) minor injuries designated as B + C; and (c) possible
fatalities denoted as K + A.

The dataset for this study was collected from 313 physical jurisdictions, which are the
VDOT’s nomenclature for apportioning Virginia’s counties, towns, and cities. Eighteen
variables were considered in the analysis, and their descriptive statistics are presented
in Table 1. These variables include the crash type, traffic signals, weather conditions,
roadway alignment, roadway type, work zone, alcohol use, belt usage, bike involvement,
distraction, drowsiness, drug usage, pedestrian involvement, speed violation, area type,
animal involvement, posted speed, and time of the week (i.e., whether the accident occurred
on a weekend). Figures 1 and 2 provide a visual reference for total crashes and those
involving possible fatalities within Virginia’s physical jurisdictions over the eight-year
period of data collection.
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Table 1. Variables’ descriptive statistics.

Variable Category Count Percentage/Mean

Crash severity
PDO 98,702 62.55%

Minor injury 49,771 31.54%
Severe injury 9327 5.91%

Crash type

Fixed object 13,399 8.49%
Head-on 3813 2.42%

Overturned 1156 0.73%
Other 10,479 6.64%

Rear end 52,953 33.56%
Sideswipe 17,471 11.07%

Angle 58,529 37.09%

Traffic signal Yes 40,998 25.98%
No 116,802 74.02%

Weather condition
No adverse condition 137,196 86.94%

Adverse condition 20,604 13.06%

Roadway alignment Straight 142,472 90.29%
Curve 15,328 9.71%

Roadway type
Two-way divided 91,375 57.91%

Two-way undivided 62,206 39.42%
One-way 4219 2.67%

Work zone
No 153,567 97.32%
Yes 4233 2.68%

Alcohol
Yes 3483 2.21%
No 154,317 97.79%

Belted
No 4271 2.71%
Yes 153,529 97.29%

Bike
Yes 915 0.58%
No 156,885 99.42%

Distracted
Yes 28,054 17.78%
No 129,746 82.22%

Drowsy Yes 2733 1.73%
No 155,067 98.27%

Drugs Yes 716 0.45%
No 157,084 99.55%
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Table 1. Cont.

Variable Category Count Percentage/Mean

Pedestrian
Yes 1605 1.02%
No 156,195 98.98%

Speed violation Yes 20,211 12.81%
No 137,589 87.19%

Area type Urban 121,884 77.24%
Rural 35,916 22.76%

Animal
Yes 5060 3.21%
No 152,740 96.79%

Posted speed (mph) - 157,800 41.93

Weekend
Yes 32,622 20.67%
No 125,178 79.33%

3. Methodology
3.1. Ordinal Logistic Regression (OLR)

OLR is a generalization of the binary logistic regression model in the case of multiple
categories. As such, OLR was used to model the ordinal categories of a given response
variable with multiple categories. Ordinal logistic regression modeling is useful in esti-
mating the odds being either equal to or below a specific response-variable level [28]. For
instance, if the levels of ordinal outcomes are denoted as j, then the number of predictions
that are made by the OLR model is given as (j − 1). Each of these predictions estimates the
probability of the odds being either equal to the jth level or below it in consideration of
the outcome variable. Such odds equal to or below the jth level constitute the cumulative
odds. At this juncture, the working assumption is that there are similar odds ratios across
all categories for each predictor. This assumption is noted as the parallel lines or the
proportional odds assumption. The proportional odds (PO) model is expressed in the logit
form, as given by Equation (1) [31]:

logit
[
πj(x)

]
= ln

(
πj(x)

1− πj(x)

)
= αj +

(
−β1X1 − β2X2 − . . .− βpXp

)
(1)

where πj(x) = P
(
Y ≤ j | x1, x2, . . . , xp

)
, which gives the probability of being equal to or

below the j level for any given set of predictors, j is a discrete index {1, 2, . . . , j − 1}, αj
is the cutoff point, and β1, β2, . . . , βp are the logit coefficients. In order to calculate the
ln(odds) of being equal to or below the jth level, Equation (1) can be rewritten as given
by Equation (2):

logit
[
P
(
Y ≤ j | x1, x2, . . . , xp

)]
=

(
P(Y≤j|x1,x2,...,xp)
P(Y>j|x1,x2,...,xp)

)
= αj +

(
−β1X1 − β2X2 − . . .− βpXp

) (2)

For the ordinal response variable, it is plausible to consider the PO as a number of
simultaneously estimated binary logistic regression models. There is a dichotomization of
the outcome variables of the binary models from the ordinal outcome variable that compares
outcomes at or below the category (Y ≤ cat. j) or above the category (Y > cat. j). Thus, the
odds of being equal to or below the category, coded as 1, versus the odds of being above the
category, coded as 0, can be estimated using binary logistic regression. The estimated logit
coefficients are reported to be equal despite the logistic models having different intercepts.
This means that across the categories, the odds are proportional or the regression lines are
parallel. Consequently, for every predictor variable, only one regression coefficient needs
estimating, as opposed to estimating multiple coefficients.
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3.2. Multilevel Ordinal Logistic Regression (M-OLR)

The data format used in hierarchical structured data, multilevel data, and nested
data is such that observations at a lower level are nested within one, or more, higher
level. Examples of this approach are the nesting of patients within hospitals in medical
science, the nesting of voters within districts in political science, and the nesting of families
within communities in sociology. Thus, there is a deliberate violation of the assumption
of independence, since a greater level of homogeneity is observed in the same groups, as
opposed to when observing different groups. The level 1 equation for the multilevel PO
model is given by Equation (3) [31]:

logit
[
πkij(Y ≤ k)

]
= ln

(
π
(
Yij ≤ k | x1, x2, . . . , xp

)
π
(
Yij > k | x1, x2, . . . , xp

))
= αk +

(
−β1jX1ij − β2jX2ij − · · · − βpjXpij

) (3)

In this case, the link function is provided as logit
[
πkij(Y ≤ k)

]
. The purpose of the

link function is to transform the original ordinal response variable Y for the ith individual
in the jth cluster into the logit, the transformed outcome, or the log odds of the cumulative
probability of being equal to or below a particular category k. On the other hand, the
middle section is termed the log odds. At this point, the cumulative odds of being equal
to or below a specific category equate to the probability ratio of being equal to or below
a category to being above that category. Finally, the linear combination of the predictor
variables whereby every logit coefficient is associated with cluster j is provided on the
right side of the equation. In this case, the cutoff points are given as αk, while the predictor
variables for the ith individual within the jth cluster are given as X1ij, X2ij, . . . , Xpij. Finally,
the logit coefficients of the predictors within the jth cluster are provided as β1j, β2j, . . . , βpj.

The crash predictors to the level 1 equation are included in the random intercept model,
where the intercept is permitted to randomly change across various physical jurisdictions.
For the M-OLR model, the logit link for the cumulative probability of being at or below a
particular category k for the ith crash predictor in the jth physical jurisdiction is provided
as logit (πkij). Concisely, the components of the level 1 equation (i.e., Equation (3)) are the
crash severity, or the ordinal response variable, and the crash predictors.

In the level 2 equation, γ00 is the overall logit or log odds of being at or below a
specific crash severity across physical jurisdictions, and u0j is an error term at the physical
jurisdiction level. The relationships are given by Equation (4):

β0j = γ00 + u0j
β1j = γ10
β2j = γ20

...

...
βpj = γp0

(4)

While the level 2 equation is noted to have random intercepts, the crash predictors are
constrained and the slopes are fixed.

4. Results and Discussion
4.1. Model Comparison

The crash-severity levels were modeled using the OLR model and the M-OLR model,
since spatial heterogeneity has an impact of influencing the severity of the injury that is
realized in traffic accidents [26]. Multilevel ordinal logistic regression (M-OLR) modeling
was utilized to account for the cluster-specific effect. The comparison statistics between the
two models are presented in Table 2. The results show that the likelihood-ratio statistics
for the OLR and M-OLR models were 15,561 and 15,696, respectively. Both models were
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statistically significant at a 99% confidence interval level. These results indicate that both
models were useful for explaining the crash severity. However, note that the M-ORL
model yields a better fit, as the likelihood-ratio statistics comparing the OLR and M-OLR
models were found to be 4650.6, with 1 df and a p-value of <0.001. Moreover, the M-OLR
model is preferable, as it was found to yield a significantly lower AIC (240,091) and BIC
(240,360) than the OLR method, whose corresponding AIC and BIC data were 244,740 and
244,999, respectively.

Table 2. Model comparison statistics.

Model LL (β) LL (0) Degree of
Freedom

Likelihood Ratio
Statistics AIC BIC

Ordinal logistic regression
(OLR) model −122,344 −130,124 24 15,561 244,740 244,999

Multilevel ordinal logistic
regression (M-OLR) model −120,018 −127,866 24 15,696 240,091 240,360

4.2. Results of the Crash-Severity Model

An M-OLR model was developed to investigate the influencing factors on crash-
severity level. The estimated model parameters are presented in Table 3. Eighteen variables
were found to significantly influence (at a 95% confidence level) crash severity among
elderly drivers. These variables included the crash type, traffic signal, weather condition,
roadway alignment, roadway type, work zone, alcohol use, belt usage, bike involvement,
distraction, drowsiness, drug usage, pedestrian involvement, speed violation, area type,
animal involvement, posted speed, and time of the week (i.e., whether the incident occurred
on a weekend). The model estimates and odds ratios (ORs) confirmed that the crash severity
was influenced when compared with a baseline (i.e., reference) category. A positive estimate
and an OR of more than 1 indicate that the category affects the crash-severity level more
than the reference category and vice versa.

The estimated model parameters for both head-on and overturned crashes were found
to be positive (i.e., 0.942 and 0.836, respectively) with ORs larger than 1 (i.e., 2.57 and 2.31,
respectively). This finding confirms the higher severity of head-on and overturned crashes
for the elderly compared to the angle (side) crash type. This outcome is likely attributed
to transferring the full kinetic energy of the crash through the front of both vehicles or
the vehicle involved in the overturn. A similar result was obtained for the fixed-object
crashes. In contrast, both the rear-end and sideswipe crashes displayed negative parameter
estimates (i.e., −0.170 and −0.892, respectively) with ORs less than 1 (i.e., 0.84 and 0.41,
respectively), indicating the lower severity of these crashes for elderly drivers compared to
the angle-crash type.

For the traffic signal variable, the model estimate indicates that crash locations with
traffic signals negatively impact the crash-severity level (OR = 1.25). This result can be
attributed to risk compensation [32], where a higher dependence of road users on traffic
signals can reduce their level of attention to the surrounding environment. Moreover, the
crash severity on curved roads is higher than when driving on straight roads, where the
odds were found to be 0.88. This outcome can be attributed to the higher probability of
noncompliance and the reduced visibility and ability to control vehicles or bikes on curved
roads compared to straight roads. Similar results were obtained in an earlier study [24].
With respect to roadway type, the model estimate indicates that crashes occurring on
two-way roadways are likely to be more severe than those on one-way roadways, with an
OR of 1.28.
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Table 3. Multilevel ordinal logistic model results.

Variable Category Estimate SE Z-Stat p-Value Odda Ratio
95% CI (Odds)

Lower Upper

Crash type

Fixed object
Head-on

Overturned
Rear end

Sideswipe
Angle *

0.2837
0.9426
0.8358
−0.1696
−0.8917

0.021
0.033
0.060
0.013
0.021

13.24
28.16
13.99
−12.82
−42.43

< 0.001
< 0.001
< 0.001
< 0.001
< 0.001

1.33
2.57
2.31
0.84
0.41

1.27
2.40
2.05
0.82
0.39

1.39
2.74
2.59
0.87
0.43

Traffic signal Yes
No * 0.2248 0.013 17.34 < 0.001 1.25 1.22 1.28

Weather condition No adverse condition
Adverse condition * 0.1601 0.016 9.95 <0.001 1.17 1.14 1.21

Roadway alignment Straight
Curve * −0.1246 0.019 −6.539 <0.001 0.88 0.85 0.92

Roadway type
Two-way divided

Two-way undivided
One-way *

0.2493
0.2438

0.036
0.036

6.98
6.80

<0.001
<0.001

1.28
1.28

1.20
1.19

1.38
1.37

Work zone No
Yes * 0.2187 0.035 6.33 <0.001 1.24 1.16 1.33

Alcohol Yes
No * 0.4487 0.035 12.76 <0.001 1.57 1.46 1.68

Belted No
Yes * 1.8704 0.032 58.92 <0.001 6.49 6.10 6.91

Bike Yes
No * 2.4919 0.062 40.41 <0.001 12.08 10.71 13.64

Distracted Yes
No * 0.079 0.014 5.494 <0.001 1.08 1.05 1.11

Drowsy Yes
No * 0.1313 0.041 3.208 0.0013 1.14 1.05 1.24

Drugs Yes
No * 0.4028 0.076 5.332 <0.001 1.50 1.29 1.74

Pedestrian Yes
No * 2.8737 0.055 52.661 <0.001 17.70 15.91 19.70

Speed violation Yes
No * 0.2145 0.016 13.090 <0.001 1.24 1.20 1.28

Area type Urban
Rural * −0.1809 0.023 −7.880 <0.001 0.83 0.80 0.87

Animal Yes
No * −1.4831 0.052 −28.610 <0.001 0.23 0.21 0.25

Posted speed - 0.0076 0.001 12.526 <0.001 1.01 1.01 1.10

Weekend Yes
No * 0.0536 0.013 4.059 <0.001 1.06 1.03 1.08

Intercept
PDO | minor injury

Minor injury | severe
and fatal injury

1.1308
3.5962

0.060
0.061

18.93
59.16

<0.001
<0.001

3.682
45.679

3.23
39.97

4.20
52.20

Intercept variance Physical jurisdiction 0.1798 0.424

Log− likelihood at
convergence −120,018

Log− likelihood
at zero −127,866

AIC 240,091

Likelihood ratio 15,696

Number of
observations 157,800

* Reference category.

Furthermore, crashes that involve drunk drivers or those under the influence of drugs
are likely to be more severe than those involving unimpaired drivers, with ORs of 1.57
and 1.5, respectively. This finding is due to the impact of alcohol and drugs on diminished
brain functions associated with thinking, reasoning, and muscle coordination, which are
essential for controlling a vehicle. Similarly, distracted and drowsy drivers are associated
with more severe crashes than undistracted and nondrowsy drivers, with ORs of 1.08 and
1.14, respectively. This increasingly important finding can be attributed to the impact of
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phone usage on the cognitive functions of road users. Indeed, a growing body of literature
is emphasizing how dual tasking (e.g., mobile phone use or texting while driving) competes
for cognitive resources, which may lead to prioritizing the former over the latter, thereby
increasing the risk of vehicular accidents [33]. Research also shows that drowsy drivers
tend to display longer reaction times, reduced judgment and muscle coordination, and
more frequent lane-departure events compared to nondrowsy drivers [34].

For unbelted drivers and passengers, the model estimate indicates that the conse-
quences of crashes involving unbelted drivers are likely to be more severe than those
involving belted drivers and passengers, with an OR of 6.49. This finding is almost cer-
tainly due to the increased likelihood of severe head and chest trauma resulting from
slamming into the dashboard or windscreen (or even being ejected from the car) compared
to belted drivers and passengers. For traffic crashes that involve vulnerable road users (e.g.,
bikes or pedestrians), the model estimates indicate that the likelihood of severe crashes is
higher for crashes that involve these vulnerable road users compared to those that do not,
with ORs of 12.08 and 17.70, respectively. This increased risk is associated with the higher
likelihood of traumatic brain or musculoskeletal injuries in such crashes.

With respect to the traffic environment, the model estimate indicates that crash severity
on high-speed facilities (e.g., highways) is higher than those taking place on low-speed
facilities (e.g., local roads), with an OR of 1.01 for an increase in speed of 1 mph. This
finding can be attributed to higher crash speeds at higher driving speeds, which leads to
more severe crashes. Moreover, driving at higher speeds gives the driver less time to react
in the case of an emergency, and likely requires a greater braking distance. Moreover, the
model estimate indicates that speed violations would likely lead to more severe crashes,
with an OR of 1.24. We can attribute this finding to higher noncompliance with the rules
of the road. Previous studies have shown that higher noncompliance with road-design
requirements is associated with more severe crashes [17,35–37].

When considering weather conditions, the model estimates indicate that crashes
occurring in clear weather (i.e., in the absence of rain, snow, fog, etc.) are likely to be
more severe than those taking place under adverse weather conditions, with an OR of
1.17. This finding can be attributed to risk compensation, where in adverse weather
conditions road users perceive higher risk and are likely become more cautious of their
surroundings, while maintaining lower driving speeds. Similar results were obtained in
previous studies [27,38,39]. Moreover, for traffic crashes that occurred in work zones, the
model estimate indicates that the likelihood of severe crashes in work zones was lower in
comparison to those occurring on regular roads, with an OR of 1.24—likely due to lower
driving speeds required within work zones. Similar results were obtained in [40].

For crashes that involve animals, the model estimate indicates that vehicle–animal
crashes are more likely to result in PDO and less likely to result in severe driver injury
or fatality. Similar results were obtained in [41]. Moreover, the model estimates indicate
that crashes occurring in urban areas tend to be less severe than those occurring in more
rural areas, with an OR of 0.83. This may be attributed to different vehicle proportions in
rural areas compared to urban areas, where large vehicles (e.g., trucks) often navigate in
rural areas. This result is consistent with previous studies [27,42]. Additionally, the model
estimates indicate that crashes that occur at weekends are likely to be more severe than
crashes that occur during weekdays, with an odds ratio of 1.06. This can be attributed
to differences in drivers’ traveling purposes and behaviors on weekends compared to
weekdays. Similar results were reported in [43].

5. Conclusions

This study investigated the influence of several contributing factors on the crash-
severity level for elderly drivers. Crash-severity levels were classified into three categories:
PDO, minor injuries, and severe and fatal injuries. On-site crash-severity levels were
obtained for the Commonwealth of Virginia over an eight-year period (2014 to 2021).
A multilevel ordinal logistic regression model was utilized to account for the spatial
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heterogeneity (i.e., cluster heterogeneity) across different physical jurisdictions. To the
authors’ knowledge, the current study is the first to use multilevel modeling to quantify
the factors affecting crash severity among elderly drivers. Numerous variables were used
to explain the variance in crash severity, including crash type, site type and attributes, time
characteristics, and driver behavioral attributes.

The results confirmed that head-on and overturned crashes are likely to be more severe
than other crash types (e.g., rear-end and sideswipe crashes). Our findings also indicate
that crashes occurring on two-way roadways are likely to be more severe than those on
single-lane roadways. Moreover, distracted, drowsy, or drunk drivers are associated with
more severe crashes than undistracted, nondrowsy, or sober drivers. The consequences
of crashes involving unbelted drivers are likely to be more severe than those experienced
by belted drivers and passengers. Furthermore, the severity of crashes when driving at
higher speeds or on highways with higher speed limits is likely to be greater in comparison
to driving at lower speeds or on roads with lower speed limits. Findings from this study
also confirmed that although injury and death are possible when a driver collides with an
animal, such events are more likely to lead to PDO rather than severe driver injury.

This study has several limitations. The dataset used in this study applied only to older
drivers within the Commonwealth of Virginia. Although the findings detailed herein are
likely to be generalizable to other states in the United States, a comparative study using
other datasets from different geographic locations would add to the literature on older
drivers and the challenges that they face.

Future research should investigate the influence of SEDs of the drivers of crash-severity
level (e.g., sex, driver age). In addition, the impact of other factors that are related to vehicle
characteristics (e.g., size), vehicle type, and road geometric variables, such as lane width,
can be considered in future work. Furthermore, investigating the influence of “driving”
an autonomous vehicle on crash severity is becoming an increasingly important topic for
all drivers, but merits particular attention for the elderly, given their age-related physical
and cognitive deficits. Moreover, this study employed a statistical approach for modeling
the crash severity of elderly drivers. As such, considering other modeling approaches,
such as deep neural networks that might capture nonlinearity in the data, should also be
considered in future research.
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